
Breeding Better Buildings

Civil engineem: may be able to design more innovative
and improved structures by borrowing from genetics

Rafal Kicinger and Tomasz Arciszewski

C ivil engineers are often very con-
servative in how they pursue their

profession-and for good reason: If
their designs don't work, things can
fall down and kill people (as the re-
cent bridge collapse in Minnesota so
clearly demonstrates). Following novel
approaches increases the probability
of making such disastrous mistakes.
It can therefore be prudent to build
on designs that are known to function
well. But global society is changing
rapidly, and new challenges often call
for engineers to innovate while simul-
taneously remaining vigilant about
safety. Costs, competition, energy
savings, climate change and security
issues are several of the burgeoning
concerns that new buildings must be
designed to address.

To create dramatically new kinds of
structures, engineers can mine many
different sources of inspiration, but the
natural world offers perhaps the richest
lode. Indeed, engineers have probably
drawn ideas from nature for millen-
nia: A fallen log may have inspired the
first bridge; a cave entrance, the first
archway. And as scientists gradually
began to understand the mechanisms
governing various biological processes,
engineers of all stripes were able to ap-
ply this knowledge to building complex
devices. (The most famous example of
such "biornimicry" may be Velcro fas-
teners, the idea for which came from the
observation of sticky burdock seeds.)

Rafal Kicinger is senior analyst at Metron Avia-
tion in Virginia. In 2005 he received his Ph.D.
from George Mason University, where he was
formerly a research assistant professor. Tomasz Ar-
ciszewski is a professor in the department of civil,
environmental and infrastructure engineering at
George Mason University. He earned his doctorate
from Warsaw University of Technology in Poland.
Address for Kicinger: Metron Aviation, Inc., 131
Elden Street Suite 200, Herndon, VA 20170. Inter-

We hope to heighten civil engineers'
appreciation for biology by suggesting
that they go one step further, not only
imitating natural shapes and f o m but
simulating nature's evolutionary and
developmental processes to arrive at
their designs. Below we describe some
comvutational methods that we have
developed to design the support struc-
tures for buildings by imitating the ac-
tion of genes and DNA.

Evolving a Blueprint
Living things adapt and advance in
the natural world through natural
selection, which acts on the genetic
variation present in the population. In
this way, nature can over time produce
organisms that are optimized to meet
the challenges of their environments.
Simulated evolutionary processes may
likewise provide pragmatic solutions
to difficult problems. Such "genetic
algorithms" were investigated in the
1960s and have since been successfully
used in a variety of spheres.

The basic idea behind an evolu-
tionary algorithm is that a computer
program uses a large population of
different inputs that each specify one
way to perform some task-it could
be anything from scheduling events
to designing an airfoil. However, no
effort is made to optimize these inputs
at the beginning; the computer usu-
ally generates them randomly. The
program transforms these inputs into
a set of corresponding outputs, which
it evaluates based on some predeter-
mined criteria. Most often in the first
round these outputs perform the task
poorly, but the program can take the
inputs that give the best results and
combine them in some fashion to cre-
ate a second generation. With these
hybrid inputs, the computer then cre-
ates a new set of outputs, which it once

a third generation of inputs. The pro-
gram repeats this process many times
until it comes up with a satisfactory
output. In this way, the process emu-
lates "survival of the fittest," in that
only those individuals that perform
best go on to have "offspring."

In engineering practitioners have tra-
ditionally used evolutionary techniques
only to make incremental improve-
ments to their handiwork. But recent-
ly, some more powerful evolutionary
systems have emerged. With these
schemes, computer-simulated evolu-
tion doesn't just hone existing designs;
rather, it hammers out wholly new and
innovative concepts. Examples include
novel designs of electric circuits, robots
and manv others. Around the turn of
the mi l l e~um, a group led by one of
us (Arciszewski) in the Volgenau School
of Information Technology and Engi-
neering at George Mason University
developed such a system, called Inven-
tor. It utilizes evolutionary algorithms
to identify optimal configurations for
the steel structures in tall buildings. Al-
though the highly schematic designs
lnventor produces are usually too ru-
dimentary to possibly be used for the
construction of a real building, they are
extremely useful in stimulating new
and creative thinking about how to put -

structures together.
The engineering designs Inventor

works with are fully specified by a col-
lection of "genes." Individually, each
gene determines a speaf~c structural ele-
ment. Genes in four separate sections of
a building's "genome" correspond to
four different kinds of elements: brac-
ing~, beams, c o l m and support foot-
ings. Each gene has a numeric value that
encodes the m e of structural element
to be used. ~ i i e x a m ~ l e , if the value of
a gene describing a bracing is 0, nothing
is to be put in that position; the value of

net: kicingdrnetronaviation.com more evaluates so that it can generate 1 indicates a &ago& bracing; 6 calls for

502 American Scientist, Volume 95

Figure 1. Modem-day architects and engineers can gain much insight and inspiration by studying living things. This building, the Swiss Re
Tower in London, resembles a microorganism called a glass sponge. By looking even deeper into biology, at the level of genes and DNA, civil
engineers may be able to develop a completely new approach to their work. Using so-called genetic algorithms, they may be able to imitate the
biological processes of genetic crossover, mutation and evolution in computer simulations to create optimized designs.

2007 November-December 503

determined number) and maintains this

1 Bracings Columns 1
wind gravity loads

Figure 2. To simulate the internal struchue of a building, the authors' genetic algorithm f i t
produces a random "genome" containing the numerals 1 through 6 (top). Different sections
bf the genome encod;bracings (pink), be-m (purple), columns (yellowjand supports @en),
with the numbers specifying the type of element to be used (left). The computer program al-
lows as many parameters as are needed to describe each of the segments across a given floor
and each of the stories in the finished building. The leftmost position in any one section of
the genome corresponds to the bottom left of the building, with the remaining sequence
describing other structural units, left to right and bottom to top (right). After the program
translates a genome sequence to a structure in this way, it can test how well the model build-
ing holds up to standard wind and gravity loads Cpray arrows).

an X-bracing; and so forth. Thus there is
a one-to-one mapping of the genes to the
components to be used in the building.

Inventor generates a random set of
genomes (which are just sequences of
numbers) and from them forms an ini-
tial population of candidate designs,
called "individuals" to keep with the
biological analogy. Alternatively, the
user can specify a set of designs to make

up the initial population. It is normally
better to allow the computer to start
with a random set, however, because
otherwise, there may not be adequate
variation in the starting population, and
the program will end up merely polish-
ing some established design rather than
striking out boldly to create something
entirely new. In most cases, the program
uses a population of genomes (of a pre-

number through suckesive generations.
To assess the individuals, lnventor trans-
lates the genes into structural elements
to form a virtual building (or rather, a
virtual steel skeleton for a virtual build-
ing). lnventor can then calculate the in-
ternal forces and stresses in the stru-
from wind and the weight of contents or
occupants that the equivalent real struc-
ture would experience using another
program called SODA (for Structural
Optimization Design and Analysis), a
commercial system for evaluating steel
structures, which we integrated with
Inventor. SODA checks the feasibility of
each design by testing whether it sat-
isfies all requirements regarding the
strength, stability and usability specified
by the relevant building codes. Inventor
then calculates a "fitness" value for each
design based on whether it passes the
SODA test and on the total weight of all
the elements (a good approximation of
the cost). Low-weight designs receive
high fitness marks) and high-weight de-
signs (or ones that don't satisfy SODA'S
tests) receive low ones.

After the program runs through all
genomes in the initial population and
assigns each of their corresponding de-
signs a fitness score, the selection of pairs
of "parents" begins. All individuals can
reproduce (some multiple times), but the
chances of their doing so are highest for
those with the greatest fitness values.

lnventw copies both parents' genomes
and then swaps all the genes that lie b e
tween two randomly-chosen points. In
this way, it f o m two "child genomes,
which share some traits with both par-
ents. The program then further alters the
children with "point mutations." That is,
it makes random changes to the value
of a few genes. The computer repeats
this process until it generates as many
offspring as there were parents.

Because the software allows fitter
individuals to reproduce more often,
on average the offspring encode better
structures than did their parents. If we
let the computer repeat this process
for hundreds or thousands of genera-
tions, we end up with designs that are
vastly better than the ones we started
with. Thus this simulated evolution is
able to generate novel designs as well
as gradually refine them. The degree
of improvement, however, tends to
lessen with each generation. So after
a while, with this diminishing rate of
return) there is little point allowing the
simulated evolution to continue.

504 American Scientist, Volume 95

: Bringing Up Buildings
We investigated the capabilities of Inven-
tor and were pleased to see that it could
produce interesting designs that were

: at least as good as conventional ones in
terms of strudural integrity and weight.
However, the better configurations were
oddly irregular, with seemingly hap-
hazard arrangements of elements. We
thought we might be able to improve
on the aesthetics, and perhaps even the
performance, by mimicking not only ge-
netics, but an additional feature of living
things: the processes of development.

Development in biology is the emer-
gence of organized structures from an
initially very simple group of cells. The
power and aeativity of such processes
can be harnessed to find solutions to
complex engineering problems. How
can we emulate development in our
models? Easy: Rather than having a di-
red mapping between a gene and each
element, we start with a genome that
represents an arbitrary recipe for as-
sembling the strudure. We then use our
same genetic algorithm to improve the
recipe over many generations.

The recipe we've devised has two
parts: a design "embryo," which de-
scribes the elements of the first story of
the building, and a design rule, which
determines the arrangement of the next
floor based on the one below. The de-
sign embryo corresponds to an undif-
ferentiated group of cells in a nascent
organism, whereas the design rule
simulates the developmental processes
encoded by these cells' DNA. The de-
sign rule is like a so-called cellular au-
tomaton, a computational model for the
evolution of some entity on a regular
grid of cells (often this is nothing more
complicated than a two-dimensional
pattern drawn on an otherwise feature-
less background grid), one that is com-
pletely defined by its iterative rule and
by its initial configuration.

To keep things simple, here we con-
sider just the wind bracings in a tall
building. In addition, we allow only two
possibilities for each bracing position (or
"d3: an X bracing or no bracing, repre-
sented by values of 1 and 0, respectively.
For illustrative purposes, our building
is just four bracing bays wide, which al-
lows us to speafy the embryo with just
four numbers, such as 1,O, 0, 0, which
correspond to (from left to right) X brac-
ing, no bracing, no bracing, no bracing.

The design rule we have adopted
decides whether or not to put a bracing
in a given spot by examining the cell

parent selection and cloning

recombination and mutation

Figure 3. As the computer program tests an entire generation of building genomes, it assigns each
a fitness score. These scores are used to select pairs of genomes for breeding the next generation.
Once two genomes are &wen, they are copied, or "cloned" (tup). The program then does some-
thing similar to the genetic mixing that takes place, for example, between paired ~ m o 9 o m e s that
experience crossover during meiosis (bot tak The computer switches the section of genes between
two crossover points (md lines) on the first pareds genome with those on the second, a phenom-
enon biologists call recombination. The program then simulates mutation by giving a few random
genes new values (green squafi?s) so as to increase the variation between generations fur the^

2007 November-December 505

design embryo design rule

To create a whole structure, the pro-
gram works as follows: For the first
floor, it simply puts X braces in the
cells that corresvond to the 1s in the
design embryo.'~or the second floor,
the program looks at each three-cell
local neighborhood in the first floor
and refers to the desirm rule to deter-
mine whether there &odd be a brace
above. This process repeats until it cre-
ates a complete set of wind bracings
for all floors in the building. Then the
software analyzes the structure using
the same engineering criteria as before.
That is, it judges the building based on
both its strength and weight.

Using a developmental scheme pro-
vides a more comDact revresentation of
the s t r u c ~ ~ ~ ~ ~ than hoes &one-to-one
mapping. For example, a direct map-
ping of a wind bracing subsystem that
is 10 stories tall with four bracine slots "
per story would require 40 attributes
(or genes), whereas the developmental
representation uses only 12 (four for the
design embryo and eight for the design
rule). Compactness is a desirable prop
erty because real engineering stmdures
typically have hundreds or even thou-
&ds of attributes.

Another advantage of these sorts of
developmental processes is that they
frequently produce unusual results.
In particular, cellular automata are
known to exhibit self-organizing be-
havior-that is, on its own, complexity
just emerges. Indeed, our experiments
confirmed this tendency and revealed

Figure 4. Rather than specifying the elements of a building independent1 y, a genome can determine
the configuration of structural elements by emulating the process of development in biology. Here
the program starts with a design "embryo," which represents just the first story. The genome also
contains a design rule, which defines how the embryo "grows" the next story of the building. The
process is then repeated from the second to the third story, and so on until the building reaches a
predetermined height In this simple example, there are only two types of genes, a 0 and a 1, which
repment, respectively, either no bracing or an X bracing. The design embryo (here, the binary num-
ber 1000) is translated into its corresponding shuctue 0(bracing, no bracing, no bracing, no brac-
in@. Each element and its neighbor to the left and right form a three-element local neighborhood
To form local neighborhoods for the elements at each end, the embryo is conceptually duplicated
to the left and right of itself, as indicated by light-colored boxes (upper left). The design rule then
defines how each of the eight possible local neighborhoods should be translated into the elements
of the next-higher story (boffom right). For example, the first element of the design embryo is a 1,
specifying an X bracing. The local neighborhood for this element contains no bracing at the left, an
X bracing in the middle and no bracing at the right. The relevant part of the design rule dictates that
the resulting first element in the second story should be an X bracing (wd bracket and mmu).

directly below and to the left and right
of that location. If the cell below is on
an end of the row, the value from the
cell at the other end serves to fill the
missing-neighbor slot. Thus the rule
always applies to three cells in a row,
which we call a local neighborhood.

With two bracing types (an X bracing
or no bracing) and three cells, there are

506 American Scientist, Volume 95

eight possible combinations for the lo-
cal neighborhoods, corresponding to the
eight binary numbers between 000 and
111. Our design rule is simply a key that
tells the program whether there should
be a bracing in the position above, based
on the configuration of the local neigh-
borhood below. Thus it requires one bit
(0 or 1) for each of the eight possibilities.

intriguing and often qhite surprising
combinations of structural elements.

Piecing It Together
Engineers equipped with even very
powerful computing tools cannot ex-
haustively evaluate all possible pat-
terns. They need a way of focusing their
searches for novel arrangements that
potentially correspond to high-quality
designs. One way to do so can be found
by again looking to nature, which has
used the combination of development
and evolution to produce organisms
that have enormous complexity and are
capable of surviving in a changing en-
vironment. With this biological inspira-
tion, our group implemented Emergent
Designer, a computer program that al-
lows us to simulate structures that can
be developed from a design embryo, as
described above, and that can also be
evolved through crossovers and muta-
tions, as we did earlier with Inventor.
The new program, like the old one, al-

lows the entire genome to evolve. That
is, the program modifies both the de-
sign embryo and the design rule over
many generations.

Whereas the designs produced by
Inventor's evolutionary algorithms
showed no obvious patterns, those
Emergent Designer created exhibited
patterns that are more a-eative, appear-
ing as if they were forrned by a human
mind. Some reflected a mixture of ran-
dom localized patterns embedded in a
larger, more regular geometry.

Clearly the creations of Inventor and
Emergent Designer were very different
in nature. But which were better? To
answer that question, we made multi-
ple rn of each type and performed a
statistical analysis of the results. Such a
procedure avoided the possibility that
a "lucky run" of one program or the
other might skew the comparison. Our
conclusion was that, although both
approaches work, Emergent Designer's
evolutionary-developmental algorithm
performs better in terms of producing
the lightest configurations.

The use of Emergent Designer may
thus help with a crucial balance that
the designer of any tall building must
strike: resistance to sway versus weight.
In a traditional building any reduction
of wind-induced sway (a measure of a
structure's stiffness) normally requires
signhcant increase in the weight. One
innovative method to keep weight down
is the use of macro-diagmals,-external
cross-bra* that span large areas of
a building, such as those that were built
into the John Hancock Center in Chi-
cago in the late 1960s and employed as
recently as several years ago in the Bank
of China Tower in Hong Kong. Engi-
neers have long reqpzed that macro-
diagonals rediskhute internal forces in a
way that reduces both sway and weight.
Sowewerepldtofhdthatmacm-
diagonals spontaneously emerged in
our experiments with an evolutionary-
developmentaltal algorithm. Some designs
showed structural patterns very similar
to ones that the late Fazlw Khan, one of
the most a-eative designers of tall build-
ings' had arrived at (such as the scheme
he used in the John Hancock Center).
This resembaance shows the creative
promise for~-W&nsp&d computational
approaclrrw-&g.

, . .. --. -

fip~ha&D2@~
Modem-deg&#&ation advances at
an ever-- pace, creating ever
more d i f f i d challenges, especially

rule 105 rule 23 rule 1

565,385 pounds

Figure 5. Sone design rules and embryos produce better struchws than others. The computer
judges the resulk by their overall weight and by how far actual buildings with such skeIetons
would sway under standard weight and wind load$. l l ~ e s e examples of rigid frames with brac-
ing~ show the raulk of three different design rules. The left and middle deigns are ~latively
good, with lower weights and less sway. Although the building on the right does not appear to
be overly unstable, it has significantly higher amounts of both weight and sway. In the authors'
simulated breeding processf structures such as th3s one would gradually "die out"

Figure 6. To reduce both the weight and the degrees of sway of a building, architects some-
times employ elements called macro-diagonals, external cross-bracing5 that span large areas
of a structure. These elements were incorporated into the John Hancock Tower in Chicago
in fhe late 19608 (Ief} and in the last few years in the Bank of China Tower in Hong Kong
drniddfe), The authors' program Emergent Designer has spontaneously created, over numer-
ous generations, several optimized designs that show similar macro-diagonal patterns in the
resalting structures (sight).

2007 November-December 507

Inventor I Emergent Designer

I

Figure 7. The buildings generated by the Inventor computer program (which uses only evo-
lutionary mechanisms such as recombination and mutation) show no obvious patterns (left).
Those produced by Emergent Designer (which simulates both evolution and development-
design embryos and design rules) show more apparent creativity, in some cases containing a
mixture of random, local patterns embedded in a larger, more reguIar geometry (right).

for engineers. We hope to convince
our professional colleagues to look for
ideas outside of engineering and to
keep in mind that nature has always
been one of the most fruitful sources of
such insight.

Of course, a human designer must
make the final decisions and actu-
ally create the structure. This person,
however, must be well prepared for
the challenge and have state-of-the-art
tools at his or her disposal. The pat-
terns created by simulation programs
such as ours are valuable because thev
may provide engineers with ideas for
novel configurations and shapes, ones
that a person would never have ar-
rived at from the application of sys-
tematic reasoning. Although these
structural patterns may not always
be feasible to build, they can illustrate
new ways of approachkg a problem.
In this sense, computer algorithms
that produce previously unknown pat-
terns are helpful to creative engineers
by providing them with inspiration,
whether or not the specific designs are
translated directly into beams, trusses
and columns.

The software we have developed is
currently limited in scope and com-
plexity. It deals with highly idealized

508 American Scientist, Volume 95

structures and lacks any consideration
of the countless details that go into
the design of a real building. But like
the virtual populations subjected to
our genetic algorithms, we expect that
these programs themselves will con-
tinue to evolve. They will, we hope,
be infused with beneficial traits from
other areas of engineering, computer
science and biology, and over time
they will surely be subjected to natural
selection. So we are excited to see what
the next generation of genetic algo-
rithms for building design will be able
to accomplish.

Acknowledgments
The authors wish to thank Kenneth De-
Jong, a professor of computer science at
George Mason University and Krzysztof
Murawski, a professor of computer sci-
ence at the Military University of Tech-
nology in Warsaw, for contributions to
the design and implementation of soft-
ware in our reported research.

References
Arciszewski, T., and J. Cornell. 2006. Bio-inspi-

ration: Learning creative design principia.
In Intelligent Computing in Engineering and
Architecture, ed. I . F. C. Smith. Berlin/Hei-
deberg: Springer.

Arciszewski, T., and R. Kicinger. 2005. Struc-
tural design inspired by nature. In Inno-
vation in Civil and Structural Engineering
Computing, ed. B. H. V. Topping. Stirling,
Scotland: Saxe-Coburg Publications.

Bentley, P. J., and D. W. Corne. 2002. Creative
Evolutionary Systems. San Francisco: Mor-
gan Kaufmann Publishers.

Burks, A. W. 1970. Essays on Cellular Automata.
Urbana, Ill.: University of Illinois Press.

Coello, C. A., M. Rudnick and A. D. Chris-
tiansen. 1994. Using genetic algorithms for
optimal design of trusses. Sixth International
Conferme on Tools with Art9cial Intelligence
(ICTAI '94), New Orleans, 88-94.

Fogel, L. J., A. J. Owens and M. J. Walsh 1966.
Artificial Intelligence Through Simulated Evo-
lution. Chichester, U.K.: John Wiley.

Goldberg, D. E. 2002. The Design of Innovation:
k n s from and for Competent Genetic Algo-
rithm. Boston: Kluwer Academic Publishers.

Goldbe= D. E., and M. Samtani. 1986. Engineer-
h g o~timization via genetic a ~ ~ o r i t h m ~ i n t h
Conference on Electronic Cumuutation. B i i e - "
ha&, ~ 1 . : University of ~ladama Press.

Grierson, D. E., and S. Khajehpour. 2002.
Method for conceptual design applied to of-
fice buildings. journal of Computing in Civil
Engineering 16(2).

Holland, J. H. 1975. Adaptation in Natural and
Artfjicial Systems. Ann Arbor, Mich.: Univer-
sity of Michigan Press.

Kicinger, R., T. Arciszewski and K. A. De Jong.
2005. Emergent Designer: An integrated re-
search and design support tool based on
models of complex systems. International
Journal of Information Technology in Construc-
tion 10:329-347.

Kicinger, R., T. Arciszewski and K. A. De Jong.
2005. Evolutionary computation and struc-
tural design: A survey of the state of the art.
Computers & Structures 835524.

Koza, J. R. 1992. Genetic Programming: On the
Programming of Computers by Means ofNatu-
ral Selection. Cambridge, Mass.: MIT Press.

Kumar, S., and l? J. Bentley. 2W. On Groutth, Form
and Computers. London: Academic Press.

Murawski, K., T. Arciszewski and K. A. De
Jong. 2001. Evolutionary computation in
structural design. Engineering with Comput-
ers 16(3-4):275-286.

Parmee, I. C. 1998. Evolutionary computing for
conceptual and detailed design. In Genetic
Algorithms and Evolution Strategies in Engi-
neering and Computer Science: Recent Advanc-
es and industrial Applications, eds. D. Quagli-
arella, J. Periaux, C. Poloni and G. Winter.
Chichester, U.K.: John Wdey & Sons.

Wolfram, S. 1983. Statistical mechanics of cel-
lular automata. Revlezs of Modern Physics
55:601444.

Wolpert, L. 2002. Principles of Development.
New York: Oxford University Press.

For relevant Web links, consult this
issue of American Scientist Online:

