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There is an alternative route to Artificial Intelligence that diverges from the directions pursued under that banner for the last thirty some years.

The traditional approachhas emphasizedthe abstract manipulationof symbols,whose grounding,in physical reality has . rarely been
achieved. We explore a research methodology which emphasizes ongoing physical interaction with the envirdhengntasy source of
constraint on the design of intelligent systems. We show howrtateodologyhas recently had significant successe®sn a par with the most
successful classical efforts. We outline plausible future work along these lines which can lead to vastly more ambitious systems.

1. Introduction

Artificial Intelligenceresearchhas founderedin a
sea of incrementalism. No ofie quite surewhereto
go save improving on earlier demonstrationsof
techniquesn symbolic manipulationof ungrounded
representations.At the same time, small Al
companies are folding, and attendance is delin at
national and international Artificial Intelligence
conferencesWhile it is true that the use of Al is
prosperingin many large companiesijt is primarily
through the application.to novel domainsof long
developedechniqueghat have becomepasséin the
research community

What has gone wrong? (And hasvthis book the
answer?!l)

In this paperwe argue that the symbol system
hypothesisupon which classical Al is base is
fundamentallyflawed, and as such imposes severe
limitations on the fitness of itprogeny.Further,we
argue that the dogma of the symbol system
hypothesisimplicitly includesa numberof largely
unfoundedgreat leapsof faith when called upon to
provide a plausiblepathto the digital equivalentof
human level intelligence. It is the chasmsto be
crossed by these leaps which now impede clasaical
research.

But there is an alternative view, or dogma,
variously callechouvelle Al, fundamentalist Ady in
a weakerform situatedactivity *. It is basedon the
physical grounding hypothesis.providesa different
methodologyfor building intelligent systemsthan
that pursuedfor the last thirty years.The traditional
methodologybasests decompositiorof intelligence
into functional information processing modules
whose combinations provide overall system behavior.
The new methodologybasesits decompositionof
intelligence into individual behavior generating
modules, whose coexistenceand co-operation let
more complex behaviors emerge.

In classicalAl, none of the modulesthemselves
generate the behavior of the tosgistem.Indeedit is
necessaryo combinetogethermany of the modules
to get any behavior at all from the system.
Improvement in the competenceof the system
proceedsby improving the individual functional
modules. In nouvelle Al each module, itsgéinerates
behavior, and improvemeirt the competencef the

! Note that what is discussed in this paper is completely unrelated
to what is popularly known adseural NetworksThat given, there

are nevertheless a number of aspects of nouvelle Al approaches
which may be of interest to. people working in classical
neuroscience.



system proceedsby adding new modulesto the
system.

Given thatneitherclassicalnor nouvelle Al seem
close to revealing the secraisthe holy grail of Al,
namely general purpose human level intelligence
equivalence, there are a number of critical
comparisonsthat can be made betweenthe two
approaches.

« Is either approach epistemologically adequate? (And
adequate for what?)

* Are there clear paths for either approachin the
direction of vastly more intelligent systems?

* Are nouvellers romanticalliioping for magic from
nothing while classicistsare willing to tell their
systems almost anything and everythimgthe hope
of teasing out the shallowest of inferences?

* Is the claim of emergentpropertiesof nouvelle Al
systems any more outrageousthan the use of
heuristics in classical Al?

In the following sections we address these issues.
2. The Symbol System Hypothesis

The symbol systemhypothesis,[30], statesthat
intelligence operateson a systemof symbols. The
implicit ideais that perceptionand motor interfaces
are sets of symbolsn which the centralintelligence
system operates. Thus, the central system, or
reasoningengine, operatesin a domain independent
way on the symbols. Their meanings are unimportant
to the reasonerput the coherenceof the complete
processemergeswhen an observerof the system
knows the groundingsof the symbolswithin his or
her own experience.

Somewhatmore implicitly in the work that the
symbol system hypothesis haspired,the symbols
represent entities in the world. They may be
individual objects, properties, concepts, desires,
emotions, nations, colors, libraries, or molecules,
but they are necessarilynamedentities. There are a
number of effects which result from this
commitment.

Recallfirst, however,that an intelligent system,
apart from those which are experimentsin the
laboratory,will be embeddedn the world in some
form or another.

2.1. The Interface Between Perception and Symbols

The central intelligence systedealsin symbols. It
must be fed symbols by, the perception system.

But what is the correct symbolic descriptionof
the world around the intelligensystem?Surely that
description must be task dependent.

The default assumption has been that the
perception system deliveesdescriptionof the world
in terms of typed, named individuals and their
relationships.For instancein the classic monkeys
and bananasproblem, the world, descriptionis in
terms of boxes, bananas, and aboveness.

But for anothertask (e.g., deciding whetherthe
bananasare rotten) quite a different representation
might be important. Psychophysicalevidence[32]
certainly points to perception being an active and task
dependent operation.

The effect of the symbol systemhypothesishas
been to encourage vision researchers to cafestthe
goal of a general purpose vision system which
delivers complete descriptionsof the world in a
symbolic form (e.g. [5]). Only recently has there
been amovementtowardsactive vision [4] which is
much more task dependent, or task driven [1].

2.2. Inadequacy of Simple Symbols

Symbol systemsin their purestforms assumea
knowable objective truth. It is only with much
complexity that modal logics, or non-monotonic
logics, canbe built which betterenablea systemto
have,beliefs gleanedfrom partial views of a chaotic
world.

As theseenhancementare made,the realization
of computationsbased on these formal systems
becomesmore and more biologically implausible.
But once the commitmentto symbol systemshas
been made iis imperativeto pushon throughmore
and more complex and cumbersomesystems in
pursuit of objectivity.

This samepursuitleadsto the well known frame
problem (e.g., [27]), where it is impossible to
assume anything that is not explicitly stated.
Technicaldeviationsaroundthis problem have been
suggestecdbut they are by no meanswithout their
own problems.

2.3. Symbol Systems Rely on Emergent Properties

In general theeasoningprocesshecomedrivial in
an NP-completespace(e.g., There have beenlarge
efforts to overcome these problems by choosing
simple arithmeticallycomputedevaluation functions



or polynomialsto guidethe search.Charmingly,it
has been hoped that intelligence will somehow
emergefrom these simple numeric computations
carried out in the sea of symbols. [28] was oh¢he
earliest examples of this hope, whilelter turnedout
to be only partially correct(his learnedpolynomials
later turned out tdoe dominatedby piececount), but
in fact almostall instancesf searchin classicalAl
haverelied on such judiciously chosenpolynomials
to keep the search space manageable.

3. The Physical Grounding Hypothesis

Nouvelle Al is basedon the physical grounding
hypothesis.This hypothesisstatesthat to build a
systemthat is intelligent it is necessaryo have its
representationgroundedn the physical world. Our
experiencewith this approachis that once this
commitment is made, the need for traditional
symbolic representations soon fades entirely. Kée

observation is that the world is its own best model. It

is always exactly up to date.dtwayscontainsevery
detail thereis to be known. Thetrick is to senseit
appropriately and often enough.

To build a system based on the physmaunding
hypothesisit is necessaryo connectit to the world
via a setof sensorsand actuators.Typed input and
output are no longer of interest. They are not
physically grounded.

Acceptingthe physicalgrounding hypothesisas a
basis for researchentails building systemsin a
bottom up manner.High level abstractionshave to
be madeconcrete.The constructedsystemeventually
hasto expressall its goals and desiresas physical
action, and must extract all its knowledge from
physical sensorsThus the designerof the systemis
forced to make everythingexplicit. Every short-cut

taken has a direct impact upon system competence, as

there isno slackin the input/outputrepresentations.
The forms of the low-level interfaces have

consequences which ripple through the entire system.

3.1. Evolution

We already have an existence proof of the
possibility of intelligent entities — humanbeings.
Additionally many animals are intelligent to some
degree. (Thiss a subjectof intensedebatemuch of
which really centers around a definition of
intelligence.) They havevolvedover the 4.6 billion
year history of the earth.

It is instructive to reflect on the way in which
earth-basedbiological evolution spent its time.
Single cell entitiesaroseout of the primordial soup
roughly 3.5 billion years ag@ billion yearspassed

before photosyntheticplants appeared After almost
anotherbillion anda half years,around550 million

yearsago, the first fish and vertebratesarrived, and
then insects 450 million years ago. Then things
started moving fast. Reptiles arrived 370 million

years ago, followed by dinosaurs at 330 and
mammals at 250 million years ago. The first

primates appeared120 million years ago and the
immediatepredecessor® the greatapesa mere 18
million years ago. Man arrived in roughly tpsesent
form 2.5 million years ago. He inventedyriculturea
mere19000yearsago, writing lessthan 5000 years
agoand "expert" knowledgeonly over the last few
hundred years.

This suggeststhat problem solving behavior,
language, expert knowledge and application, and
reason, are all rather simple once the essenbein§
and reacting aravailable. That essencés the ability
to move aroundin a dynamic environment,sensing
the surroundings ta degreesufficientto achievethe
necessarynaintenancef life andreproduction.This
part of intelligence is where evolution has
concentrated itime—it is much harder.This is the
physically grounded part of animal systems.

An alternative argument to the preceedinthit in
fact onceevolution had symbols and representations
things startedmoving ratherquickly. Thus symbols
are the key invention and Al worketan sidestepthe
early morass and start working directly with symbols.
But | think this missesa critical point, asis shown
by the relatively weaker performance of symbased
mobile robots as opposedto physically grounded
robots. Without a carefully built physicalgrounding
any symbolic representatiorwill be mismatchedto
its sensorsand actuators.Thesegroundingsprovide
the constraint®n symbolsnecessaryor themto be
truly useful.

[26] has arguedrather eloquently that mobility,
acutevision and the ability to carry out survival
related tasks in a dynamic environmentprovide a
necessary basis for the development of true
intelligence.

3.2. The Subsumption Architecture

In orderto explorethe constructionof physically
grounded systems we have developamputational
architecture known athe subsumptiorarchitecture.
It enables ugo tightly connectperceptionto action,
embedding robots concretely in the world.

A subsumption program is built on a
computational substrate that is organized inteides
of incremental layers, each, in the general case,
connectingperceptionto action. In our case the



substrate is, networks of finite state machines
augmented with timing elements.

The subsumption architecture was described
initially in [6] and later modified i8] and[16]. The
subsumption compiler compiles augmentedfinite
state machine (AFSM) descriptions into a
special-purpose scheduler simulateparallelismand
a set of finite state machine simulation routines. This
is a dynamically retargetablecompiler that has
backenddor a numberof processorsincluding the
Motorola 68000, the Motorola 68HC11, and the
Hitachi 6301. The subsumptioncompiler takes a
source file as input and produces an assembly
language program as output.

The behaviorlanguagewas inspired by [23] as a
way of grouping AFSMs into more manageable units
with the capability for whole units being selectively
activated or de-activated.In fact, AFSMs are not
specifieddirectly, but ratherasrule setsof real-time
rules which compile into AFSMs in a one-to-one
manner. The behavior compiler is
machine-independent and compiles into an
intermediate file of  subsumption AFSM
specifications.The subsumptioncompiler can then
be used to compile to the various targets., We
sometimes call the behavior language the new
subsumption.

3.2.1. The Old Subsumption Language

Eachaugmentedinite statemachine(AFSM) has
a set of registers and a settiofiers, or alarmclocks,
connectedto a conventional finite state machine
which can control a combinational network fed by the
registers. Registers can beitten by attachinginput
wires to them, and sending messagesfrom other
machines. The messages get written intorégisters
by replacingany existing contents.The arrival of a
messageor the expirationof a timer, can trigger a
changeof statein the interior finite state machine.
Finite statemachinestatescan either wait on some
event, conditionally dispatchto one of two other
statesbasedon somecombinationalpredicateon the
registers, or compute a combinational functidrthe
registers directing the result eithesickto one of the
registers or to an output of tleeigmentedinite state
machine. Some AFSMs connectdirectly to robot
hardware. Sensorsdeposit their values in certain
registers,and certain outputs direct commandsto
actuators.

A series of layers of such machines can be
augmentedy adding new machinesand connecting
them into the existing network inraumberof ways.
New inputs can be connectedio existing registers,
which might previously have containeda constant.

New machines can inhibit existing outputs, or
suppressexisting inputs, by being attached as
side-tapgo existing wires. When a messagearrives
on an inhibitory side-tapno messagescan travel
alongthe existing wire for some short time period.
To maintaininhibition there must be a continuous
flow of messagesalong the new wire. (In previous
versions of the subsumptiarchitecturg6] explicit,
long time periods had to be specified for inhibitiam
suppression with single shot messages., Ragerk
has suggestedthis better approach[16].) When a
messagearriveson a suppressingside-tap,again no
messagesare allowed to flow, from the original
source for some small time period, but now the
suppressing messageis gated through and it
masquerades as having come from the original source.
A continuous supply of suppressingmessagess
required to maintain control of a side-tapped wire.

Inhibition and suppression atke mechanismby
which conflict resolution between actuatmmmands
from different layersis achievedNotice that in this
definition of the subsumptionarchitecture AFSMs
cannotshareany state,and in particular they each
completely encapsulatdeir own registersand alarm
clocks.

All clocks in a subsumption system have
approximatelythe sametick period (0.04 secondsn
most of our robots). Howevengeitherthe clocks nor
the messagesre synchronousThe fastestpossible
rate of sendingmessageslong a wire is one per
clock tick. The timeperiodsusedfor both inhibition
and suppressionare two clock ticks. Thus, a
side-tappingwire with messagedbeing sent at the
maximum rate can maintaizontrol of its host wire.
We call this rate theharacteristic frequencyof the
particular subsumption implementation.

3.2.2. The New Subsumption Language

The behaviorlanguagegroups multiple processes
(eachof which usually turns out to be implemented
as a single AFSM) into behaviors. There can be
message passing, suppression, and inhibition
between processes within a behavior, and therdean
message passing, suppression iaébition between
behaviors Behaviorsact as abstractionbarriers; one
behavior cannot reach inside another.

Eachprocesswithin a behavioris much like an
AFSM, and indeed our compiler for the behavior
languageconvertsthem to AFSMs. However, they
are generalized so that they can share registemswA
structure, monostables,provides a slightly more
generaltiming mechanismthan the original alarm
clocks. Monostablesare retriggerable,and can be
shared between processes within a single behavior.



4. Some Physically Grounded Systems

In this sectionwe briefly review some previous
successful robots built with the subsumption
architectureand highlight the ways in which they
have exploited or epitomize that architecture.The
family portrait of all the robotsis shownin Fig. 1.
Most of the robots were programmedwith the old
subsumptionlanguage.Toto and Seymour use the
new behavior language.

A key thingto note with theserobotsis the ways
in which seeminglygoal-directedbehavior emerges
from the interactionsof simpler non goal-directed
behaviors.

Fig. 1. The MIT Mobile Robots include, in the back row, left to
right; Allen, Herbert, Seymour and Toto. In front row are Tito,
Genghis, Squirt (very small) Tom and Jerry, and Labnav.

4.1. Allen

Our first robot, Allen, had sonar rangensorsand
odometryonboardand usedan offboardlisp machine
to simulatethe subsumptionarchitecture.In [6] we
describedhreelayersof control implementedin the
subsumption architecture.

The first layer let the robot avoid both static and
dynamic obstacles;Allen would happily sit in the
middle of a room until approacheithen scurry away,
avoiding collisions as it went. The internal
representationused was that every sonar return
represente@ repulsive force with an inverse square
decreasen strengthas a function of distance.The
vector sum of the repulsive forces, suitably
thresholded,told the robot in which direction it
should move. An additional reflex halted the robot
whenevertherewas somethingright in front of the
robot and it wasnoving forward (ratherthan turning
in place).

The second layemadethe robot randomlywander
about. Every 10 secondr so, a desireto headin a
random direction would bgeneratedThat desirewas
coupledwith the reflex to avoid obstaclesby vector
addition. The summedyvector suppressedhe more
primitive obstacleavoidancevector, but the obstacle
avoidance behavior still operated, having been
subsumedby the new layer, in its accountof the
lower level's repulsive force. Additionally, the halt
reflex of the lower level operatedautonomouslyand
unchanged.

The third layer made the robot look (with its
sonars)for distant placesand try to head towards
them. This layer monitored progress through
odometry, generating a desired heading which
suppressed the directialesiredby the wander layer.
The desired heading was then fed, into a vector
addition with the instinctive obstacloidancdayer.
The physicalrobot did not thereforeremain true to
the desires of the upptayer. The upperlayer hadto

watch what happened in the world, through odometry,

in orderto understandvhat wasreally happeningin
the lower control layers, and send down correction
signals.

In [9] we described an alternate set of layergtier
robot Allen.

4.2. Tom and Jerry

Tom and Jerry [14] were two identicadbots built
to demonstratgust how little raw computationis
necessary to support tlsebsumptionarchitecture A
threelayer subsumptionprogramwas implemented,
yet all datapathswere just one bit wide and the
whole program fitted on a single 256 gate
programmablearray logic chip. Physically Tom and
Jerry were toy cars with three one-bit infrared
proximity sensoramountedon the front and one at
the rear. The sensorswere individually tunedto a
specific distance at which they would fire. Teentral
front sensoffired only on much closer objects than

the two side sensors, which pointed slightly outward.

The lowestlayer of Tom and Jerry implemented
the standard pair of first level behaviors. Thaseda
vector sum of repulsive forces from obstaclesto
perform an avoidancemanueveror to trigger a halt
reflex to stop whensomethingwastoo close ahead,
as detected, by the central front looksgnsor.There
were extra complicationsith Tom andJerryin that
we neededto use the subsumptionarchitectureto
implementan active braking schemebecauseof the
high speedof the robots relative to their sensor
ranges. Tom and Jerry's second layers wrareh like
Allen's original second layer-an urge to wandbout,
which wasimplementedby an attractiveforce which



got added tahe repulsiveforcesfrom obstaclesThe
third layer detectedmoving objectsusing the front
three sensors and createdbllowing behavior.When
somethingwas detectedthe robot was attractedand
movedtowardsit. The lower level collide behavior
stoppedthe robot from actually hitting the target,
however. While theobot was chasingits target,the
wander behavior was suppressed.

Tom and Jerry demonstratedthe notion of
independenbehaviorscombining without knowing
about eaclother (chasingobstaclesut staying back
from them a little).Tom andJerry also demonstrated
that the subsumptionarchitecturecould be compiled
(by hand) down to the gate levahdthat it could be
run at clock speeds of only a few hundred Hertz.

4.3. Herbert

Herbert [12]was a much more ambitiousrobot. It
has a 24-processordistributed, loosely coupled,
onboard computer to run the subsumption
architecture The processorsvere slow CMOS 8-hit
microprocessorgwhich ran on low electrical power;
an importantconsiderationwhen carrying batteries),
which could communicate only by slow serial
interfaces(maximum 10 packetseach, 24 bits wide
per second).Onboard Herbert, the interconnections
betweenAFSMs are physically embodiedas actual
copper wires.

Herbert had 30 infrared proximity senséos local
obstacleavoidance,an onboardmanipulator with a
number of simple sensors attachedhe hand,anda
laser light striping system to collect three
dimensionaldepthdatain a 60 degreewide swathin
front of the robot with a rangeof about12 feet. A
256 pixel-wide by 32 pixel-high depth image was
collectedevery second.Through a special purpose
distributed serpentinememory, four of the onboard
8-bit processorsvere eachable to expendabout 30
instructions on each data pixel. By linking the
processorsn a chain we were able to implement
quite high performance vision algorithms.

[16] programmedHerbertto wanderaround office
areasgo into people'soffices and steal empty soda
cans from their desks. He demonstratedobstacle
avoidanceand wall following, real-time recognition
of soda-can-likeobjects,and a set of 15 behaviors
[15] which drovethe armto physically searchfor a
sodacanin front of the robot, locateit, and pick it

up.

Herbert showed many instances of usihg world
as its own best model and as a communication
medium. The remarkablething aboutHerbertis that
there was absolutely no internal communication

between any of its behavior generating modules. Each

onewas connectedo sensorsn the input side, and
an arbitration network on the output side. The
arbitration network drove the actuators.

The laser-basedoda-canobject finder drove the
robot so that its arm was lined up in front of Huela
can.But it did not tell the arm controller that there

was now a soda can ready to be picked up. Rather, the

arm behaviorsmonitoredthe shaft encoderson the
wheels, and when they noticed that there wabatly
motion, initiated motions of the arm, which in turn
triggered other behaviors, so that eventuallyrtiteot
would pick up the soda can.

The advantageof this approachis that thereis no
need to set up internal expectationsvidratis going
to happennext; this meansthat the control system
canboth (1) be naturally opportunisticif fortuitous
circumstancespresent themselves,and (2) it can
easily respondto changed circumstances,such as
some other object approachingit on a collision
course.

As one example of how the arm behaviors
cascaded upon one another, consatgually grasping
a soda canThe handhad a graspreflex that operated
whenever somethingroke an infrared beambetween
the fingers. When the arm located@dacanwith its
local sensorsjt simply drove the hand so that the
two fingerslined up on either side of the can. The
handthenindependentlygraspedhe can. Given this
arrangementit was possiblefor a humanto hand a
soda can to the robot. As soanit wasgraspedthe
arm retracted— it did not matter whetherit was a
sodacanthat was intentionally grasped,or one that
magically appearedThe same opportunism among
behaviorslet the arm adaptautomaticallyto a wide
variety of cluttereddesktops,and still successfully
find the soda can.

4.4. Genghis

Genghis[81 is a 1Kg six legged robot which
walks under subsumption control and has an
extremely distributed control system. The robot
successfullywalks over rough terrain using 12
motors, 12 forcesensorsg pyroelectricsensorspne
inclinometer and 2 whiskers. It also follows
cooperative humans using its pyroelectric sensors.

The subsumptionlayers successivelyenable the
robot to standup, walk without any sensing, use
force measurementto comply with rough terrain,
use force measurements to lift its legs ovkstacles,
use inclinometemeasurementt selectivelyinhibit
rough terrain compliance when appropriate, use
whiskersto lift feet over obstacles,use passive



infrared sensorsto detectpeopleand to walk only
when they are present, and to usedhectionality of
infrared radiation to modulate the backswing of
particular leg sets so, that the robot follows a
moving source of radiation.

In contrast,one could imagine a control system
which had a central repository which modeledthe
robot's configuration in translation and orientation
space. One could further imagine high level
commands (for instance from a path planner)
generatingupdatesor the robot's coordinates.These
high level commandswould then be hierarchically
resolved into instructions for individual legs.

The control system on Genghis has no such
repository. Indeed there is not even a central
repositoryfor eachleg—separatenotorson the legs
are controlled quite separatelydifferent partsof the
network. While there is a some semblanceof a
central control system for each individual motor,
thesecontrollersreceivemessagefrom diverseparts
of the network and simply passthem on to the
motors, without any attempt at integration.

Our control system was also very easybuild. It
was built incrementally, with each new capability
being a simple addition (no deletion, no changeto
previous network) of new network structure. The
debugged existing network structure was never
altered.

The resulting control systemis elegantin its
simplicity. It does not deal with coordinate
transformsor kinematic models. It is not at all
hierarchical.lt directly implementswalking through
many very tight couplingsf sensordo actuatorsit
is very distributedin its nature,and we believe its
robustness in handling rough terr@iomesfrom this
distributed form of control.

We are currently building a new version of
Genghis[3] which will be a much strongerclimber
andableto scrambleat aroundthree kilometers per
hour. Each leg has threfegreeof freedomandthree
force sensorsmountedon load bearing beams. A
single-chip microprocessowith onboardRAM and
EEPROMis easily ableto force servothe complete
leg. The total mass of the final robot will &6 Kg.
Attila will have batterieswhich will power it for
about 30 minutes whilactively walking. Following
that, it will haveto rechargefrom solar cells for
about 4.5 hours in Earth sunlight.

4.5. Squirt

Squirt is the smallest robot we halailt [21]. It
weighs about 50 grams and is abbl4 cubic inches
in volume.

Squirt incorporatesan 8-bit computer,an onboard
power supply, three sensors and a propulsigstem.
Its normal modeof operationis to act as a "bug",
biding in dark corners and venturing out in the
direction of noises,only after the noises are long
gone, looking for a newlaceto hide nearwherethe
previous set of noises came from.

The most interesting thing about Squirt is the way

in which this high level behaviemergedrom a set
of simple interactions with the world.

Squirt's lowestevel of behaviormonitorsa light
sensorand causesit to move in a spiral pattern
searchingfor darkness.The spiral trajectories are
created by a coupling of a forwandotion along with
a back-and-turn motion, implemented throughuke
of only one motor and made possible by a
unidirectionalclutch on the rear axle. Once Squirt
finds a dark spot, it stops.

Squirt's secondevel of behavioris triggeredonce
a dark hiding place has been established. This

behavior monitors two microphones and measures the

time of arrival of sound at each microphone.By
noting the difference, it can localize the direction
from which the soundcame.Squirt thenwaits for a
pattern of a sharp noise followed by a femnutesof
silence.If this patternis recognized Squirt ventures
out in the direction of the last heard noise,
suppressinghe desireto stayin the dark. After this
ballistic straight-linemotion times out, the lower
level is no longer suppressedndthe light sensoris
againrecognizedlIf it is light, the spiraling pattern
kicks back in. The endffectis that Squirt gravitates
towards the center of action. The entire compiled
control systemfor Squirt fits in 1300 bytesof code
on an onboard microprocessor.

4. 6 Toto

Toto [24] is our first robot fully programmedith
the new behavior language.Toto has 12 radially
arrangedsonars and a flux-gate compassas its
sensors.

At first appearanceit may seem that the
subsumptionarchitecturedoes not allow for such
conventional items as maps. There are no data
structureswithin the subsumptionarchitecture,and
no easyway of havinga centralrepositoryfor more
than simple numeriquantities.Our work with Toto
demonstrateshat these are not critical limitations
with regard to map building and use.



Toto has a lowevel reactivesystemto keepbasic
functions running robusthits lower level behaviors
enableit to wanderaroundavoiding collisions, and
successfullyfollow walls andcorridorsas if it were
explicitly exploringthe world. An intermediatdevel
set of behaviorgries to recognizeparticulartypes of
landmark such as walls, corridors and clutferother
networkis madeup of mutually identical behaviors
with each layer waiting for new landmarksto be
recognized. Each time this happensa behavior
allocatesitself to be the 'place’ of that particular
landmark. The behaviors which correspond to
physically adjacent landmarks have neighbor
relationshiplinks activatedbetweenthem. A graph
structure is thus formed, although the nodes are active
computational elements rather than static data
structures.(In fact, each node is really a whole
collectionof computationaklementsn the form of
augmented finite state machines.)

As the robot moves aroundthe environment,the
nodes try to keep traakf whereit is. Nodesbecome
more active if they believe that they correspond to the
place at which the robot is currently located. Thus the
robot hasboth a map, anda senseof whereit is on
the map, but a totally distributed computational
model.

When a behavior(suchas"go to someplace") is
activated(via a small panelof push buttons on the
robot) a spreadingof activation mechanismis used,
which spreaddrom the goal via the neighborlinks.
This processis continuous and keeps the robot
informedasit reacheseach place expectedfrom the
map.

Mataric'sexperimentaresults[25] show how the
robot's performancecan be incrementally improved
by addingnew piecesof network. Map building and
path planningwereinitially demonstratedvith fewer
types of behaviors than finally implemented. Tlzen
idea of expectation,basedon temporally generated
contextwas added.This allowedthe robot to handle
getting lost andto relocateitself in the map later.
Then a coarse positiogstimationschemewas added,
based orintegratingthe compassheadingover time.
This significantly loweredthe level of ambiguity in
both map building and map usein more complex
environmentsandthus increasedthe robot's overall
competence.In all caseswe simply added new
behaviorsto the network to improve the map
building and using performance.

The work hasalso shownthat globally consistent
maps can be buikhindemergein a totally distributed
manner.In our experimentsthey were built by a
collection of asynchronous independent agents,

without the ability touse arbitrary pointers,or other
such traditional data structure techniques.In path
planningthereis no notion of a global path under
this schemejocal piecesof information combineto
directthe robot throughits dynamicsof interaction
with the world, to getto the desiredplace. Overall,
theseaspectsdlemonstrateéhat the techniquesshould
scale well.

It hasbeeneasyto integratethe mapswith the
dynamicsof navigation,obstacleavoidanceand path
planning. The representationfiave a natural ability
to integratetemporal aspectsof the dynamicssince
they can use time as its own representation!

The notion of place maps developed Tato bears
striking similarities to what has beefservedn the
hippocampus of the rat [17].

4.7. Seymour

Seymouris a new robot we are building with all
onboard processing to support visiprocessingf 9
low resolution camerasat approximately10 frames
per second[10]. The camerasfeed into different
subsumptionlayerswhich act upon thoseaspectof
the world they perceive. Seymour is also programmed
in the new behavior language.

A number ofvision basedbehaviorsdevelopedor
Seymour have been prototyped on earlier robots.

[22] describea subsumptionprogramthat controls
two simpleandunreliablevisual processingoutines
to produce a reliablbehaviorwhich follows moving
objectsusing vision. One vision processtracks a
single moving blob. It getsbootstrappedy another
processwhich overlays the blob image with an
indication of wheremotion is seen.The robot then
tries to servo a selectedblob to stay in a fixed
location in image coordinate$he blob trackeroften
loses the blob it is tracking. The motion finder
producesa lot of noiseespeciallywhenthe robot is
moving, but betweenthe two of them they let the
robot reliably follow a moving object (any moving
object; we have seen the robot chase a black tash
dragged by a string, a radio controlled btag caron
a blue floor, a pink plastic flamingo, a grey notebook
on a grey carpetedloor, anda drinking mug moved
around by hand), by switching back, and forth
betweenthe visual routines as either one fails.
Nowhereinternally does the subsumptionprogram
havethe notion of an identifiable object, yet to an
outside observerit certainly appearsto follow a
moving object very well.

Using the robot Tito, [29] demonstratedtwo
visually guided behaviorswhich will be used in



support of Seymour. Each behavior usesleaeopair
of linear cameras. A vertically mounted pair made
of rotationalmotions of the baseto produceimages
from which the dimensionsof the room could be
extracted even though the camera system was
uncalibrated.Then employing earlier results from
[11], the robot usedforward motion to calibrate a
horizontally mountedpair of cameras,which were
used to find doorways through which the robot drove.

[31] has demonstratedan autonomous eyeball
capableof maintaininga steadygazedespitemotion
of its platform. It recapitulates the primate
vestibular-occulasystemby using vision asa slow
calibration system for a gyroscope controlled
movable platform which holds the camera.

4.8. Gnat Robots

In all our use and development of the subsumption
architecturewe have been careful to maintain its
simplicity so that programswritten in it could be
easily and mechanicallycompiledinto silicon. For
example, withToto the map networkswere arranged
so that the total wire length for connecting the
underlying finite state machines need be no more than
linear in the number of finite state machines.In
generalthe areaof silicon neededfor the robots we
have built would be quite small. There isemsonfor
maintaining this restriction.

[18,19] introducedthe idea of building complete
small robots out of silicon on a VLSI fabrication
line. [7] demonstratechow to use the subsumption
architectureto control such robots. There is great
potentialfor using suchrobotsin ways previously
not consideredat all cost effective for robotic
applications.Imagine,for instancehaving a colony
of tiny robotsliving on your TV screen,absorbing
energyfrom the electronbeam,whoseonly purpose
in existenceis to keep the screenclean. There is
potential for a revolution in micro-mechanical
systemsof the sameorder and impact as the quiet
revolutions brought aboun daily life by the advent
of the micro-processor.

[20] outlines a series of technological steps
necessary to build such robots¢luding materials,a
new type of micro motor based on thin film
piezo-electric material, 8-D fabricationprocessand
some new types of integrated sensors. Critigahis
enterpriseis an easyway of controlling the robots,
giving them intelligent behaviorin unstructuredand
uncertain environments.

5. Measures of Success

Whenl give talks about the techniqgueswe have
used to build intelligent control systemsfor our
robots, the most commonquestionsl am asked,or
assertions | am told, are:

 “If I makesuch-and-sucla changeto your robot's
environment, | bet it would do the wrong thing.”

* “Aren't these systems almost impossible to debug?”

« “Surely this can'tbe scaledup to do X,” for some
value of X which has not been part of the talk.

In the next three subsectiond argue that these
guestionsare either easy to answeror, in a deep
sense, improper to ask.

5. 1. Puzzlitis

Since traditional Artificial Intelligence research has
concentratean isolatedmodulesof intelligence that
almost neverget groundedin the world, it has been
important to develop some criteria for successful
research. One of the most populdgasis generality.
This quickly leadsto a diseasel call puzzlitis. The
way to show generalityis to pick the most obscure
casewithin the domain and demonstratethat your
system can handle or solve it.

But in physically groundedsystemsl believethis
approach iounterproductiveThe puzzlesposedare
often very unlikely in practice,but to solve them
makes the systems much more complex. This reduces
the overall robustnes®f the system! We should be
driven by puzzleswhich can naturally arise in a
physically grounded context—this is what gives
strength to our physically grounded systems.

One additionalargumenton this topic is that for
most Al programs the creator gets to tell gregram
the facts in some sort of representation language. It is
assumed that the vision guis the white hatsdown
the corridor will one day deliver world modelsusing
these same representationsMany of the puzzlitis
failures of physically groundedsystemsstemfrom a
failure in perceptionasthe stakeshave beenraised.
StandardAl programshave not beenforced to face
these issues.

5.2. Debugging

In our experiencedebugging the subsumption
programsused to control our physically grounded
systems has ndieena greatsourceof frustrationor
difficulty. This is not dueto any particularly helpful
debuggingtools or any natural superiority of the
subsumption architecture.



Rather,we believeit is true becausahe world is
its own best model (as usual). When running a
physically grounded system in the real world, cae
see at a glance how it is interactingisltright before
your eyes. There are no layers of abstractionto
obfuscatethe dynamicsof the interactionsbetween

the system and the world. This is an elegant aspfect

physically grounded systems.

5.3. But It Can't Do X

Along with the statement "But it can't d@' there
is an implication, sometimes vocalized, and
sometimes not, that therefotteereare lots of things
that this approacks not goodfor, andso we should
resort to the symbol system hypothesis.

But this is a fallacious argument,even if only
implicit. We do not usually complainthat a medical
expertsystem,or an analogyprogram cannotclimb
real mountains. It is clear that their domain of
expertiseis somewhatmore limited, and that their
designerswere careful to pick a well circumscribed
domainin which to work. Likewise it is unfair to
claim that an elephanthas no intelligence worth
studying just because it does not play chess.

Peopleworking on physically groundedsystems
do, however, seem to be claiming to eventuatijve
the whole problem. E.g., paperssuch as this one,
arguethat this is an interestingapproachto pursue
for preciselythat reasonHow can we haveit both
ways?

Like the advocates of the symbol system
hypothesis,we believe that in principle we have
uncovered the fundamental foundatimhintelligence.
But just as thesymbol systempeopleare allowedto
work incrementallyin their goals, so should the
physicalgroundingpeoplebe allowed. Solutions to
all problemsarenot obvious now. We must spend
time, analyzing the needs of certain doméiom the
perspectiveof the physical groundinghypothesisto
discern what nevstructuresand abstractionsnust be
built in order to make forward progress.

6. Future Limits

As [30] pointsout, concerninghis symbol system
hypothesis:The hypothesisis clearly an empirical
one, to be judged true or false on the basis of
evidence. The samecan, of course,be said for the
physical grounding hypothesis.

Our current strategy is to test the limitatiaofsthe
physical grounding hypothesisby building robots
which aremore independenandcando more in the
world. We are tacklingasspectf humancompetence

in a different order than that chosen by people
working under the symbol system hypothesis,so
sometimesdt is hardto make comparisonsbetween
the relative successesA further part of our strategy
then, is to buildsystemsthat can be deployedin the
real world. At leasif our strategydoesnot convince
the arm chair philosophersur engineeringapproach
will have radically changed the world we live in.

6.1. Contrasts In Hope

Adherentsof both approachego intelligenceare
relying on somedegreeof hope that their approach
will eventually succeed. They have batbmonstrated
certain classes of success, but bothregortonly to
vague hopeswhen it comesto generalizability. It
turns out that the demonstrationsand generalization
issuesfall along different dimensionsfor the two
approaches.

* Traditional Al has tried to demonstragephisticated
reasoningin rather impoverished domains. The
hope is that the ideas used will generalizeotoust
behavior in more complex domains.

* Nouvelle Al triesto demonstratdess sophisticated
tasks operating robustly in noisy complex
domains. The hope is that the ideas used will
generalize to more sophisticated tasks.

Thus the two approaches appear somewhat
complementary. It is worth addressing the questibn
whether more power may be gotten by combining the
two approachesHowever,we will not pursuethat
question further here.

Both approachesely on some unanalyzedaspects
to gain their successes.

Traditional Al relies on the use of heuristicsto
control search.While much mathematicalanalysis
has beencarried out on this topic, the user of a
heuristic still relies on an expecteddistribution of
caseswithin the searchtree to get a "reasonable"
amountof pruning in order to make the problem
manageable.

Nouvelle Al relies on the emergenceof more
global behavior from the interaction of smaller
behavioralunits. As with heuristicsthere is no a
priori guarantee that this will always work..
However,careful designof the simple behaviorsand
their interactionscan often produce systems with
usefulandinterestingemergentproperties.The user
again is relying on expectations without hard proofs.

Can there be a theoretical analysis to decide whether
one organization for intelligence is better than



another? Perhaps, but | think we are so far afn@y
understandingthe correct way of formalizing the
dynamics of interaction with the environmehat no
such theoreticalresultswill be forthcomingin the
near term.

6.2. Specific Problems

Some of the specific problems which must be
tackledsoon, andsolved, by approacheso Al based
on the physical grounding hypothesis include

* how to combinemany (e.g. more than a dozen)
behaviorgeneratingmodulesin a way which lets
them be productive and cooperative

* how to handle multiple sources of perceptual
information when there really does setarbe a need
for fusion

* how to automate the building of interaction
interfacesbetweenbehavior generatingmodules, so
that larger (andhencemore competent)systemscan
be built

* how to automatethe constructionof individual
behaviorgeneratingmodules, or even to automate
their modification

The first two items have specific impact on
whetherthe approachcanscalein principle to larger
and more complextasks. The last two are concerned
with the issueof how to build such larger systems
even if they are in principle possible.

Thereis room for plenty of experimentationand
eventually, when we are mature enoutjiereis also
room for much theoretical development of the
approachego Artificial Intelligence basedon the
physical grounding hypothesis.
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