1

Genetic Algorithms: An Overview

Science arises from the very human desire to understand and control the
world. Over the course of history, we humans have gradually built up
a grand edifice of knowledge that enables us to predict, to varying ex-
tents, the weather, the motions of the planets, solar and lunar eclipses,
the courses of diseases, the rise and fall of economic growth, the stages
of language development in children, and a vast panorama of other natu-
ral, social, and cultural phenomena. More recently we have even come to
understand some fundamental limits to our abilities to predict. Over the
eons we have developed increasingly complex means to control many as-
pects of our lives and our interactions with nature, and we have learned,
often the hard way, the extent to which other aspects are uncontrollable.

The advent of electronic computers has arguably been the most revolu-
tionary development in the history of science and technology. This ongo-
ing revolution is profoundly increasing our ability to predict and control
nature in ways that were barely conceived of even half a century ago. For
many, the crowning achievements of this revolution will be the creation—
in the form of computer programs—of new species of intelligent beings,
and even of new forms of life.

The goals of creating artificial intelligence and artificial life can be
traced back to the very beginnings of the computer age. The earliest com-
puter scientists—Alan Turing, John von Neumann, Norbert Wiener, and
others—were motivated in large part by visions of imbuing computer
programs with intelligence, with the life-like ability to self-replicate, and
with the adaptive capability to learn and to control their environments.
These early pioneers of computer science were as much interested in biol-
ogy and psychology as in electronics, and they looked to natural systems
as guiding metaphors for how to achieve their visions. It should be no sur-
prise, then, that from the earliest days computers were applied not only
to calculating missile trajectories and deciphering military codes but also
to modeling the brain, mimicking human learning, and simulating bio-
logical evolution. These biologically motivated computing activities have
waxed and waned over the years, but since the early 1980s they have
all undergone a resurgence in the computation research community. The

first has grown into the field of neural networks, the second into machine
learning, and the third into what is now called “evolutionary computa-
tion,” of which genetic algorithms are the most prominent example.

1.1 A BRIEF HISTORY OF EVOLUTIONARY COMPUTATION

In the 1950s and the 1960s several computer scientists independently
studied evolutionary systems with the idea that evolution could be used
as an optimization tool for engineering problems. The idea in all these
systems was to evolve a population of candidate solutions to a given
problem, using operators inspired by natural genetic variation and nat-
ural selection.

In the 1960s, Rechenberg (1965, 1973) introduced “evolution strategies”
(Evolutionsstrategie in the original German), a method he used to optimize
real-valued parameters for devices such as airfoils. This idea was further
developed by Schwefel (1975, 1977). The field of evolution strategies has
remained an active area of research, mostly developing independently
from the field of genetic algorithms (although recently the two communi-
ties have begun to interact). (For a short review of evolution strategies,
see Back, Hoffmeister, and Schwefel 1991.) Fogel, Owens, and Walsh
(1966) developed “evolutionary programming,” a technique in which
candidate solutions to given tasks were represented as finite-state ma-
chines, which were evolved by randomly mutating their state-transition
diagrams and selecting the fittest. A somewhat broader formulation of
evolutionary programming also remains an area of active research (see,
for example, Fogel and Atmar 1993). Together, evolution strategies, evo-
lutionary programming, and genetic algorithms form the backbone of the
tield of evolutionary computation.

Several other people working in the 1950s and the 1960s developed
evolution-inspired algorithms for optimization and machine learning.
Box (1957), Friedman (1959), Bledsoe (1961), Bremermann (1962), and
Reed, Toombs, and Baricelli (1967) all worked in this area, though their
work has been given little or none of the kind of attention or followup that
evolution strategies, evolutionary programming, and genetic algorithms
have seen. In addition, a number of evolutionary biologists used comput-
ers to simulate evolution for the purpose of controlled experiments (see,
e.g., Baricelli 1957, 1962; Fraser 1957a,b; Martin and Cockerham 1960).
Evolutionary computation was definitely in the air in the formative days
of the electronic computer.

Genetic algorithms were invented by John Holland in the 1960s and
were developed by Holland and his students and colleagues at the Uni-
versity of Michigan in the 1960s and the 1970s. In contrast with evolu-
tion strategies and evolutionary programming, Holland’s original goal
was not to design algorithms to solve specific problems, but rather to for-
mally study the phenomenon of adaptation as it occurs in nature and to

2 Chapter 1

develop ways in which the mechanisms of natural adaptation might be
imported into computer systems. Holland’s 1975 book Adaptation in Natu-
ral and Artificial Systems presented the genetic algorithm as an abstraction
of biological evolution and gave a theoretical framework for adaptation
under the GA. Holland’s GA is a method for moving from one popu-
lation of “chromosomes” (e.g., strings of ones and zeros, or “bits”) to a
new population by using a kind of “natural selection” together with the
genetics-inspired operators of crossover, mutation, and inversion. Each
chromosome consists of “genes” (e.g., bits), each gene being an instance
of a particular “allele” (e.g., 0 or 1). The selection operator chooses those
chromosomes in the population that will be allowed to reproduce, and on
average the fitter chromosomes produce more offspring than the less fit
ones. Crossover exchanges subparts of two chromosomes, roughly mim-
icking biological recombination between two single-chromosome (“hap-
loid”) organisms; mutation randomly changes the allele values of some
locations in the chromosome; and inversion reverses the order of a con-
tiguous section of the chromosome, thus rearranging the order in which
genes are arrayed. (Here, as in most of the GA literature, “crossover” and
“recombination” will mean the same thing.)

Holland’s introduction of a population-based algorithm with crossover, i
inversion, and mutation was a major innovation. (Rechenberg’s evolu- |
tion strategies started with a “population” of two individuals, one parent ! .
and one offspring, the offspring being a mutated version of the parent; f
many-individual populations and crossover were not incorporated un-
til later. Fogel, Owens, and Walsh's evolutionary programming likewise
used only mutation to provide variation.) Moreover, Holland was the first i
to attempt to put computational evolution on a firm theoretical footing !
(see Holland 1975). Until recently this theoretical foundation, based on [
the notion of “schemas,” was the basis of almost all subsequent theoret- i
ical work on genetic algorithms f

In the last several years there has been widespread interaction among :
researchers studying various evolutionary computation methods, and the
boundaries between GAs, evolution strategies, evolutionary program-
ming, and other evolutionary approaches have broken down to some
extent. Today, researchers often use the term “genetic algorithm” to de-
scribe something very far from Holland’s original conception. In this book
I adopt this flexibility. Most of the projects I will describe here were re-
ferred to by their originators as GAs; some were not, but they all have
enough of a “family resemblance” that I include them under the rubric of

genetic algorithms.

e e D —

1.2 THE APPEAL OF EVOLUTION

Why use evolution as an inspiration for solving computational problems?
To evolutionary-computation researchers, the mechanisms of evolution]

3 Genetic Algorithms: An Overview

b ot a1 e

bt duigy el

dainab S

seem well suited for some of the most pressing computational problems
in many fields. Many computational problems require searching through
a huge number of possibilities for solutions. One example is the problem
of computational protein engineering, in which an algorithm is sought
that will search among the vast number of possible amino acid sequences
for a protein with specified properties. Another example is searching for
a set of rules or equations that will predict the ups and downs of a finan-
cial market, such as that for foreign currency. Such search problems can
often benefit from an effective use of parallelism, in which many different
possibilities are explored simultaneously in an efficient way. For example,
in searching for proteins with specified properties, rather than evaluate
one amino acid sequence at a time it would be much faster to evaluate
many simultaneously. What is needed is both computational parallelism
(i.e., many processors evaluating sequences at the same time) and an in-
telligent strategy for choosing the next set of sequences to evaluate.
Many computational problems require a computer program to be adap-
tive—to continue to perform well in a changing environment. This is typ-
ified by problems in robot control in which a robot has to perform a task
in a variable environment, and by computer interfaces that must adapt
to the idiosyncrasies of different users. Other problems require computer
programs to be innovative—to construct something truly new and origi-
nal, such as a new algorithm for accomplishing a computational task or
even a new scientific discovery. Finally, many computational problems
require complex solutions that are difficult to program by hand. A strik-
ing example is the problem of creating artificial intelligence. Early on,
Al practitioners believed that it would be straightforward to encode the
rules that would confer intelligence on a program; expert systems were
one result of this early optimism. Nowadays, many Al researchers believe
that the “rules” underlying intelligence are too complex for scientists to
encode by hand in a “top-down” fashion. Instead they believe that the
best route to artificial intelligence is through a “bottom-up” paradigm in
which humans write only very simple rules, and complex behaviors such

-as intelligence emerge from the massively parallel application and inter-

action of these simple rules. Connectionism (i.e., the study of computer
programs inspired by neural systems) is one example of this philosophy
(see Smolensky 1988); evolutionary computation is another. In connec-
tionism the rules are typically simple “neural” thresholding, activation
spreading, and strengthening or weakening of connections; the hoped-for
emergent behavior is sophisticated pattern recognition and learning. In
evolutionary computation the rules are typically “natural selection” with
variation due to crossover and/or mutation; the hoped-for emergent be-
havior is the design of high-quality solutions to difficult problems and the
ability to adapt these solutions in the face of a changing environment.
Biological evolution is an appealing source of inspiration for address-
ing these problems. Evolution is, in effect, a method of searching among

Chapter 1

S—— Rttt —— .

an enormous number of possibilities for “solutions.” In biology the enor-
mous set of possibilities is the set of possible genetic sequences, and the
desired “solutions” are highly fit organisms—organisms well able to sur-
vive and reproduce in their environments. Evolution can also be seen as
a method for designing innovative solutions to complex problems. For ex-
ample, the mammalian immune system is a marvelous evolved solution
to the problem of germs invading the body. Seen in this light, the mecha-
nisms of evolution can inspire computational search methods. Of course
the fitness of a biological organism depends on many factors—for exam-
ple, how well it can weather the physical characteristics of its environ-
ment and how well it can compete with or cooperate with the other organ-
isms around it. The fitness criteria continually change as creatures evolve,
so evolution is searching a constantly changing set of possibilities. Search-
ing for solutions in the face of changing conditions is precisely what is re-
quired for adaptive computer programs. Furthermore, evolution is a mas-
sively parallel search method: rather than work on one species at a time,
evolution tests and changes millions of species in parallel. Finally, viewed
from a high level the “rules” of evolution are remarkably simple: species
evolve by means of random variation (via mutation, recombination, and
other operators), followed by natural selection in which the fittest tend
to survive and reproduce, thus propagating their genetic material to fu-
ture generations. Yet these simple rules are thought to be responsible, in
large part, for the extraordinary variety and complexity we see in the bio-
sphere.

1.3 BIOLOGICAL TERMINOLOGY

At this point it is useful to formally introduce some of the biological ter-
minology that will be used throughout the book. In the context of genetic
algorithms, these biological terms are used in the spirit of analogy with
real biology, though the entities they refer to are much simpler than the
real biological ones.

All living organisms consist of cells, and each cell contains the same set
of one or more chromosomes—strings of DNA—that serve as a “blueprint”
for the organism. A chromosome can be conceptually divided into genes—
functional blocks of DNA, each of which encodes a particular protein.
Very roughly, one can think of a gene as encoding a trait, such as eye color.
The different possible “settings” for a trait (e.g., blue, brown, hazel) are
called alleles. Each gene is located at a particular locus (position) on the
chromosome.

Many organisms have multiple chromosomes in each cell. The com-
plete collection of genetic material (all chromosomes taken together) is
called the organism’s genome. The term genotype refers to the particular
set of genes contained in a genome. Two individuals that have identical

Genetic Algorithms: An Overview

genomes are said to have the same genotype. The genotype gives rise, un-
der fetal and later development, to the organism’s phenotype—its physical
and mental characteristics, such as eye color, height, brain size, and intel-
ligence.

Organisms whose chromosomes are arrayed in pairs are called diploid;
organisms whose chromosomes are unpaired are called haploid. In nature,
most sexually reproducing species are diploid, including human beings,
who each have 23 pairs of chromosomes in each somatic (non-germ) cell
in the body. During sexual reproduction, recombination (or crossover) oc-
curs: in each parent, genes are exchanged between each pair of chromo-
somes to form a gamete (a single chromosome), and then gametes from the
two parents pair up to create a full set of diploid chromosomes. In hap-
loid sexual reproduction, genes are exchanged between the two parents’
single-strand chromosomes. Offspring are subject to mutation, in which
single nucleotides (elementary bits of DNA) are changed from parent to
offspring, the changes often resulting from copying errors. The fitness of
an organism is typically defined as the probability that the organism will
live to reproduce (viability) or as a function of the number of offspring the
organism has (fertility).

In genetic algorithms, the term chromosome typically refers to a candi-
date solution to a problem, often encoded as a bit string. The “genes”
are either single bits or short blocks of adjacent bits that encode a par-
ticular element of the candidate solution (e.g., in the context of multi-
parameter function optimization the bits encoding a particular parameter
might be considered to be a gene). An allele in a bit string is either 0
or 1; for larger alphabets more alleles are possible at each locus. Cross-
over typically consists of exchanging genetic material between two single-
chromosome haploid parents. Mutation consists of flipping the bit at a
randomly chosen locus (or, for larger alphabets, replacing a the symbol
at a randomly chosen locus with a randomly chosen new symbol).

Most applications of genetic algorithms employ haploid individuals,
particularly, single-chromosome individuals. The genotype of an individ-
ual in a GA using bit strings is simply the configuration of bits in that indi-
vidual’s chromosome. Often there is no notion of “phenotype” in the con-
text of GAs, although more recently many workers have experimented
with GAs in which there is both a genotypic level and a phenotypic level
(e.g., the bit-string encoding of a neural network and the neural network

itself).

1.4 SEARCH SPACES AND FITNESS LANDSCAPES

3 The idea of searching among a collection of candidate solutions for a de-
- sired solution is so common in computer science that it has been given its
own name: searching in a “search space.” Here the term “search space”
-" refers to some collection of candidate solutions to a problem and some

b

6 Chapter 1

notion of “distance” between candidate solutions. For an example, let us
take one of the most important problems in computational bioengineer-
ing: the aforementioned problem of computational protein design. Sup-
pose you want use a computer to search for a protein—a sequence of
amino acids—that folds up to a particular three-dimensional shape so it
can be used, say, to fight a specific virus. The search space is the collection
of all possible protein sequences—an infinite set of possibilities. To con-
strain it, let us restrict the search to all possible sequences of length 100 or
less—still a huge search space, since there are 20 possible amino acids at
each position in the sequence. (How many possible sequences are there?)
If we represent the 20 amino acids by letters of the alphabet, candidate
solutions will look like this:

AGGMCGBL. ...

We will define the distance between two sequences as the number of po-
sitions in which the letters at corresponding positions differ. For example,
the distance between AGGMCGBLand MGGMCGBLis1, and the
distance between AGGMCGBLand LBMP AFG Ais 8 An algo-
rithm for searching this space is a method for choosing which candidate
solutions to test at each stage of the search. In most cases the next candi-
date solution(s) to be tested will depend on the results of testing previous
sequences; most useful algorithms assume that there will be some corre-
lation between the quality of “neighboring” candidate solutions—those
close in the space. Genetic algorithms assume that high-quality “parent”
candidate solutions from different regions in the space can be combined
via crossover to, on occasion, produce high-quality “offspring” candidate
solutions.

Another important concept is that of “fitness landscape.” Originally
defined by the biologist Sewell Wright (1931) in the context of population
genetics, a fitness landscape is a representation of the space of all possible
genotypes along with their fitnesses.

Suppose, for the sake of simplicity, that each genotype is a bit string of
length [, and that the distance between two genotypes is their “Hamming
distance”—the number of locations at which corresponding bits differ.
Also suppose that each genotype can be assigned a real-valued fitness. A
fitness landscape can be pictured as an (I + 1)-dimensional plot in which
each genotype is a point in / dimensions and its fitness is plotted along
the (/ 4 1)st axis. A simple landscape for / = 2 is shown in figure 1.1. Such
plots are called landscapes because the plot of fitness values can form
“hills,” “peaks,” “valleys,” and other features analogous to those of physi-
cal landscapes. Under Wright's formulation, evolution causes populations
to move along landscapes in particular ways, and “adaptation” can be
seen as the movement toward local peaks. (A “local peak,” or “local opti-
mum,” is not necessarily the highest point in the landscape, but any small

Genetic Algorithms: An Overview

10 1

Figure 1.1 A simple fitness landscape for / = 2. Here f(00) =0.7, f(01) =1.0, f(10) =0.1,
and f(11) =0.0.

movement away from it goes downward in fitness.) Likewise, in GAs the
operators of crossover and mutation can be seen as ways of moving a
population around on the landscape defined by the fitness function.

The idea of evolution moving populations around in unchanging land-
scapes is biologically unrealistic for several reasons. In particular, an or-
ganism cannot be assigned a fitness value independent of the other organ-
isms in its environment; thus, as the population changes, the fitnesses of
particular genotypes will change as well. In other words, in the real world
the “landscape” cannot be separated from the organisms that inhabit it. In
spite of these caveats, the notion of fitness landscape has become central
to the study of genetic algorithms, and it will come up in various guises
throughout this book.

1.5 ELEMENTS OF GENETIC ALGORITHMS

It turns out that there is no rigorous definition of “genetic algorithm” ac-
cepted by all in the evolutionary-computation community that differenti-
ates GAs from other evolutionary computation methods. However, it can
be said that most methods called “GAs” have at least the following el-
ements in common: populations of chromosomes, selection according to
fitness, crossover to produce new offspring, and random mutation of new
offspring. Inversion—Holland’s fourth element of GAs—is rarely used in
today’s implementations, and its advantages, if any, are not well estab-
lished. (Inversion will be discussed at length in chapter 5.)

The chromosomes in a GA population typically take the form of bit
strings. Each locus in the chromosome has two possible alleles: 0 and 1.

Chapter 1

Each chromosome can be thought of as a point in the search space of
candidate solutions. The GA processes populations of chromosomes, suc-
cessively replacing one such population with another. The GA most often
requires a fitness function that assigns a score (fitness) to each chromo-
some in the current population. The fitness of a chromosome depends on
how well that chromosome solves the problem at hand.

Examples of Fitness Functions

One common application of GAs is function optimization, where the goal
is to find a set of parameter values that maximize, say, a complex multi-
parameter function. As a simple example, one might want to maximize
the real-valued one-dimensional function

f)=y+Isin@B2y)|, O0<y<w

(Riolo 1992). Here the candidate solutions are values of y, which can be
encoded as bit strings representing real numbers. The fitness calculation
translates a given bit string x into a real number y and then evaluates the
function at that value. The fitness of a string is the function value at that
point.

As a non-numerical example, consider the problem of finding a se-
quence of 50 amino acids that will fold to a desired three-dimensional
protein structure. A GA could be applied to this problem by searching
a population of candidate solutions, each encoded as a 50-letter string
such as

THCCVASASDMIKPVFTVASYLKNWTKAKGPNFEICISGRTPYWDNFPGI,

where each letter represents one of 20 possible amino acids. One way
to define the fitness of a candidate sequence is as the negative of the
potential energy of the sequence with respect to the desired structure.
The potential energy is a measure of how much physical resistance the
sequence would put up if forced to be folded into the desired structure—
the lower the potential energy, the higher the fitness. Of course one would
not want to physically force every sequence in the population into the
desired structure and measure its resistance—this would be very difficult,
if not impossible. Instead, given a sequence and a desired structure (and
knowing some of the relevant biophysics), one can estimate the potential
energy by calculating some of the forces acting on each amino acid, so the
whole fitness calculation can be done computationally.

These examples show two different contexts in which candidate so-
lutions to a problem are encoded as abstract chromosomes encoded as
strings of symbols, with fitness functions defined on the resulting space
of strings. A genetic algorithm is a method for searching such fitness land-

scapes for highly fit strings.

Genetic Algorithms: An Overview

10

GA Operators

The simplest form of genetic algorithm involves three types of operators:
selection, crossover, and mutation.

Selection This operator selects chromosomes in the population for re-
production. The fitter the chromosome, the more times it is likely to be
selected to reproduce.

Crossover This operator raridomly chooses a locus and exchanges the
subsequences before and after that locus between two chromosomes to
create two offspring. For example, the strings 10000100 and 11111111 could
be crossed over after the third locus in each to produce the two offspring
10011111 and 11100100. The crossover operator roughly mimics biological
recombination between two single-chromosome (haploid) organisms.

Mutation This operator randomly flips some of the bits in a chromo-
some. For example, the string 00000100 might be mutated in its second
position to yield 01000100. Mutation can occur at each bit position in a
string with some probability, usually very small (e.g., 0.001).

1.6 A SIMPLE GENETIC ALGORITHM

Given a clearly defined problem to be solved and a symbol string repre-
sentation for candidate solutions, a simple GA works as follows:

1. Start with a randomly generated population of » I-bit chromosomes
(candidate solutions to a problem).

2. Calculate the fitness f(x) of each chromosome x in the population.
3. Repeat the following steps until » offspring have been created:

a. Select a pair of parent chromosomes from the current population, the
probability of selection being an increasing function of fitness. Selection
is done “with replacement,” meaning that the same chromosome can be
selected more than once to become a parent.

b. With probability p. (the “crossover probability” or “crossover rate”),
cross over the pair at a randomly chosen point (chosen with uniform
probability) to form two offspring. If no crossover takes place, form two
offspring that are exact copies of their respective parents. (Note that here
the crossover rate is defined to be the probability that two parents will
cross over in a single point. There are also “multi-point crossover” ver-
sions of the GA in which the crossover rate for a pair of parents is the
number of points at which a crossover takes place.)

c. Mutate the two offspring at each locus with probability py, (the muta-

Chapter 1

11

tion probability or mutation rate), and place the resulting chromosomes
in the new population.

If n is odd, one new population member can be discarded at random.

4. Replace the current population with the new population.

5. Gotostep 2.

Each iteration of this process is called a generation. A GA is typically
iterated for anywhere from 50 to 500 or more generations. The entire set
of generations is called a run. At the end of a run there are often one or
more highly fit chromosomes in the population. Since randomness plays
a large role in each run, two runs with different random-number seeds
will generally produce different detailed behaviors. GA researchers often
report statistics (such as the best fitness found in a run and the generation
at which the individual with that best fitness was discovered) averaged
over many different runs of the GA on the same problem.

The simple procedure just described is the basis for most applications
of GAs. There are a number of details to fill in, such as the size of the pop-
ulation and the probabilities of crossover and mutation, and the success
of the algorithm often depends greatly on these details. There are also
more complicated versions of GAs (e.g.,, GAs that work on representa-
tions other than strings or GAs that have different types of crossover and
mutation operators). Many such examples will be given in later chapters.

As a more detailed example of a simple GA, suppose that [(string
length) is 8, that f(x) is equal to the number of ones in bit string x {an ex-
tremely simple fitness function, used here only for illustrative purposes),
that n (the population size) is 4, that p. = 0.7, and that pm = 0.001. (Like
the fitness function, these values of / and n were chosen for simplicity.
More typical values of / and » are in the range 50-1000. The values given
for pc and pr, are fairly typical.)

The initial (randomly generated) population might look like this:

Chromosome label Chromosome string Fitness
A 00000110 2
B 11101110 6
C 00100000 1
D 00110100 3

A common selection method in GAs is fitness-proportionate selection, in
which the number of times an individual is expected to reproduce is equal
to its fitness divided by the average of fitnesses in the population. (This is
equivalent to what biologists call “viability selection.”)

A simple method of implementing fitness-proportionate selection is
“roulette-wheel sampling” (Goldberg 1989a), which is conceptually
equivalent to giving each individual a slice of a circular roulette wheel
equal in area to the individual’s fitness. The roulette wheel is spun, the

Genetic Algorithms: An Overview

ball comes to rest on one wedge-shaped slice, and the corresponding in-
dividual is selected. In the n = 4 example above, the roulette wheel would
. be spun four times; the first two spins might choose chromosomes B and
; D to be parents, and the second two spins might choose chromosomes
B and C to be parents. (The fact that A might not be selected is just the
luck of the draw. If the roulette wheel were spun many times, the average
results would be closer to the expected values.)
Once a pair of parents is selected, with probability p. they cross over
to form two offspring. If they do not cross over, then the offspring are ex-
act copies of each parent. Suppose, in the example above, that parents B
and D cross over after the first bit position to form offspring E = 10110100
and F = 01101110, and parents B and C do not cross over, instead forming
offspring that are exact copies of B and C. Next, each offspring is subject
to mutation at each locus with probability pm. For example, suppose off-
spring E is mutated at the sixth locus to form E’ = 10110000, offspring F
and C are not mutated at all, and offspring B is mutated at the first locus
to form B’ = 01101110. The new population will be the following:

Chromosome label Chromosome string Fitness
E' 10110000 3
F 01101110 5
C 00100000 1
B’ 01101110 5

Note that, in the new population, although the best string (the one with
fitness 6) was lost, the average fitness rose from 12/4 to 14/4. Iterating this
procedure will eventually result in a string with all ones.

1.7 GENETIC ALGORITHMS AND TRADITIONAL SEARCH
METHODS

In the preceding sections | used the word “search” to describe what GAs
do. It is important at this point to contrast this meaning of “search” with
its other meanings in computer science.

There are at least three (overlapping) meanings of “search”:

Search for stored data Here the problem is to efficiently retrieve infor-
mation stored in computer memory. Suppose you have a large database of
names and addresses stored in some ordered way. What is the best way to
search for the record corresponding to a given last name? “Binary search”
is one method for efficiently finding the desired record. Knuth (1973) de-
scribes and analyzes many such search methods.

Search for paths to goals Here the problem is to efficiently find a set of
actions that will move from a given initial state to a given goal. This form

12 Chapter 1

13

of search is central to many approaches in artificial intelligence. A simple
example—all too familiar to anyone who has taken a course in Al—is the
“8-puzzle,” illustrated in figure 1.2. A set of tiles numbered 1-8 are placed
in a square, leaving one space empty. Sliding one of the adjacent tiles into
the blank space is termed a “move.” Figure 1.2a illustrates the problem
of finding a set of moves from the initial state to the state in which all
the tiles are in order. A partial search tree corresponding to this problem
is illustrated in figure 1.2b. The “root” node represents the initial state,
the nodes branching out from it represent all possible results of one move
from that state, and so on down the tree. The search algorithms discussed
in most AI contexts are methods for efficiently finding the best (here, the
shortest) path in the tree from the initial state to the goal state. Typical
algorithms are “depth-first search,” “branch and bound,” and “A*.”

Search for solutions This is a more general class of search than “search
for paths to goals.” The idea is to efficiently find a solution to a problem
in a large space of candidate solutions. These are the kinds of search prob-
lems for which genetic algorithms are used.

There is clearly a big difference between the first kind of search and
the second two. The first concerns problems in which one needs to find a
piece of information (e.g., a telephone number) in a collection of explicitly
stored information. In the second two, the information to be searched is
not explicitly stored; rather, candidate solutions are created as the search
process proceeds. For example, the Al search methods for solving the 8-
puzzle do not begin with a complete search tree in which all the nodes
are already stored in memory; for most problems of interest there are too
many possible nodes in the tree to store them all. Rather, the search tree is
elaborated step by step in a way that depends on the particular algorithm,
and the goal is to find an optimal or high-quality solution by examin-
ing only a small portion of the tree. Likewise, when searching a space
of candidate solutions with a GA, not all possible candidate solutions are
created first and then evaluated; rather, the GA is a method for finding op-
timal or good solutions by examining only a small fraction of the possible
candidates.

“Search for solutions” subsumes “search for paths to goals,” since a
path through a search tree can be encoded as a candidate solution. For the
8-puzzle, the candidate solutions could be lists of moves from the initial
state to some other state (correct only if the final state is the goal state).
However, many “search for paths to goals” problems are better solved by
the Al tree-search techniques (in which partial solutions can be evaluated)
than by GA or GA-like techniques (in which full candidate solutions must
typically be generated before they can be evaluated).

However, the standard Al tree-search (or, more generally, graph-search)
methods do not always apply. Not all problems require finding a path

Genetjc Algorithms: An Overview

14

(b)

Figure 1.2 The 8-puzzle. (a) The problem is to find a sequence of moves that will go from
the initial state to the state with the tiles in the correct order (the goal state). (b) A partial
search tree for the 8-puzzle.

from an initial state to a goal. For example, predicting the three-
dimensional structure of a protein from its amino acid sequence does not
necessarily require knowing the sequence of physical moves by which a
protein folds up into a 3D structure; it requires only that the final 3D con-
figuration be predicted. Also, for many problems, including the protein-
prediction problem, the configuration of the goal state is not known ahead
of time.

The GA is a general method for solving “search for solutions” prob-
lems (as are the other evolution-inspired techniques, such as evolution
strategies and evolutionary programming). Hill climbing, simulated an-
nealing, and tabu search are examples of other general methods. Some of

Chapter 1

these are similar to “search for paths to goals” methods such as branch-
and-bound and A*. For descriptions of these and other search meth-
ods see Winston 1992, Glover 1989 and 1990, and Kirkpatrick, Gelatt,
and Vecchi 1983. “Steepest-ascent” hill climbing, for example, works as
follows:

1. Choose a candidate solution (e.g., encoded as a bit string) at random.
Call this string current-string.

2. Systematically mutate each bit in the string from left to right, recording
the fitnesses of the resulting strings.

3. If any of the resulting strings give a fitness increase, then set current-
string to the resulting string giving the highest fitness increase (the “steep-
est ascent”).

4. If there is no fitness increase, then save current-string (a “hilltop”} and
go to step 1. Otherwise, go to step 2 with the new current-string.

5. When a set number of fitness-function evaluations has been performed,
return the highest hilltop that was found.

In Al such general methods (methods that can work on a large vari-
ety of problems) are called “weak methods,” 6 differentiate them from
ﬁ_s/t_r;ﬁg—me?hodg’—’ :épecially designed to work on particular problems. All
the “search for solutions” methods (1) initially generate a set of candidate
solutions (in the GA this is the initial population; in steepest-ascent hill
climbing this is the initial string and all the one-bit variants of it), (2) eval-
uate the candidate solutions according to some fitness criteria, (3) decide
on the basis of this evaluation which candidates will be kept and which
will be discarded, and (4) produce further variants by using some kind of
operators on the surviving candidates.

The particular combination of elements in genetic algorithms—parallel
population-based search with stochastic selection of many individuals,
stochastic crossover and mutation—distinguishes them from other search
methods. Many other search methods have some of these elements, but
not this particular combination.

1.8 SOME APPLICATIONS OF GENETIC ALGORITHMS

The version of the genetic algorithm described above is very simple, but
variations on the basic theme have been used in a large number of scien-
tific and engineering problems and models. Some examples follow.

Optimization GAs have been used in a wide variety of optimization

tasks, including numerical optimization and such combinatorial opti-
mization problems as circuit layout and job-shop scheduling.

Genetic Algorithms: An Overview

| '-.-'li-‘ N A Ty
o = <
e e

il g A

16

Automatic programming GAs have been used to evolve computer pro-
grams for specific tasks, and to design other computational structures

such as cellular automata and sorting networks.

Machine learning GAs have been used for many machine learning ap-
plications, including classification and prediction tasks, such as the pre-
diction of weather or protein structure. GAs have also been used to evolve
aspects of particular machine learning systems, such as weights for neu-
ral networks, rules for learning classifier systems or symbolic production
systems, and sensors for robots.

Economics GAs have been used to model processes of innovation, the
development of bidding strategies, and the emergence of economic mar-
kets.

Immune systems (GAs have been used to model various aspects of
natural immune systems, including somatic mutation during an individ-
ual’s lifetime and the discovery of multi-gene families during evolution-
ary time.

Ecology GAs have been used to model ecological phenomena such as
biological arms races, host-parasite coevolution, symbiosis, and resource
flow.

Population genetics GAs have been used to study questions in
population genetics, such as “Under what conditions will a gene for re-
combination be evolutionarily viable?”

Evolution and learning GAs have been used to study how individual
learning and species evolution affect one another.

Social systems GAs have been used to study evolutionary aspects of
social systems, such as the evolution of social behavior in insect colonies,
and, more generally, the evolution of cooperation and communication in
multi-agent systems.

This list is by no means exhaustive, but it gives the flavor of the kinds of
things GAs have been used for, both in problem solving and in scientific
contexts. Because of their success in these and other areas, interest in GAs
has been growing rapidly in the last several years among researchers in
many disciplines. The field of GAs has become a subdiscipline of com-
puter science, with conferences, journals, and a scientific society.

Chapter 1

17

1.9 TWO BRIEF EXAMPLES

As warmups to more extensive discussions of GA applications, here are
brief examples of GAs in action on two particularly interesting projects.

Using GAs to Evolve Strategies for the Prisoner’s Dilemma

The Prisoner’s Dilemma, a simple two-person game invented by Merrill
Flood and Melvin Dresher in the 1950s, has been studied extensively in
game theory, economics, and political science because it can be seen as an
idealized mode] for real-world phenomena such as arms races (Axelrod
1984; Axelrod and Dion 1988). It can be formulated as follows: Two in-
dividuals (call them Alice and Bob) are arrested for committing a crime
together and are held in separate cells, with no communication possible
between them. Alice is offered the following deal: If she confesses and
agrees to testify against Bob, she will receive a suspended sentence with
probation, and Bob will be put away for 5 years. However, if at the same
time Bob confesses and agrees to testify against Alice, her testimony will
be discredited, and each will receive 4 years for pleading guilty. Alice is
told that Bob is being offered precisely the same deal. Both Alice and Bob
know that if neither testify against the other they can be convicted only
on a lesser charge for which they will each get 2 years in jail.

Should Alice “defect” against Bob and hope for the suspended sen-
tence, risking a 4-year sentence if Bob defects? Or should she “cooperate”
with Bob (even though they cannot communicate), in the hope that he will
also cooperate so each will get only 2 years, thereby risking a defection by
Bob that will send her away for 5 years?

The game can be described more abstractly. Each player independently
decides which move to make—i.e.,, whether to cooperate or defect. A
“game” consists of each player’s making a decision (a “move”). The pos-
sible results of a single game are summarized in a payoff matrix like the
one shown in figure 1.3. Here the goal is to get as many points (as op-
posed to as few years in prison) as possible. (In figure 1.3, the payoff in
each case can be interpreted as 5 minus the number of years'in prison.) If
both players cooperate, each gets 3 points. If player A defects and player
B cooperates, then player A gets 5 points and player B gets 0 points, and
vice versa if the situation is reversed. If both players defect, each gets 1
point. What is the best strategy to use in order to maximize one’s own
payoff? If you suspect that your opponent is going to cooperate, then you
should surely defect. If you suspect that your opponent is going to defect,
then you should defect too. No matter what the other player does, it is al-
ways better to defect. The dilemma is that if both players defect each gets
a worse score than if they cooperate. If the game is iterated (that is, if the
two players play several games in a row), both players” always defecting
will lead to a much lower total payoff than the players would get if they

Genetic Algorithms: An Overview

18

Player B

\ Cooperate Defect
Cooperate 3,3 0,5
Player A
Defect 50 1,1

Figure 1.3 The payoff matrix for the Prisoner’s Dilemma (adapted from Axelrod 1987). The
two numbers given in each box are the payoffs for players A and B in the given situation,
with player A’s payoff listed first in each pair.

cooperated. How can reciprocal cooperation be induced? This question
takes on special significance when the notions of cooperating and defect-
ing correspond to actions in, say, a real-world arms race (e.g., reducing or
increasing one’s arsenal).

Robert Axelrod of the University of Michigan has studied the Pris-
oner’s Dilemma and related games extensively. His interest in determin-
ing what makes for a good strategy led him to organize two Prisoner’s
Dilemma tournaments (described in Axelrod 1984). He solicited strategies
from researchers in a number of disciplines. Each participant submitted a
computer program that implemented a particular strategy, and the vari-
ous programs played iterated games with each other. During each game,
ea_ch program remembered what move (i.e., cooperate or defect) both it
and its opponent had made in each of the three previous games that they
had played with each other,_and its strategy was based on this memory.
The programs were paired in a round-robin tournament in which each
played with all the other programs over a number of games. The first
tournament consisted of 14 different programs; the second consisted of 63
programs (including one that made random moves). Some of the strate-
gies submitted were rather complicated, using techniques such as Markov
processes and Bayesian inference to model the other players in order to
determine the best move. However, in both tournaments the winner (the
strategy with the highest average score) was the simplest of the submitted
strategies: TIT FOR TAT. This strategy, submitted by Anatol Rapoport, co-
operates in the first game and then, in subsequent games, does whatever
the other player did in its move in the previous game with TTT FOR TAT.
That is, it offers cooperation and reciprocates it. But if the other player
defects, TIT FOR TAT punishes that defection with a defection of its own,
and continues the punishment until the other player begins cooperating
again.

After the two tournaments, Axelrod (1987) decided to see if a GA could
evolve strategies to play this game successfully. The first issue was fig-
uring out how to encode a strategy as a string. Here is how Axelrod’s
encoding worked. Suppose the memory of each player is one previous
game. There are four possibilities for the previous game:

Chapter 1

CC (case 1),
CD (case 2),
DC (case 3),
DD (case 4),

where C denotes “cooperate” and D denotes “defect.” Case 1 is when
both players cooperated in the previous game, case 2 is when player A
cooperated and player B defected, and so on. A strategy is simply a rule
that specifies an action in each of these cases. For example, TIT FOR TAT
as played by player A is as follows:

If CC (case 1), then C.
If CD (case 2), then D.
If DC (case 3), then C.
If DD (case 4), then D.

If the cases are ordered in this canonical way, this strategy can be ex-
pressed compactly as the string CDCD. To use the string as a strategy,
the player records the moves made in the previous game (e.g., C D), finds
the case number i by looking up that case in a table of ordered cases like
that given above (for CD, i =2), and selects the letter in the ith position
of the string as its move in the next game (for / = 2, the move is D).
Axelrod’s tournaments involved strategies that remembered three pre-
vious games. There are 64 possibilities for the previous three games:

CC CC CC (case 1),
CC CC CD (case 2),
CC CC DC (case 3),

DD DD DC (case 63),
DD DD DD (case 64).

Thus, a strategy can be encoded by a 64-letter string, e.g., CDCCCDDCC
CDD....Since using the strategy requires the results of the three previous
games, Axelrod actually used a 70-letter string, where the six extra letters
encoded three hypothetical previous games used by the strategy to decide
how to move in the first actual game. Since each locus in the string has
two possible alleles (C and D), the number of possible strategies is 27°.
The search space is thus far too big to be searched exhaustively.

In Axelrod’s first experiment, the GA had a population of 20 such
strategies. The fitness of a strategy in the population was determined as
follows: Axelrod had found that eight of the human-generated strategies
from the second tournament were representative of the entire set of strate-
gies, in the sense that a given strategy’s score playing with these eight

Genetic Algorithms: An Overview

20

was a good predictor of the strategy’s score playing with all 63 entries.
This set of eight strategies (which did rot include TIT FOR TAT) served
as the “environment” for the evolving strategies in the population. Each
individual in the population played iterated games with each of the eight
fixed strategies, and the individual’s fitness was taken to be its average
score over all the games it played.

Axelrod performed 40 different runs of 50 generations each, using dif-
ferent random-number seeds for each run. Most of the strategies that
evolved were similar to TIT FOR TAT in that they reciprocated cooper-
ation and punished defection {although not necessarily only on the basis
of the immediately preceding move). However, the GA often found strate-
gies that scored substantially higher than TIT FOR TAT. This is a striking
result, especially in view of the fact that in a given run the GA is testing
only 20 x 50 = 1000 individuals out of a huge search space of 270 possible
individuals.

It would be wrong to conclude that the GA discovered strategies that
are “better” than any human-designed strategy. The performance of a
strategy depends very much on its environment—that is, on the strategies
with which it is playing. Here the environment was fixed—it consisted of
eight human-designed strategies that did not change over the course of
a run. The resulting fitness function is an example of a static (unchang-
ing) fitness landscape. The highest-scoring strategies produced by the
GA were designed to exploit specific weaknesses of several of the eight
fixed strategies. It is not necessarily true that these high-scoring strate-
gies would also score well in a different environment. TIT FOR TAT is a
generalist, whereas the highest-scoring evolved strategies were more spe-
cialized to the given environment. Axelrod concluded that the GA is good
at doing what evolution often does: developing highly specialized adap-
tations to specific characteristics of the environment.

To see the effects of a changing (as opposed to fixed) environment, Ax-
elrod carried out another experiment in which the fitness of an individual
was determined by allowing the individuals in the population to play
with one another rather than with the fixed set of eight strategies. Now
the environment changed from generation to generation because the op-
ponents themselves were evolving. At every generation, each individual
played iterated games with each of the 19 other members of the popu-
lation and with itself, and its fitness was again taken to be its average
score over all games. Here the fitness landscape was not static—it was
a function of the particular individuals present in the population, and it
changed as the population changed.

In this second set of experiments, Axelrod observed that the GA ini-
tially evolved uncooperative strategies. In the first few generations strate-
gies that tended to cooperate did not find reciprocation among their fel-
low population members and thus tended to die out, but after about 10—
20 generations the trend started to reverse: the GA discovered strategies

Chapter 1

21

that reciprocated cooperation and that punished defection (i.e., variants
of TIT FOR TAT). These strategies did well with one another and were not
completely defeated by less cooperative strategies, as were the initial co-
operative strategies. Because the reciprocators scored above average, they
spread in the population; this resulted in increasing cooperation and thus
increasing fitness.

Axelrod’s experiments illustrate how one might use a GA both to
evolve solutions to an interesting problem and to model evolution and
coevolution in an idealized way. One can think of many additional possi-
ble experiments, such as running the GA with the probability of crossover
set to 0—that is, using only the selection and mutation operators (Axel-
rod 1987) or allowing a more open-ended kind of evolution in which the
amount of memory available to a given strategy is allowed to increase or
decrease (Lindgren 1992).

Hosts and Parasites: Using GAs to Evolve Sorting Networks

Designing algorithms for efficiently sorting collections of ordered ele-
ments is fundamental to computer science. Donald Knuth (1973) devoted
more than half of a 700-page volume to this topic in his classic series The
Art of Computer Programming. The goal of sorting is to place the elements
in a data structure (e.g., a list or a tree) in some specified order (e.g., nu-
merical or alphabetic) in minimal time. One particular approach to sorting
described in Knuth's book is the sorting network, a parallelizable device
for sorting lists with a fixed number n of elements. Figure 1.4 displays
one such network (a “Batcher sort”—see Knuth 1973) that will sort lists
of n =16 elements (ep~e15). Each horizontal line represents one of the el-
ements in the list, and each vertical arrow represents a comparison to be
made between two elements. For example, the leftmost column of verti-
cal arrows indicates that comparisons are to be made between ¢y and e,
between ez and e3, and so on. If the elements being compared are out of
the desired order, they are swapped.

To sort a list of elements, one marches the list from left to right through
the network, performing all the comparisons (and swaps, if necessary)
specified in each vertical colunn before proceeding to the next. The com-
parisons in each vertical column are independent and can thus be per-
formed in parallel. If the network is correct (as is the Batcher sort), any
list will wind up perfectly sorted at the end. One goal of designing sort-
ing networks is to make them correct and efficient (i.e., to minimize the
number of comparisons).

An interesting theoretical problem is to determine the minimum num-
ber of comparisons necessary for a correct sorting network with a given
n. In the 1960s there was a flurry of activity surrounding this problem for
n =16 (Knuth 1973; Hillis 1990, 1992). According to Hillis (1990), in 1962

Genetic Algorithms: An Overview

22

N S . o
e] I T - — - 3
e: é_ﬁ—ﬂ__ L1 JEN v m—

& Fii _ , R} ;
SRR L 0 !
: = e
N, L . BEXEE!
s
enr_ —|—_n7 ‘T—‘ + I T__ .
:11;.+ A * | | .I ; o -——!i __i:
el‘ 1 1 | i L
et :

Figure 1.4 The “Batcher sort” n =16 sorting network (adapted from Knuth 1973). Each
horizontal line represents an element in the list, and each vertical arrow represents a com-
parison to be made between two elements. If the elements being compared are out of order,
they are swapped. Comparisons in the same column can be made in parallel.

Bose and Nelson developed a general method of designing sorting net-
works that required 65 comparisons for n =16, and they conjectured that
this value was the minimum. In 1964 there were independent discoveries
by Batcher and by Floyd and Knuth of a network requiring only 63 com-
parisons (the network illustrated in figure 1.4). This was again thought
by some to be minimal, but in 1969 Shapiro constructed a network that
required only 62 comparisons. At this point, it is unlikely that anyone
was willing to make conjectures about the network’s optimality—and a
good thing too, since in that same year Green found a network requiring
only 60 comparisons. This was an exciting time in the small field of n = 16
sorting-network design. Things seemed to quiet down after Green's dis-
covery, though no proof of its optimality was given.

In the 1980s, W. Daniel Hillis (1990, 1992) took up the challenge again,
though this time he was assisted by a genetic algorithm. In particular,
Hillis presented the problem of designing an optimal » = 16 sorting net-
work to a genetic algorithm operating on the massively parallel Connec-
tion Machine 2.

As in the Prisoner’s Dilemma example, the first step here was to figure
out a good way to encode a sorting network as a string. Hillis’s encoding
was fairly complicated and more biologically realistic than those used in
most GA applications. Here is how it worked: A sorting network can be
specified as an ordered list of pairs, such as

(2,5),4,2),(7,14). ...

These pairs represent the series of comparisons to be made (“first com-
pare elements 2 and 5, and swap if necessary; next compare elements 4

Chapter 1

23

and 2, and swap if necessary”). (Hillis’s encoding did not specify which
comparisons could be made in parallel, since he was trying only to min-
imize the total number of comparisons rather than to find the optimal
parallel sorting network.) Sticking to the biological analogy, Hillis referred
to ordered lists of pairs representing networks as “phenotypes.” In Hillis's
program, each phenotype consisted of 60-120 pairs, corresponding to net-
works with 60-120 comparisons. As in real genetics, the genetic algorithm
worked not on phenotypes but on genotypes encoding the phenotypes.

The genotype of an individual in the GA population consisted of a set
of chromosomes which could be decoded to form a phenotype. Hillis
used diploid chromosomes (chromosomes in pairs) rather than the hap-
loid chromosomes (single chromosomes) that are more typical in GA ap-
plications. As is illustrated in figure 1.5a, each individual consists of 15
pairs of 32-bit chromosomes. As is illustrated in figure 1.5b, each chromo-
some consists of eight 4-bit “codons.” Each codon represents an integer
between 0 and 15 giving a position in a 16-element list. Each adjacent
pair of codons in a chromosome specifies a comparison between two list
elements. Thus each chromosome encodes four comparisons. As is illus-
trated in figure 1.5¢, each pair of chromosomes encodes between four and
eight comparisons. The chromosome pair is aligned and “read off” from
left to right. At each position, the codon pair in chromosome A is com-
pared with the codon pair in chromosome B. If they encode the same pair
of numbers (i.e., are “homozygous”), then only one pair of numbers is in-
serted in the phenotype; if they encode different pairs of numbers (i.e.,
are “heterozygous”), then both pairs are inserted in the phenotype. The
15 pairs of chromosomes are read off in this way in a fixed order to pro-
duce a phenotype with 60-120 comparisons. More homozygous positions
appearing in each chromosome pair means fewer comparisons appear-
ing in the resultant sorting network. The goal is for the GA to discover a
minimal correct sorting network—to equal Green’s network, the GA must
discover an individual with all homozygous positions in its genotype that
also yields a correct sorting network. Note that under Hillis’s encoding
the GA cannot discover a network with fewer than 60 comparisons.

In Hillis’s experiments, the initial population consisted of a number
of randomly generated genotypes, with one noteworthy exception: Hillis
noted that most of the known minimal 16-element sorting networks begin
with the same pattern of 32 comparisons, so he set the first eight chro-
mosome pairs to (homozygously) encode these comparisons. This is an
example of using knowledge about the problem domain (here, sorting
networks) to help the GA get off the ground.

Most of the networks in a random initial population will not be correct
networks—that is, they will not sort all input cases (lists of 16 numbers)
correctly. Hillis’s fitness measure gave partial credit: the fitness of a net-
work was equal to the percentage of cases it sorted correctly. There are so
many possible input cases that it was not practicable to test each network

Genetic Algorithms: An Overview

24

101101010111100£1110010010101001
10110101001001110011110010101001

11010100111101010011110111011110
1011101101000101000G000100010010
01011000101000110001110110111001
{1111000111001001110010101001001
11010100111101010011110811011110
10111011010001010000000100010010

101000101101 (1100011101001010011
00010111111100001100000001010010

01001100101101001111010001100011
01010101011101001100011111001100
00011101001011110000101010110111
1100011010000101001011 1111121100
11011011001 110101001001101010110
00110000110011001010111110000110
1011100110001001001010)011011000
00010000011103011101010101100011

O11001111€000CO01101001101000111
01101011011110011000000110100100

011001111C0000001101001 101000111
011010110111100110000001 10100100
O110011110L100110111100111001111
11100000101 10101100001 1100101111
1101001101 1101001011000000010010
0001111L10T1E1100100110110111001
010101110010t101)001110101101000
01010001000001100001101011111111
01011101001000000010T 11111111111
001011000001 10100000000110010110

(a)

codons: 1011 0101 0111 1001 1110 0100 1010 1001
A N S SR A A A

integers: 11 5 7 9 14 4 10 9
comparisons +
to insert in
phenotype: (11, 5) 7,9 (14, 4) (10,9)
(b)

chrom-A: 11011 0101/0111 1001 /1110 0100!/1010 1001
chrom. B: 11011 01010010 0111|0011 1100([1010 1001

(11, 5) (7,9,2,7) (14,4),(3,12) (10,9)
(c)

Figure 1.5 Details of the genotype representation of sorting networks used in Hillis's ex-
periments. (a) An example of the genotype for an individual sorting network, consisting of
15 pairs of 32-bit chromosomes. (b) An example of the integers encoded by a single chromo-
some, The chromosome given here encodes the integers 11, 5,7, 9, 14, 4, 10, and 9; each pair
of adjacent integers is interpreted as a comparison. (c) An example of the comparisons en-
coded by a chromosome pair. The pair given here contains two homozygous positions and
thus encodes a total of six comparisons to be inserted in the phenotype: (11, 5), (7, 9), (2, 7),
(14, 4), (3, 12), and (10, 9).

exhaustively, so at each generation each network was tested on a sample
of input cases chosen at random.

Hillis’s GA was a considerably modified version of the simple GA de-
scribed above. The individuals in the initial population were placed on a
two-dimensional lattice; thus, unlike in the simple G4, there is a notion
of spatial distance between two strings. The purpose of placing the pop-
ulation on a spatial lattice was to foster “speciation” in the population—
Hillis hoped that different types of networks would arise at different spa-
tial locations, rather than having the whole population converge to a set
of very similar networks.

The fitness of each individual in the population was computed on a
random sample of test cases. Then the half of the population with lower
fitness was deleted, each lower-fitness individual being replaced on the
grid with a copy of a surviving neighboring higher-fitness individual.

Chapter 1

25

Parent 1 (diploid): Parent 2 (diploid):
i

A: 101101011 011110011110010010101001 C: 000001110000001111105 000010101011
B: 00000101 001001110011110010101001 D: 111111110000101011011 010111011100

| |

10110101001001110011110010101001 00000111000000111110010111011100

Gametes:

Offspring (diploid):
10110101001001110011110010101001
00000111000000111110010111011100

Figure 1.6 An illustration of diploid recombination as performed in Hillis's experiment.
Here an individual’s genotype consisted of 15 pairs of chromosomes (for the sake of clarity,
only one pair for each parent is shown). A crossover point was chosen at random for each
pair, and a gamete was formed by taking the codons before the crossover point in the first
chromosome and the codons after the crossover point in the second chromosome. The 15
gametes from one parent were paired with the 15 gametes from the other parent to make a
new individual. (Again for the sake of clarity, only one gamete pairing is shown.)

That is, each individual in the higher-fitness half of the population was
allowed to reproduce once.

Next, individuals were paired with other individuals in their local spa-
tial neighborhoods to produce offspring. Recombination in the context
of diploid organisms is different from the simple haploid crossover de-
scribed above. As figure 1.6 shows, when two individuals were paired,
crossover took place within each chromosome pair inside each individual.
For each of the 15 chromosome pairs, a crossover point was chosen at ran-
dom, and a single “gamete” was formed by taking the codons before the
crossover point from the first chromosome in the pair and the codons after
the crossover point from the second chromosome in the pair. The result
was 15 haploid gametes from each parent. Each of the 15 gametes from
the first parent was then paired with one of the 15 gametes from the sec-
ond parent to form a single diploid offspring. This procedure is roughly
similar to sexual reproduction between diploid organisms in nature.

Such matings occurred until a new population had been formed. The
individuals in the new population were then subject to mutation with
Pm = 0.001. This entire process was iterated for a number of generations.

Since fitness depended only on network éorrectness, not on network
size, what pressured the GA to find minimal networks? Hillis explained
that there was an indirect pressure toward minimality, since, as in nature,
homozygosity can protect crucial comparisons. If a crucial comparison is
at a heterozygous position in its chromosome, then it can be lost under

Genetic Algorithms: An Overview

26

a crossover, whereas crucial comparisons at homozygous positions can-
not be lost under crossover. For example, in figure 1.6, the leftmost com-
parison in chromosome B (i.e., the leftmost eight bits, which encode the
comparison (0, 5)) is at a heterozygous position and is lost under this re-
combination (the gamete gets its leftmost comparison from chromosome
A), but the rightmost comparison in chromosome A (10, 9) is at a ho-
mozygous position and is retained (though the gamete gets its rightmost
comparison from chromosome B). In general, once a crucial comparison
or set of comparisons is discovered, it is highly advantageous for them
to be at homozygous positions. And the more homozygous positions, the
smaller the resulting network.

In order to take advantage of the massive parallelism of the Connection
Machine, Hillis used very large populations, ranging from 512 to about 1
million individuals. Each run lasted about 5000 generations. The smallest
correct network found by the GA had 65 comparisons, the same as in Bose
and Nelson’s network but five more than in Green’s network.

Hillis found this result disappointing—why didn’t the GA do better? It
appeared that the GA was getting stuck at local optima—Ilocal “hilltops”
in the fitness landscape—rather than going to the globally highest hilltop.
The GA found a number of moderately good (65-comparison) solutions,
but it could not proceed further. One reason was that after early gener-
ations the randomly generated test cases used to compute the fitness of
each individual were not challenging enough. The networks had found
a strategy that worked, and the difficulty of the test cases was staying
roughly the same. Thus, after the early generations there was no pressure
on the networks to change their current suboptimal sorting strategy.

To solve this problem, Hillis took another hint from biology: the phe-
nomenon of host-parasite (or predator-prey) coevolution. There are many
examples in nature of organisms that evolve defenses to parasites that
attack them only to have the parasites evolve ways to circumvent the de-
fenses, which results in the hosts’ evolving new defenses, and so on in
an ever-rising spiral—a “biological arms race.” In Hillis’s analogy, the
sorting networks could be viewed as hosts, and the test cases (lists of
16 numbers) could be viewed as parasites. Hillis modified the system so
that a population of networks coevolved on the same grid as a popula-
tion of parasites, where a parasite consisted of a set of 10-20 test cases.
Both populations evolved under a GA. The fitness of a network was now
determined by the parasite located at the network’s grid location. The net-
work's fitness was the percentage of test cases in the parasite that it sorted
correctly. The fitness of the parasite was the percentage of its test cases
that stumped the network (i.e., that the network sorted incorrectly).

The evolving population of test cases provided increasing challenges to
the evolving population of networks. As the networks got better and bet-
ter at sorting the test cases, the test cases got harder and harder, evolving
to specifically target weaknesses in the networks. This forced the popu-

Chapter 1

GRS e e R i

27

lation of networks to keep changing—i.e., to keep discovering new sort-
ing strategies—rather than staying stuck at the same suboptimal strat-
egy. With coevolution, the GA discovered correct networks with only
61 comparisons—a real improvement over the best networks discovered
without coevolution, but a frustrating single comparison away from rival-
ing Green’s network.

Hillis’s work is important because it introduces a new, potentially very
useful GA technique inspired by coevolution in biology, and his results
are a convincing example of the potential power of such biological in-
spiration. However, although the host-parasite idea is very appealing, its
usefulness has not been established beyond Hillis’s work, and it is not
clear how generally it will be applicable or to what degree it will scale
up to more difficult problems (e.g., larger sorting networks). Clearly more
work must be done in this very interesting area.

1.10 HOW DO GENETIC ALGORITHMS WORK?

Although genetic algorithms are simple to describe and program, their
behavior can be complicated, and many open questions exist about how
they work and for what types of problems they are best suited. Much
work has been done on the theoretical foundations of GAs (see, e.g., Hol-
land 1975; Goldberg 1989a; Rawlins 1991; Whitley 1993b; Whitley and
Vose 1995). Chapter 4 describes some of this work in detail. Here I give
a brief overview of some of the fundamental concepts.

The traditional theory of GAs (first formulated in Holland 1975) as-

sumes that at a very general level of descrlptlon, GAs work by dlSCOV-
ering, emphasizing, and recombining good “building blocks of solutlons
in a highly parallel fashion. The idea here is that good solutions tend to be
made up of good building blocks—combinations of bit values that confer
higher fitness on the strings in which they are present.

Holland (1975) introduced the notion of schemas (or schemata) to for-
malize the informal notion of “building blocks.” A schema is a set of bit
strings that can be described by a template made up of ones, zeros, and
asterisks, the asterisks representing wild cards (or “don’t cares”). For ex-
ample, the schema // =1 % % % %] represents the set of all 6-bit strings that
begin and end with 1. (In this section I use Goldberg’s (1989a) notation, in
which H stands for “hyperplane.” H is used to denote schemas because
schemas define hyperplanes—"planes” of various dimensions—in the /-
dimensional space of length-/ bit strings.) The strings that fit this template
(e.g., 100111 and 110011) are said to be instances of H. The schema H is said
to have two defined bits (non-asterisks) or, equivalently, to be of order 2. Its
defining length (the distance between its outermost defined bits) is 5. Here
I use the term “schema” to denote both a subset of strings represented by
such a template and the template itself. In the following, the term’s mean-
ing should be clear from context.

Genetic Algorithms: An Overview

Note that not every possible subset of the set of length-/ bit strings can
be described as a schema; in fact, the huge majority cannot. There are 2/
possible bit strings of length /, and thus 22 possible subsets of strings, but
there are only 3’ possible schemas. However, a central tenet of traditional
GA theory is that schemas are—implicitly—the building blocks that the
GA processes effectively under the operators of selection, mutation, and
single-point crossover.

How does the GA process schemas? Any given bit string of length / is
an instance of 2' different schemas. For example, the string 11 is an in-
stance of xx (all four possible bit strings of length 2), %1, 1, and 11 (the
schema that contains only one string, 11). Thus, any given population of
n strings contains instances of between 2‘ and n x 2’ different schemas.
If all the strings are identical, then there are instances of exactly 2/ dif-
ferent schemas; otherwise, the number is less than or equal to n x 2/,
This means that, at a given generation, while the GA is explicitly evalu-
ating the fitnesses of the # strings in the population, it is actually implic-
itly estimating the average fitness of a much larger number of schemas,
where the average fitness of a schema is defined to be the average fit-
ness of all possible instances of that schema. For example, in a randomly
generated population of n strings, on average half the strings will be in-
stances of 1% % % - - - x and half will be instances of 0 * # = - - - . The evalu-
ations of the approximately n/2 strings that are instances of 1w % ...«
give an estimate of the average fitness of that schema (this is an esti-
mate because the instances evaluated in typical-size population are only
a small sample of all possible instances). Just as schemas are not explic-
itly represented or evaluated by the GA, the estimates of schema average
fitnesses are not calculated or stored explicitly by the GA. However, as
will be seen below, the GA’s behavior, in terms of the increase and de-
crease in numbers of instances of given schemas in the population, can be
described as though it actually were calculating and storing these aver-
ages.

We can calculate the approximate dynamics of this increase and de-
crease in schema instances as follows. Let H be a schema with at least one
instance present in the population at time ¢. Let m(#, t) be the number of
instances of A at time r, and let ii(H, r) be the observed average fitness
of H at time ¢ (i.e., the average fitness of instances of H in the population
at time t). We want to calculate E(m(H,t + 1)), the expected number of
instances of H at time ¢t + 1. Assume that selection is carried out as de-
scribed earlier: the expected number of offspring of a string x is equal to
F(x)/f(6), where f(x) is the fitness of x and f(¢) is the average fitness of
the population at time ¢. Then, assuming x is in the population at time ¢,
letting x € H denote “x is an instance of H,” and (for now) ignoring the
effects of crossover and mutation, we have

28 Chapter 1

e ST P OV T ';‘“*“'*'*"“meﬂ--:mmm .

LT Tl e e S g s S

B LAatBi s — 5 e o d =, ate s == e e am——— h

29

E(n(H, i +1) =) f(0)/f@)

xcH
= (U(H,)/f)m(H, 1) 1.1)

by definition, since it(H, 1) = (3_, . f(x))/m(H, 1) for x in the population
at time ¢. Thus even though the GA does not calculate @ (H, t) explicitly,
the increases or decreases of schema instances in the population depend
on this quantity.

Crossover and mutation can both destroy and create instances of H.
For now let us include only the destructive effects of crossover and
mutation—those that decrease the number of instances of H. Including
these effects, we modify the right side of equation 1.1 to give a lower
bound on E{m(H,t 4 1)). Let p. be the probability that single-point cross-
over will be applied to a string, and suppose that an instance of schema
H is picked to be a parent. Schema H is said to “survive” under single-
point crossover if one of the offspring is also an instance of schema H.
We can give a lower bound on the probability Sc(H) that H will survive
single-point crossover:

d(H)
Sc(H)>1— pe <—>,

-1
where d(H) is the defining length of H and / is the length of bit strings in
the search space. That is, crossovers occurring within the defining length
of H can destroy H (i.e, can produce offspring that are not instances
of H), so we multiply the fraction of the string that H occupies by the
crossover probability to obtain an upper bound on the probability that it
will be destroyed. (The value is an upper bound because some crossovers
inside a schema’s defined positions will not destroy it, e.g., if two identical
strings cross with each other.) Subtracting this value from 1 gives a lower
bound on the probability of survival Sc(H). In short, the probability of
survival under crossover is higher for shorter schemas.

The disruptive effects of mutation can be quantified as follows: Let pp,
be the probability of any bit being mutated. Then Sn(H), the probability
that schema A will survive under mutation of an instance of H, is equal
to (1 — pm)®H), where o(H) is the order of H (i.e., the number of defined
bits in H). That is, for each bit, the probability that the bit will not be
mutated is 1 — pp,, so the probability that no defined bits of schema A will
be mutated is this quantity multiplied by itself o(H) times. In short, the
probability of survival under mutation is higher for lower-order schemas.

These disruptive effects can be used to amend equation 1.1:

EmH,t+ 1) = "0 0y (1 - pCLH)) [(1 — pm)°H]. (1.2)
f@® -1

This is known as the Schema Theorem (Holland 1975; see also Goldberg
1989a). It describes the growth of a schema from one generation to the

Genetic Algorithms: An Overview

30

next. The Schema Theorem is often interpreted as implying that short,
low-order schemas whose average fitness remains above the mean wil]
receive exponentially increasing numbers of samples (i.e., instances eval-
uated) over time, since the number of samples of those schemas that are
not disrupted and remain above average in fitness increases by a factor of
0(H,1)/f(t) at each generation. (There are some caveats on this interpre-
tation; they will be discussed in chapter 4.)

The Schema Theorem as stated in equation 1.2 is a lower bound, since
it deals only with the destructive effects of crossover and mutation. How-
ever, crossover is believed to be a major source of the GA’s power, with
the ability to recombine instances of good schemas to form instances of
equally good or better higher-order schemas. The supposition that this is
the process by which GAs work is known as the Building Block Hypothe-
sis (Goldberg 1989a). (For work on quantifying this “constructive” power
of crossover, see Holland 1975, Thierens and Goldberg 1993, and Spears
1993.)

In evaluating a population of n strings, the GA is implicitly estimat-
ing the average fitnesses of all schemas that are present in the popula-
tion, and increasing or decreasing their representation according to the
Schema Theorem. This simultaneous implicit evaluation of large num-
bers of schemas in a population of n strings is known as implicit paral-
lelism (Holland 1975). The effect of selection is to gradually bias the sam-
pling procedure toward instances of schemas whose fitness is estimated
to be above average. Over time, the estimate of a schema’s average fitness
should, in principle, become more and more accurate since the GA is sam-
pling more and more instances of that schema. (Some counterexamples to
this notion of increasing accuracy will be discussed in chapter 4.)

The Schema Theorem and the Building Block Hypothesis deal primar-
ily with the roles of selection and crossover in GAs. What is the role of
mutation? Holland (1975) proposed that mutation is what prevents the
loss of diversity at a given bit position. For example, without mutation,
every string in the population might come to have a one at the first bit po-
sition, and there would then be no way to obtain a string beginning with
a zero. Mutation provides an “insurance policy” against such fixation.

The Schema Theorem given in equation 1.1 applies not only to schemas
but to any subset of strings in the search space. The reason for specifically
focusing on schemas is that they (in particular, short, high-average-fitness
schemas) are a good description of the types of building blocks that are
combined effectively by single-point crossover. A belief underlying this
formulation of the GA is that schemas will be a good description of the
relevant building blocks of a good solution. GA researchers have defined
other types of crossover operators that deal with different types of build-
ing blocks, and have analyzed the generalized “schemas” that a given
crossover operator effectively manipulates (Radcliffe 1991; Vose 1991).

The Schema Theorem and some of its purported implications for the

Chapter 1

31

behavior of GAs have recently been the subject of much critical discussion
in the GA community. These criticisms and the new approaches to GA
theory inspired by them will be reviewed in chapter 4.

THOUGHT EXERCISES

1. How many Prisoner’s Dilemma strategies with a memory of three
games are there that are equivalent to TIT FOR TAT? What fraction is
this of the total number of strategies with a memory of three games?

2. What is the total payoff after 10 games of TIT FOR TAT playing against
(a) a strategy that always defects; (b) a strategy that always cooperates;
(c) ANTI-TIT-FOR-TAT, a strategy that starts out by defecting and always
does the opposite of what its opponent did on the last move? (d) What is
the expected payoff of TIT FOR TAT against a strategy that makes random
moves? (e) What are the total payoffs of each of these strategies in playing
10 games against TIT FOR TAT? (For the random strategy, what is its
expected average payoff?)

3. How many possible sorting networks are there in the search space de-
fined by Hillis’s representation?

4. Prove that any string of length / is an instance of 2/ different schemas.

5. Define the fitness f of bit string x with / = 4 to be the integer repre-
sented by the binary number x. (e.g., f(0011) =3, f(1111) = 15). What is
the average fitness of the schema 1% * * under f? What is the average fit-
ness of the schema 0x * x under f?

6. Define the fitness of bit string x to be the number of ones in x. Give a
formula, in terms of / (the string length) and k, for the average fitness of a
schema H that has k defined bits, all set to 1.

7. When is the union of two schemas also a schema? For example,
{0} [J{1%) is a schema (x%), but {01} [J{10} is not. When is the intersection
of two schemas also a schema? What about the difference of two schemas?

8. Are there any cases in which a population of n I-bit strings contains
exactly n x 2! different schemas?

COMPUTER EXERCISES

(Asterisks indicate more difficult, longer-term projects.)

1. Implement a simple GA with fitness-proportionate selection, roulette-
wheel sampling, population size 100, single-point crossover rate p. =0.7,
and bitwise mutation rate p, = 0.001. Try it on the following fitness func-
tion: f(x) = number of ones in x, where x is a chromosome of length 100.

Genetic Algorithms: An Overview

T U —

POORT A e

Perform 20 runs, and measure the average generation at which the string
of all ones is discovered. Perform the same experiment with crossover
turned off (i.e., pc = 0). Do similar experiments, varying the mutation and

‘ crossover rates, to see how the variations affect the average time required
for the GA to find the optimal string. If it turns out that mutation with
crossover is better than mutation alone, why is that the case?

2. Implement a simple GA with fitness-proportionate selection, roulette-
wheel sampling, population size 100, single-point crossover rate p. =
0.7, and bitwise mutation rate py = 0.001. Try it on the fitness function
f(x) = the integer represented by the binary number x, where x is a chro-
: mosome of length 100. Run the GA for 100 generations and plot the fitness
. of the best individual found at each generation as well as the average fit-
ness of the population at each generation. How do these plots change as
you vary the population size, the crossover rate, and the mutation rate?
What if you use only mutation (i.e., pc = 0)?

sl i

3. Define ten schemas that are of particular interest for the fitness func-
= tions of computer exercises 1 and 2 (e.g., 1 % ---* and 0 % - - - ¥). When run-
'::' ning the GA as in computer exercises 1 and 2, record at each generation

how many instances there are in the population of each of these schemas.
How well do the data agree with the predictions of the Schema Theorem?

"W}ﬁ

4. Compare the GA’s performance on the fitness functions of computer
exercises 1 and 2 with that of steepest-ascent hill climbing (defined above)
= and with that of another simple hill-climbing method, “random-mutation
= hill climbing” (Forrest and Mitchell 1993b):

1. Start with a single randomly generated string. Calculate its fitness.

2. Randomly mutate one locus of the current string.

3. If the fitness of the mutated string is equal to or higher than the fitness
of the original string, keep the mutated string. Otherwise keep the origi-
g nal string.

4. Go tostep 2.

Iterate this algorithm for 10,000 steps {fitness-function evaluations). This
is equal to the number of fitness-function evaluations performed by the
k GA in computer exercise 2 (with population size 100 run for 100 gener-
ations). Plot the best fitness found so far at every 100 evaluation steps
(equivalent to one GA generation), averaged over 10 runs. Compare this
with a plot of the GA’s best fitness found so far as a function of gener-
ation. Which algorithm finds better performing strategies? Which algo-
rithm finds them faster? Comparisons like these are important if claims
are to be made that a GA is a more effective search algorithm than other
= stochastic methods on a given problem.

*5. Implement a GA to search for strategies to play the Iterated Prisoner’s
Dilemma, in which the fitness of a strategy is its average score in playing

32 Chapter 1

er—

33

100 games with itself and with every other member of the population.
Each strategy remembers the three previous turns with a given player.
Use a population of 20 strategies, fitness-proportional selection, single-
point crossover with p. = 0.7, and mutation with py, = 0.001.

a. Seeif you can replicate Axelrod’s qualitative results: do at least 10 runs
of 50 generations each and examine the results carefully to find out how
the best-performing strategies work and how they change from genera-
tion to generation.

b. Turn off crossover (set p. = 0) and see how this affects the average
best fitness reached and the average number of generations to reach the
best fitness. Before doing these experiments, it might be helpful to read
Axelrod 1987.

c¢. Try varying the amount of memory of strategies in the population. For
example, try a version in which each strategy remembers the four previ-
ous turns with each other player. How does this affect the GA’s perfor-
mance in finding high-quality strategies? (This is for the very ambitious.)
d. See what happens when noise is added—i.e., when on each move each
strategy has a small probability (e.g., 0.05) of giving the opposite of its
intended answer. What kind of strategies evolve in this case? (This is for
the even more ambitious.)

*6.

a. Implement a GA to search for strategies to play the Iterated Prisoner’s
Dilemma as in computer exercise 5a, except now let the fitness of a strat-
egy be its score in 100 games with TIT FOR TAT. Can the GA evolve strate-
gies to beat TIT FOR TAT?

b. Compare the GA’s performance on finding strategies for the Iterated
Prisoner’s Dilemma with that of steepest-ascent hill climbing and with
that of random-mutation hill climbing. Iterate the hill-climbing algo-
rithms for 1000 steps (fitness-function evaluations). This is equal to the
number of fitness-function evaluations performed by a GA with popula-
tion size 20 run for 50 generations. Do an analysis similar to that described
in computer exercise 4.

Genetic Algorithms: An Overview

T R W T —————— -

