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Civil engineem: may be able to design more innovative 
and improved structures by borrowing from genetics 
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C ivil engineers are often very con- 
servative in how they pursue their 

profession-and for good reason: If 
their designs don't work, things can 
fall down and kill people (as the re- 
cent bridge collapse in Minnesota so 
clearly demonstrates). Following novel 
approaches increases the probability 
of making such disastrous mistakes. 
It can therefore be prudent to build 
on designs that are known to function 
well. But global society is changing 
rapidly, and new challenges often call 
for engineers to innovate while simul- 
taneously remaining vigilant about 
safety. Costs, competition, energy 
savings, climate change and security 
issues are several of the burgeoning 
concerns that new buildings must be 
designed to address. 

To create dramatically new kinds of 
structures, engineers can mine many 
different sources of inspiration, but the 
natural world offers perhaps the richest 
lode. Indeed, engineers have probably 
drawn ideas from nature for millen- 
nia: A fallen log may have inspired the 
first bridge; a cave entrance, the first 
archway. And as scientists gradually 
began to understand the mechanisms 
governing various biological processes, 
engineers of all stripes were able to ap- 
ply this knowledge to building complex 
devices. (The most famous example of 
such "biornimicry" may be Velcro fas- 
teners, the idea for which came from the 
observation of sticky burdock seeds.) 
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We hope to heighten civil engineers' 
appreciation for biology by suggesting 
that they go one step further, not only 
imitating natural shapes and f o m  but 
simulating nature's evolutionary and 
developmental processes to arrive at 
their designs. Below we describe some 
comvutational methods that we have 
developed to design the support struc- 
tures for buildings by imitating the ac- 
tion of genes and DNA. 

Evolving a Blueprint 
Living things adapt and advance in 
the natural world through natural 
selection, which acts on the genetic 
variation present in the population. In 
this way, nature can over time produce 
organisms that are optimized to meet 
the challenges of their environments. 
Simulated evolutionary processes may 
likewise provide pragmatic solutions 
to difficult problems. Such "genetic 
algorithms" were investigated in the 
1960s and have since been successfully 
used in a variety of spheres. 

The basic idea behind an evolu- 
tionary algorithm is that a computer 
program uses a large population of 
different inputs that each specify one 
way to perform some task-it could 
be anything from scheduling events 
to designing an airfoil. However, no 
effort is made to optimize these inputs 
at the beginning; the computer usu- 
ally generates them randomly. The 
program transforms these inputs into 
a set of corresponding outputs, which 
it evaluates based on some predeter- 
mined criteria. Most often in the first 
round these outputs perform the task 
poorly, but the program can take the 
inputs that give the best results and 
combine them in some fashion to cre- 
ate a second generation. With these 
hybrid inputs, the computer then cre- 
ates a new set of outputs, which it once 

a third generation of inputs. The pro- 
gram repeats this process many times 
until it comes up with a satisfactory 
output. In this way, the process emu- 
lates "survival of the fittest," in that 
only those individuals that perform 
best go on to have "offspring." 

In engineering practitioners have tra- 
ditionally used evolutionary techniques 
only to make incremental improve- 
ments to their handiwork. But recent- 
ly, some more powerful evolutionary 
systems have emerged. With these 
schemes, computer-simulated evolu- 
tion doesn't just hone existing designs; 
rather, it hammers out wholly new and 
innovative concepts. Examples include 
novel designs of electric circuits, robots 
and manv others. Around the turn of 
the mi l l e~um,  a group led by one of 
us (Arciszewski) in the Volgenau School 
of Information Technology and Engi- 
neering at George Mason University 
developed such a system, called Inven- 
tor. It utilizes evolutionary algorithms 
to identify optimal configurations for 
the steel structures in tall buildings. Al- 
though the highly schematic designs 
lnventor produces are usually too ru- 
dimentary to possibly be used for the 
construction of a real building, they are 
extremely useful in stimulating new 
and creative thinking about how to put - 

structures together. 
The engineering designs Inventor 

works with are fully specified by a col- 
lection of "genes." Individually, each 
gene determines a speaf~c structural ele- 
ment. Genes in four separate sections of 
a building's "genome" correspond to 
four different kinds of elements: brac- 
ing~, beams, c o l m  and support foot- 
ings. Each gene has a numeric value that 
encodes the m e  of structural element 
to be used. ~ i i e x a m ~ l e ,  if the value of 
a gene describing a bracing is 0, nothing 
is to be put in that position; the value of 
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Figure 1. Modem-day architects and engineers can gain much insight and inspiration by studying living things. This building, the Swiss Re 
Tower in London, resembles a microorganism called a glass sponge. By looking even deeper into biology, at the level of genes and DNA, civil 
engineers may be able to develop a completely new approach to their work. Using so-called genetic algorithms, they may be able to imitate the 
biological processes of genetic crossover, mutation and evolution in computer simulations to create optimized designs. 
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determined number) and maintains this 

1 Bracings Columns 1 
wind gravity loads 

Figure 2. To simulate the internal struchue of a building, the authors' genetic algorithm f i t  
produces a random "genome" containing the numerals 1 through 6 (top). Different sections 
bf the genome encod;bracings (pink), be-m (purple), columns (yellowjand supports @en), 
with the numbers specifying the type of element to be used (left). The computer program al- 
lows as many parameters as are needed to describe each of the segments across a given floor 
and each of the stories in the finished building. The leftmost position in any one section of 
the genome corresponds to the bottom left of the building, with the remaining sequence 
describing other structural units, left to right and bottom to top (right). After the program 
translates a genome sequence to a structure in this way, it can test how well the model build- 
ing holds up to standard wind and gravity loads Cpray arrows). 

an X-bracing; and so forth. Thus there is 
a one-to-one mapping of the genes to the 
components to be used in the building. 

Inventor generates a random set of 
genomes (which are just sequences of 
numbers) and from them forms an ini- 
tial population of candidate designs, 
called "individuals" to keep with the 
biological analogy. Alternatively, the 
user can specify a set of designs to make 

up the initial population. It is normally 
better to allow the computer to start 
with a random set, however, because 
otherwise, there may not be adequate 
variation in the starting population, and 
the program will end up merely polish- 
ing some established design rather than 
striking out boldly to create something 
entirely new. In most cases, the program 
uses a population of genomes (of a pre- 

number through suckesive generations. 
To assess the individuals, lnventor trans- 
lates the genes into structural elements 
to form a virtual building (or rather, a 
virtual steel skeleton for a virtual build- 
ing). lnventor can then calculate the in- 
ternal forces and stresses in the stru- 
from wind and the weight of contents or 
occupants that the equivalent real struc- 
ture would experience using another 
program called SODA (for Structural 
Optimization Design and Analysis), a 
commercial system for evaluating steel 
structures, which we integrated with 
Inventor. SODA checks the feasibility of 
each design by testing whether it sat- 
isfies all requirements regarding the 
strength, stability and usability specified 
by the relevant building codes. Inventor 
then calculates a "fitness" value for each 
design based on whether it passes the 
SODA test and on the total weight of all 
the elements (a good approximation of 
the cost). Low-weight designs receive 
high fitness marks) and high-weight de- 
signs (or ones that don't satisfy SODA'S 
tests) receive low ones. 

After the program runs through all 
genomes in the initial population and 
assigns each of their corresponding de- 
signs a fitness score, the selection of pairs 
of "parents" begins. All individuals can 
reproduce (some multiple times), but the 
chances of their doing so are highest for 
those with the greatest fitness values. 

lnventw copies both parents' genomes 
and then swaps all the genes that lie b e  
tween two randomly-chosen points. In 
this way, it f o m  two "child genomes, 
which share some traits with both par- 
ents. The program then further alters the 
children with "point mutations." That is, 
it makes random changes to the value 
of a few genes. The computer repeats 
this process until it generates as many 
offspring as there were parents. 

Because the software allows fitter 
individuals to reproduce more often, 
on average the offspring encode better 
structures than did their parents. If we 
let the computer repeat this process 
for hundreds or thousands of genera- 
tions, we end up with designs that are 
vastly better than the ones we started 
with. Thus this simulated evolution is 
able to generate novel designs as well 
as gradually refine them. The degree 
of improvement, however, tends to 
lessen with each generation. So after 
a while, with this diminishing rate of 
return) there is little point allowing the 
simulated evolution to continue. 
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: Bringing Up Buildings 
We investigated the capabilities of Inven- 
tor and were pleased to see that it could 
produce interesting designs that were 

: at least as good as conventional ones in 
terms of strudural integrity and weight. 
However, the better configurations were 
oddly irregular, with seemingly hap- 
hazard arrangements of elements. We 
thought we might be able to improve 
on the aesthetics, and perhaps even the 
performance, by mimicking not only ge- 
netics, but an additional feature of living 
things: the processes of development. 

Development in biology is the emer- 
gence of organized structures from an 
initially very simple group of cells. The 
power and aeativity of such processes 
can be harnessed to find solutions to 
complex engineering problems. How 
can we emulate development in our 
models? Easy: Rather than having a di- 
red mapping between a gene and each 
element, we start with a genome that 
represents an arbitrary recipe for as- 
sembling the strudure. We then use our 
same genetic algorithm to improve the 
recipe over many generations. 

The recipe we've devised has two 
parts: a design "embryo," which de- 
scribes the elements of the first story of 
the building, and a design rule, which 
determines the arrangement of the next 
floor based on the one below. The de- 
sign embryo corresponds to an undif- 
ferentiated group of cells in a nascent 
organism, whereas the design rule 
simulates the developmental processes 
encoded by these cells' DNA. The de- 
sign rule is like a so-called cellular au- 
tomaton, a computational model for the 
evolution of some entity on a regular 
grid of cells (often this is nothing more 
complicated than a two-dimensional 
pattern drawn on an otherwise feature- 
less background grid), one that is com- 
pletely defined by its iterative rule and 
by its initial configuration. 

To keep things simple, here we con- 
sider just the wind bracings in a tall 
building. In addition, we allow only two 
possibilities for each bracing position (or 
"d3: an X bracing or no bracing, repre- 
sented by values of 1 and 0, respectively. 
For illustrative purposes, our building 
is just four bracing bays wide, which al- 
lows us to speafy the embryo with just 
four numbers, such as 1,O, 0, 0, which 
correspond to (from left to right) X brac- 
ing, no bracing, no bracing, no bracing. 

The design rule we have adopted 
decides whether or not to put a bracing 
in a given spot by examining the cell 

parent selection and cloning 

recombination and mutation 

Figure 3. As the computer program tests an entire generation of building genomes, it assigns each 
a fitness score. These scores are used to select pairs of genomes for breeding the next generation. 
Once two genomes are &wen, they are copied, or "cloned" (tup). The program then does some- 
thing similar to the genetic mixing that takes place, for example, between paired ~ m o 9 o m e s  that 
experience crossover during meiosis (bot tak The computer switches the section of genes between 
two crossover points (md lines) on the first pareds genome with those on the second, a phenom- 
enon biologists call recombination. The program then simulates mutation by giving a few random 
genes new values (green squafi?s) so as to increase the variation between generations fur the^ 
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design embryo design rule 

To create a whole structure, the pro- 
gram works as follows: For the first 
floor, it simply puts X braces in the 
cells that corresvond to the 1s in the 
design embryo.'~or the second floor, 
the program looks at each three-cell 
local neighborhood in the first floor 
and refers to the desirm rule to deter- 
mine whether there &odd be a brace 
above. This process repeats until it cre- 
ates a complete set of wind bracings 
for all floors in the building. Then the 
software analyzes the structure using 
the same engineering criteria as before. 
That is, it judges the building based on 
both its strength and weight. 

Using a developmental scheme pro- 
vides a more comDact revresentation of 
the s t r u c ~ ~ ~ ~ ~  than hoes &one-to-one 
mapping. For example, a direct map- 
ping of a wind bracing subsystem that 
is 10 stories tall with four bracine slots " 
per story would require 40 attributes 
(or genes), whereas the developmental 
representation uses only 12 (four for the 
design embryo and eight for the design 
rule). Compactness is a desirable prop 
erty because real engineering stmdures 
typically have hundreds or even thou- 
&ds of attributes. 

Another advantage of these sorts of 
developmental processes is that they 
frequently produce unusual results. 
In particular, cellular automata are 
known to exhibit self-organizing be- 
havior-that is, on its own, complexity 
just emerges. Indeed, our experiments 
confirmed this tendency and revealed 

Figure 4. Rather than specifying the elements of a building independent1 y, a genome can determine 
the configuration of structural elements by emulating the process of development in biology. Here 
the program starts with a design "embryo," which represents just the first story. The genome also 
contains a design rule, which defines how the embryo "grows" the next story of the building. The 
process is then repeated from the second to the third story, and so on until the building reaches a 
predetermined height In this simple example, there are only two types of genes, a 0 and a 1, which 
repment, respectively, either no bracing or an X bracing. The design embryo (here, the binary num- 
ber 1000) is translated into its corresponding shuctue 0( bracing, no bracing, no bracing, no brac- 
in@. Each element and its neighbor to the left and right form a three-element local neighborhood 
To form local neighborhoods for the elements at each end, the embryo is conceptually duplicated 
to the left and right of itself, as indicated by light-colored boxes (upper left). The design rule then 
defines how each of the eight possible local neighborhoods should be translated into the elements 
of the next-higher story (boffom right). For example, the first element of the design embryo is a 1, 
specifying an X bracing. The local neighborhood for this element contains no bracing at the left, an 
X bracing in the middle and no bracing at the right. The relevant part of the design rule dictates that 
the resulting first element in the second story should be an X bracing (wd bracket and mmu). 

directly below and to the left and right 
of that location. If the cell below is on 
an end of the row, the value from the 
cell at the other end serves to fill the 
missing-neighbor slot. Thus the rule 
always applies to three cells in a row, 
which we call a local neighborhood. 

With two bracing types (an X bracing 
or no bracing) and three cells, there are 

506 American Scientist, Volume 95 

eight possible combinations for the lo- 
cal neighborhoods, corresponding to the 
eight binary numbers between 000 and 
111. Our design rule is simply a key that 
tells the program whether there should 
be a bracing in the position above, based 
on the configuration of the local neigh- 
borhood below. Thus it requires one bit 
(0 or 1) for each of the eight possibilities. 

intriguing and often qhite surprising 
combinations of structural elements. 

Piecing It Together 
Engineers equipped with even very 
powerful computing tools cannot ex- 
haustively evaluate all possible pat- 
terns. They need a way of focusing their 
searches for novel arrangements that 
potentially correspond to high-quality 
designs. One way to do so can be found 
by again looking to nature, which has 
used the combination of development 
and evolution to produce organisms 
that have enormous complexity and are 
capable of surviving in a changing en- 
vironment. With this biological inspira- 
tion, our group implemented Emergent 
Designer, a computer program that al- 
lows us to simulate structures that can 
be developed from a design embryo, as 
described above, and that can also be 
evolved through crossovers and muta- 
tions, as we did earlier with Inventor. 
The new program, like the old one, al- 



lows the entire genome to evolve. That 
is, the program modifies both the de- 
sign embryo and the design rule over 
many generations. 

Whereas the designs produced by 
Inventor's evolutionary algorithms 
showed no obvious patterns, those 
Emergent Designer created exhibited 
patterns that are more a-eative, appear- 
ing as if they were forrned by a human 
mind. Some reflected a mixture of ran- 
dom localized patterns embedded in a 
larger, more regular geometry. 

Clearly the creations of Inventor and 
Emergent Designer were very different 
in nature. But which were better? To 
answer that question, we made multi- 
ple rn of each type and performed a 
statistical analysis of the results. Such a 
procedure avoided the possibility that 
a "lucky run" of one program or the 
other might skew the comparison. Our 
conclusion was that, although both 
approaches work, Emergent Designer's 
evolutionary-developmental algorithm 
performs better in terms of producing 
the lightest configurations. 

The use of Emergent Designer may 
thus help with a crucial balance that 
the designer of any tall building must 
strike: resistance to sway versus weight. 
In a traditional building any reduction 
of wind-induced sway (a measure of a 
structure's stiffness) normally requires 
signhcant increase in the weight. One 
innovative method to keep weight down 
is the use of macro-diagmals,-external 
cross-bra* that span large areas of 
a building, such as those that were built 
into the John Hancock Center in Chi- 
cago in the late 1960s and employed as 
recently as several years ago in the Bank 
of China Tower in Hong Kong. Engi- 
neers have long reqpzed that macro- 
diagonals rediskhute internal forces in a 
way that reduces both sway and weight. 
Sowewerepldtofhdthatmacm- 
diagonals spontaneously emerged in 
our experiments with an evolutionary- 
developmentaltal algorithm. Some designs 
showed structural patterns very similar 
to ones that the late Fazlw Khan, one of 
the most a-eative designers of tall build- 
ings' had arrived at (such as the scheme 
he used in the John Hancock Center). 
This resembaance shows the creative 
promise for~-W&nsp&d computational 
approaclrrw-&g. 

, . .. --. - 

fip~ha&D2@~ 
Modem-deg&#&ation advances at 
an ever-- pace, creating ever 
more d i f f i d  challenges, especially 

rule 105 rule 23 rule 1 

565,385 pounds 

Figure 5. Sone design rules and embryos produce better struchws than others. The computer 
judges the resulk by their overall weight and by how far actual buildings with such skeIetons 
would sway under standard weight and wind load$. l l ~ e s e  examples of rigid frames with brac- 
ing~ show the raulk of three different design rules. The left and middle deigns are ~latively 
good, with lower weights and less sway. Although the building on the right does not appear to 
be overly unstable, it has significantly higher amounts of both weight and sway. In the authors' 
simulated breeding processf structures such as th3s one would gradually "die out" 

Figure 6. To reduce both the weight and the degrees of sway of a building, architects some- 
times employ elements called macro-diagonals, external cross-bracing5 that span large areas 
of a structure. These elements were incorporated into the John Hancock Tower in Chicago 
in fhe late 19608 (Ief} and in the last few years in the Bank of China Tower in Hong Kong 
drniddfe), The authors' program Emergent Designer has spontaneously created, over numer- 
ous generations, several optimized designs that show similar macro-diagonal patterns in the 
resalting structures (sight). 
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Figure 7. The buildings generated by the Inventor computer program (which uses only evo- 
lutionary mechanisms such as recombination and mutation) show no obvious patterns (left). 
Those produced by Emergent Designer (which simulates both evolution and development- 
design embryos and design rules) show more apparent creativity, in some cases containing a 
mixture of random, local patterns embedded in a larger, more reguIar geometry (right). 

for engineers. We hope to convince 
our professional colleagues to look for 
ideas outside of engineering and to 
keep in mind that nature has always 
been one of the most fruitful sources of 
such insight. 

Of course, a human designer must 
make the final decisions and actu- 
ally create the structure. This person, 
however, must be well prepared for 
the challenge and have state-of-the-art 
tools at his or her disposal. The pat- 
terns created by simulation programs 
such as ours are valuable because thev 
may provide engineers with ideas for 
novel configurations and shapes, ones 
that a person would never have ar- 
rived at from the application of sys- 
tematic reasoning. Although these 
structural patterns may not always 
be feasible to build, they can illustrate 
new ways of approachkg a problem. 
In this sense, computer algorithms 
that produce previously unknown pat- 
terns are helpful to creative engineers 
by providing them with inspiration, 
whether or not the specific designs are 
translated directly into beams, trusses 
and columns. 

The software we have developed is 
currently limited in scope and com- 
plexity. It deals with highly idealized 
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structures and lacks any consideration 
of the countless details that go into 
the design of a real building. But like 
the virtual populations subjected to 
our genetic algorithms, we expect that 
these programs themselves will con- 
tinue to evolve. They will, we hope, 
be infused with beneficial traits from 
other areas of engineering, computer 
science and biology, and over time 
they will surely be subjected to natural 
selection. So we are excited to see what 
the next generation of genetic algo- 
rithms for building design will be able 
to accomplish. 
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