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368 Chapter 9. Hash Tables, Maps, and Skip Lists

9.1 Maps

key

value
Map

entry

Figure 9.1: A conceptual illustration of the map ADT. Keys (labels) are assigned to
values (folders) by a user. The resulting entries (labeled folders) are inserted into
the map (file cabinet). The keys can be used later to retrieve or remove values.

A map allows us to store elements so they can be located quickly using keys.
The motivation for such searches is that each element typically stores additional
useful information besides its search key, but the only way to get at that information
is to use the search key. Specifically, a map stores key-value pairs (k,v), which we
call entries, where k is the key and v is its corresponding value. In addition, the map
ADT requires that each key be unique, so the association of keys to values defines a
mapping. In order to achieve the highest level of generality, we allow both the keys
and the values stored in a map to be of any object type. (See Figure 9.1.) In a map
storing student records (such as the student’s name, address, and course grades),
the key might be the student’s ID number. In some applications, the key and the
value may be the same. For example, if we had a map storing prime numbers, we
could use each number itself as both a key and its value.

In either case, we use a key as a unique identifier that is assigned by an appli-
cation or user to an associated value object. Thus, a map is most appropriate in
situations where each key is to be viewed as a kind of unique index address for its
value, that is, an object that serves as a kind of location for that value. For exam-
ple, if we wish to store student records, we would probably want to use student ID
objects as keys (and disallow two students having the same student ID). In other
words, the key associated with an object can be viewed as an “address” for that
object. Indeed, maps are sometimes referred to as associative stores or associative
containers, because the key associated with an object determines its “location” in
the data structure.
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9.1. Maps 369

Entries and the Composition Pattern

As mentioned above, a map stores key-value pairs, called entries. An entry is actu-
ally an example of a more general object-oriented design pattern, the composition
pattern, which defines a single object that is composed of other objects. A pair is
the simplest composition, because it combines two objects into a single pair object.

To implement this concept, we define a class that stores two objects in its first
and second member variables, respectively, and provides functions to access and
update these variables. In Code Fragment 9.1, we present such an implementation
storing a single key-value pair. We define a class Entry, which is templated based
on the key and value types. In addition to a constructor, it provides member func-
tions that return references to the key and value. It also provides functions that
allow us to set the key and value members.

template <typename K, typename V>
class Entry { // a (key, value) pair
public: // public functions

Entry(const K& k = K(), const V& v = V()) // constructor
: key(k), value(v) { }

const K& key() const { return key; } // get key
const V& value() const { return value; } // get value
void setKey(const K& k) { key = k; } // set key
void setValue(const V& v) { value = v; } // set value

private: // private data
K key; // key
V value; // value
};

Code Fragment 9.1: A C++ class for an entry storing a key-value pair.

9.1.1 The Map ADT

In this section, we describe a map ADT. Recall that a map is a collection of key-
value entries, with each value associated with a distinct key. We assume that a map
provides a special pointer object, which permits us to reference entries of the map.
Such an object would normally be called a position. As we did in Chapter 6, in
order to be more consistent with the C++ Standard Template Library, we define a
somewhat more general object called an iterator, which can both reference entries
and navigate around the map. Given a map iterator p, the associated entry may be
accessed by dereferencing the iterator, namely as *p. The individual key and value
can be accessed using p->key() and p->value(), respectively.

In order to advance an iterator from its current position to the next, we overload
the increment operator. Thus, ++p advances the iterator p to the next entry of the
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370 Chapter 9. Hash Tables, Maps, and Skip Lists

map. We can enumerate all the entries of a map M by initializing p to M.begin()
and then repeatedly incrementing p as long as it is not equal to M.end().

In order to indicate that an object is not present in the map, we assume that
there exists a special sentinel iterator called end. By convention, this sentinel refers
to an imaginary element that lies just beyond the last element of the map.

The map ADT consists of the following:

size(): Return the number of entries in M.

empty(): Return true if M is empty and false otherwise.

find(k): If M contains an entry e = (k,v), with key equal to k, then
return an iterator p referring to this entry, and otherwise
return the special iterator end.

put(k,v): If M does not have an entry with key equal to k, then
add entry (k,v) to M, and otherwise, replace the value
field of this entry with v; return an iterator to the in-
serted/modified entry.

erase(k): Remove from M the entry with key equal to k; an error
condition occurs if M has no such entry.

erase(p): Remove from M the entry referenced by iterator p; an
error condition occurs if p points to the end sentinel.

begin(): Return an iterator to the first entry of M.

end(): Return an iterator to a position just beyond the end of M.

We have provided two means of removing entries, one given a key and the other
given an iterator. The key-based operation should be used only when it is known
that the key is present in the map. Otherwise, it is necessary to first check that the
key exists using the operation “p = M.find(k),” and if so, then apply the operation
M.erase(p). The iterator-based removal operation has the advantage that it does
not need to repeat the search for the key, and hence is more efficient.

The operation put, may either insert an entry or modify an existing entry. It is
designed explicitly in this way, since we require that the keys be unique. Later, in
Section 9.5, we consider a different data structure, which allows multiple instances
to have the same keys. Note that an iterator remains associated with an entry, even
if its value is changed.

Example 9.1: In the following, we show the effect of a series of operations on an
initially empty map storing entries with integer keys and single-character values.
In the column “Output,” we use the notation pi : [(k,v)] to mean that the operation
returns an iterator denoted by pi that refers to the entry (k,v). The entries of the
map are not listed in any particular order.



i

i

“main” — 2011/1/13 — 9:10 — page 371 — #393
i

i

i

i

i

i

9.1. Maps 371

Operation Output Map
empty() true ∅
put(5,A) p1 : [(5,A)] {(5,A)}
put(7,B) p2 : [(7,B)] {(5,A),(7,B)}
put(2,C) p3 : [(2,C)] {(5,A),(7,B),(2,C)}
put(2,E) p3 : [(2,E)] {(5,A),(7,B),(2,E)}
find(7) p2 : [(7,B)] {(5,A),(7,B),(2,E)}
find(4) end {(5,A),(7,B),(2,E)}
find(2) p3 : [(2,E)] {(5,A),(7,B),(2,E)}
size() 3 {(5,A),(7,B),(2,E)}
erase(5) – {(7,B),(2,E)}
erase(p3) – {(7,B)}
find(2) end {(7,B)}

9.1.2 A C++ Map Interface

Before discussing specific implementations of the map ADT, we first define a C++
interface for a map in Code Fragment 9.2. It is not a complete C++ class, just a
declaration of the public functions. The interface is templated by two types, the
key type K, and the value type V .

template <typename K, typename V>
class Map { // map interface
public:

class Entry; // a (key,value) pair
class Iterator; // an iterator (and position)

int size() const; // number of entries in the map
bool empty() const; // is the map empty?
Iterator find(const K& k) const; // find entry with key k
Iterator put(const K& k, const V& v); // insert/replace pair (k,v)
void erase(const K& k) // remove entry with key k

throw(NonexistentElement);
void erase(const Iterator& p); // erase entry at p
Iterator begin(); // iterator to first entry
Iterator end(); // iterator to end entry
};

Code Fragment 9.2: An informal C++ Map interface (not a complete class).

In addition to its member functions, the interface defines two types, Entry and
Iterator. These two classes provide the types for the entry and iterator objects,
respectively. Outside the class, these would be accessed with Map<K,V>::Entry
and Map<K,V>::Iterator, respectively.
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372 Chapter 9. Hash Tables, Maps, and Skip Lists

We have not presented an interface for the iterator object, but its definition is
similar to the STL iterator. It supports the operator “*”, which returns a reference
to the associated entry. The unary increment and decrement operators “++” and
“– –” move an iterator forward and backwards, respectively. Also, two iterators can
be compared for equality using “==”.

A more sophisticated implementation would have also provided for a third type,
namely a “const” iterator. Such an iterator provides a function for reading entries
without modifying them. (Recall Section 6.1.4.) We omit this type in order to keep
our interface relatively simple.

The remainder of the interface follows from our earlier descriptions of the map
operations. An error condition occurs if the function erase(k) is called with a key
k that is not in the map. This is signaled by throwing an exception of type Nonex-
istentElement. Its definition is similar to other exceptions that we have seen. (See
Code Fragment 5.2.)

9.1.3 The STL map Class

The C++ Standard Template Library (STL) provides an implementation of a map
simply called map. As with many of the other STL classes we have seen, the STL
map is an example of a container, and hence supports access by iterators.

In order to declare an object of type map, it is necessary to first include the
definition file called “map.” The map is part of the std namespace, and hence it is
necessary either to use “std::map” or to provide an appropriate “using” statement.

The STL map is templated with two arguments, the key type and the value type.
The declaration “map<K,V>” defines a map whose keys are of type K and whose
values are of type V. As with the other STL containers, an iterator type is provided
both for referencing individual entries and enumerating multiple entries. The map
iterator type is “map<K,E>::iterator.” The (k,v) entries are stored in a composite
object called pair. Given an iterator p, its associated key and value members can
be referenced using p->first and p->second, respectively. (These are equivalent to
p->key() and p->value() in our map ADT, but note that there are no parentheses
following first and second.)

As with other iterators we have seen, each map object M defines two special
iterators through the functions begin and end, where M.begin() yields an iterator
to the first element of the map, and M.end() yields an iterator to an imaginary
element just beyond the end of the map. A map iterator p is bidirectional, meaning
that we can move forwards and backwards through the map using the increment
and decrement operators, ++p and – –p, respectively.

The principal member functions of the STL map are given below. Let M be
declared to be an STL map, let k be a key object, and let v be a value object for the
class M. Let p be an iterator for M.
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size(): Return the number of elements in the map.

empty(): Return true if the map is empty and false otherwise.

find(k): Find the entry with key k and return an iterator to it; if no
such key exists return end.

operator[k]: Produce a reference to the value of key k; if no such key
exists, create a new entry for key k.

insert(pair(k,v)): Insert pair (k,v), returning an iterator to its position.

erase(k): Remove the element with key k.

erase(p): Remove the element referenced by iterator p.

begin(): Return an iterator to the beginning of the map.

end(): Return an iterator just past the end of the map.

Our map ADT is quite similar to the above functions. The insert function is a
bit different. In our ADT, it is given two arguments. In the STL map, the argument
is a composite object of type pair, whose first and second elements are the key and
value, respectively.

The STL map provides a very convenient way to search, insert, and modify
entries by overloading the subscript operator (“[ ]”). Given a map M, the assignment
“M[k] = v” inserts the pair (k,v) if k is not already present, or modifies the value
if it is. Thus, the subscript assignment behaves essentially the same as our ADT
function put(k,v). Reading the value of M[k] is equivalent to performing find(k)
and accessing the value part of the resulting iterator. An example of the use of the
STL map is shown in Code Fragment 9.3.

map<string, int> myMap; // a (string,int) map
map<string, int>::iterator p; // an iterator to the map
myMap.insert(pair<string, int>("Rob", 28)); // insert (“Rob”,28)
myMap["Joe"] = 38; // insert(“Joe”,38)
myMap["Joe"] = 50; // change to (“Joe”,50)
myMap["Sue"] = 75; // insert(“Sue”,75)
p = myMap.find("Joe"); // *p = (“Joe”,50)
myMap.erase(p); // remove (“Joe”,50)
myMap.erase("Sue"); // remove (“Sue”,75)
p = myMap.find("Joe");
if (p == myMap.end()) cout << "nonexistent\n"; // outputs: “nonexistent”
for (p = myMap.begin(); p != myMap.end(); ++p) { // print all entries

cout << "(" << p−>first << "," << p−>second << ")\n";
}

Code Fragment 9.3: Example of the usage of STL map.

As with the other STL containers we have seen, the STL does not check for
errors. It is up to the programmer to be sure that no illegal operations are performed.
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9.1.4 A Simple List-Based Map Implementation

A simple way of implementing a map is to store its n entries in a list L, imple-
mented as a doubly linked list. Performing the fundamental functions, find(k),
put(k,v), and erase(k), involves simple scans down L looking for an entry with
key k. Pseudo-code is presented in Code Fragments 9.4. We use the notation
[L.begin(),L.end()) to denote all the positions of list L, from L.begin() and up to,
but not including, L.end().

Algorithm find(k):
Input: A key k
Output: The position of the matching entry of L, or end if there is no key k in L

for each position p ∈ [L.begin(),L.end()) do
if p.key() = k then

return p
return end {there is no entry with key equal to k}

Algorithm put(k,v):
Input: A key-value pair (k,v)
Output: The position of the inserted/modified entry

for each position p ∈ [L.begin(),L.end()) do
if p.key() = k then
*p← (k,v)
return p {return the position of the modified entry}

p← L.insertBack((k,v))
n← n+ 1 {increment variable storing number of entries}
return p {return the position of the inserted entry}

Algorithm erase(k):
Input: A key k
Output: None

for each position p ∈ [L.begin(),L.end()) do
if p.key() = k then

L.erase(p)
n← n−1 {decrement variable storing number of entries}

Code Fragment 9.4: Algorithms for find, put, and erase for a map stored in a list L.

This list-based map implementation is simple, but it is only efficient for very
small maps. Every one of the fundamental functions takes O(n) time on a map
with n entries, because each function involves searching through the entire list in
the worst case. Thus, we would like something much faster.
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9.2 Hash Tables

The keys associated with values in a map are typically thought of as “addresses” for
those values. Examples of such applications include a compiler’s symbol table and
a registry of environment variables. Both of these structures consist of a collection
of symbolic names where each name serves as the “address” for properties about
a variable’s type and value. One of the most efficient ways to implement a map in
such circumstances is to use a hash table. Although, as we will see, the worst-case
running time of map operations in an n-entry hash table is O(n). A hash table can
usually perform these operations in O(1) expected time. In general, a hash table
consists of two major components, a bucket array and a hash function.

9.2.1 Bucket Arrays

A bucket array for a hash table is an array A of size N, where each cell of A is
thought of as a “bucket” (that is, a collection of key-value pairs) and the integer
N defines the capacity of the array. If the keys are integers well distributed in the
range [0,N − 1], this bucket array is all that is needed. An entry e with key k is
simply inserted into the bucket A[k]. (See Figure 9.2.)

Figure 9.2: A bucket array of size 11 for the entries (1,D), (3,C), (3,F), (3,Z), (6,A),
(6,C), and (7,Q).

If our keys are unique integers in the range [0,N− 1], then each bucket holds
at most one entry. Thus, searches, insertions, and removals in the bucket array take
O(1) time. This sounds like a great achievement, but it has two drawbacks. First,
the space used is proportional to N. Thus, if N is much larger than the number of
entries n actually present in the map, we have a waste of space. The second draw-
back is that keys are required to be integers in the range [0,N−1], which is often not
the case. Because of these two drawbacks, we use the bucket array in conjunction
with a “good” mapping from the keys to the integers in the range [0,N−1].
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9.2.2 Hash Functions

The second part of a hash table structure is a function, h, called a hash function,
that maps each key k in our map to an integer in the range [0,N − 1], where N is
the capacity of the bucket array for this table. Equipped with such a hash function,
h, we can apply the bucket array method to arbitrary keys. The main idea of this
approach is to use the hash function value, h(k), as an index into our bucket array,
A, instead of the key k (which is most likely inappropriate for use as a bucket array
index). That is, we store the entry (k,v) in the bucket A[h(k)].

Of course, if there are two or more keys with the same hash value, then two
different entries will be mapped to the same bucket in A. In this case, we say
that a collision has occurred. Clearly, if each bucket of A can store only a single
entry, then we cannot associate more than one entry with a single bucket, which
is a problem in the case of collisions. To be sure, there are ways of dealing with
collisions, which we discuss later, but the best strategy is to try to avoid them in
the first place. We say that a hash function is “good” if it maps the keys in our map
in such a way as to minimize collisions as much as possible. For practical reasons,
we also would like a hash function to be fast and easy to compute.

We view the evaluation of a hash function, h(k), as consisting of two actions—
mapping the key k to an integer, called the hash code, and mapping the hash code
to an integer within the range of indices ([0,N − 1]) of a bucket array, called the
compression function. (See Figure 9.3.)

Figure 9.3: The two parts of a hash function: hash code and compression function.

9.2.3 Hash Codes

The first action that a hash function performs is to take an arbitrary key k in our map
and assign it an integer value. The integer assigned to a key k is called the hash
code for k. This integer value need not be in the range [0,N−1], and may even be
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9.2. Hash Tables 377

negative, but we want the set of hash codes assigned to our keys to avoid collisions
as much as possible. If the hash codes of our keys cause collisions, then there is no
hope for our compression function to avoid them. In addition, to be consistent with
all of our keys, the hash code we use for a key k should be the same as the hash
code for any key that is equal to k.

Hash Codes in C++

The hash codes described below are based on the assumption that the number of
bits of each type is known. This information is provided in the standard include file
<limits>. This include file defines a templated class numeric limits. Given a base
type T (such as char, int, or float), the number of bits in a variable of type T is
given by “numeric limits<T>.digits.” Let us consider several common data types
and some example functions for assigning hash codes to objects of these types.

Converting to an Integer

To begin, we note that, for any data type X that is represented using at most as
many bits as our integer hash codes, we can simply take an integer interpretation of
its bits as a hash code for X . Thus, for the C++ fundamental types char, short, and
int, we can achieve a good hash code simply by casting this type to int.

On many machines, the type long has a bit representation that is twice as long
as type int. One possible hash code for a long object is to simply cast it down to
an integer and then apply the integer hash code. The problem is that such a hash
code ignores half of the information present in the original value. If many of the
keys in our map only differ in these bits, they will collide using this simple hash
code. A better hash code, which takes all the original bits into consideration, sums
an integer representation of the high-order bits with an integer representation of the
low-order bits.

Indeed, the approach of summing components can be extended to any object x
whose binary representation can be viewed as a k-tuple (x0,x1, . . . ,xk−1) of integers,
because we can then form a hash code for x as ∑k−1

i=0 xi. For example, given any
floating-point number, we can sum its mantissa and exponent as long integers, and
then apply a hash code for long integers to the result.

Polynomial Hash Codes

The summation hash code, described above, is not a good choice for character
strings or other variable-length objects that can be viewed as tuples of the form
(x0,x1, . . . ,xk−1), where the order of the xi’s is significant. For example, consider
a hash code for a character string s that sums the ASCII values of the characters
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in s. Unfortunately, this hash code produces lots of unwanted collisions for com-
mon groups of strings. In particular, "temp01" and "temp10" collide using this
function, as do "stop", "tops", "pots", and "spot". A better hash code takes
into consideration the positions of the xi’s. An alternative hash code, which does
exactly this, chooses a nonzero constant, a 6= 1, and uses

x0ak−1 + x1ak−2 + · · ·+ xk−2a+ xk−1

as a hash code value. Mathematically speaking, this is simply a polynomial in a that
takes the components (x0,x1, . . . ,xk−1) of an object x as its coefficients. This hash
code is therefore called a polynomial hash code. By Horner’s rule (see Exercise C-
4.16), this polynomial can be rewritten as

xk−1 + a(xk−2 + a(xk−3 + · · ·+ a(x2 + a(x1 + ax0)) · · ·)).

Intuitively, a polynomial hash code uses multiplication by the constant a as a
way of “making room” for each component in a tuple of values, while also preserv-
ing a characterization of the previous components. Of course, on a typical com-
puter, evaluating a polynomial is done using the finite bit representation for a hash
code; hence, the value periodically overflows the bits used for an integer. Since
we are more interested in a good spread of the object x with respect to other keys,
we simply ignore such overflows. Still, we should be mindful that such overflows
are occurring and choose the constant a so that it has some nonzero, low-order
bits, which serve to preserve some of the information content even if we are in an
overflow situation.

We have done some experimental studies that suggest that 33, 37, 39, and 41
are good choices for a when working with character strings that are English words.
In fact, in a list of over 50,000 English words formed as the union of the word lists
provided in two variants of Unix, we found that taking a to be 33, 37, 39, or 41
produced less than seven collisions in each case! Many implementations of string
hashing choose a polynomial hash function, using one of these constants for a, as
a default hash code. For the sake of speed, however, some implementations only
apply the polynomial hash function to a fraction of the characters in long strings.

Cyclic Shift Hash Codes

A variant of the polynomial hash code replaces multiplication by a with a cyclic
shift of a partial sum by a certain number of bits. Such a function, applied to
character strings in C++ could, for example, look like the following. We assume
a 32-bit integer word length, and we assume access to a function hashCode(x) for
integers. To achieve a 5-bit cyclic shift we form the “bitwise or” (see Section 1.2)
of a 5-bit left shift and a 27-bit right shift. As before, we use an unsigned integer
so that right shifts fill with zeros.
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int hashCode(const char* p, int len) { // hash a character array
unsigned int h = 0;
for (int i = 0; i < len; i++) {

h = (h << 5) | (h >> 27); // 5-bit cyclic shift
h += (unsigned int) p[i]; // add in next character
}
return hashCode(int(h));
}

As with the traditional polynomial hash code, using the cyclic-shift hash code re-
quires some fine-tuning. In this case, we must wisely choose the amount to shift by
for each new character.

Experimental Results

In Table 9.1, we show the results of some experiments run on a list of just over
25,000 English words, which compare the number of collisions for various shift
amounts.

Collisions Collisions
Shift Total Max Shift Total Max

0 23739 86 9 18 2
1 10517 21 10 277 3
2 2254 6 11 453 4
3 448 3 12 43 2
4 89 2 13 13 2
5 4 2 14 135 3
6 6 2 15 1082 6
7 14 2 16 8760 9
8 105 2

Table 9.1: Comparison of collision behavior for the cyclic shift variant of the poly-
nomial hash code as applied to a list of just over 25,000 English words. The “Total”
column records the total number of collisions and the “Max” column records the
maximum number of collisions for any one hash code. Note that, with a cyclic shift
of 0, this hash code reverts to the one that simply sums all the characters.

These and our previous experiments show that if we choose our constant a
or our shift value wisely, then either the polynomial hash code or its cyclic-shift
variant are suitable for any object that can be written as a tuple (x0,x1, . . . ,xk−1),
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where the order in tuples matters. In particular, note that using a shift of 5 or 6 is
particularly good for English words. Also, note how poorly a simple addition of
the values would be with no shifting (that is, for a shift of 0).

Hashing Floating-Point Quantities

On most machines, types int and float are both 32-bit quantities. Nonetheless, the
approach of casting a float variable to type int would not produce a good hash
function, since this would truncate the fractional part of the floating-point value.
For the purposes of hashing, we do not really care about the number’s value. It
is sufficient to treat the number as a sequence of bits. Assuming that a char is
stored as an 8-bit byte, we could interpret a 32-bit float as a four-element character
array, and a 64-bit double as an eight-element character array. C++ provides an
operation called a reinterpret cast, to cast between such unrelated types. This cast
treats quantities as a sequence of bits and makes no attempt to intelligently convert
the meaning of one quantity to another.

For example, we could design a hash function for a float by first reinterpreting
it as an array of characters and then applying the character-array hashCode function
defined above. We use the operator sizeof , which returns the number of bytes in a
type.

int hashCode(const float& x) { // hash a float
int len = sizeof(x);
const char* p = reinterpret cast<const char*>(&x);
return hashCode(p, len);
}

Reinterpret casts are generally not portable operations, since the result depends
on the particular machine’s encoding of types as a pattern of bits. In our case,
portability is not an issue since we are interested only in interpreting the floating
point value as a sequence of bits. The only property that we require is that float
variables with equal values must have the same bit sequence.

9.2.4 Compression Functions

The hash code for a key k is typically not suitable for immediate use with a bucket
array, because the range of possible hash codes for our keys typically exceeds the
range of legal indices of our bucket array A. That is, incorrectly using a hash code
as an index into our bucket array may result in an error condition, either because the
index is negative or it exceeds the capacity of A. Thus, once we have determined an
integer hash code for a key object k, there is still the issue of mapping that integer
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into the range [0,N − 1]. This compression step is the second action that a hash
function performs.

The Division Method

One simple compression function to use is

h(k) = |k| mod N,

which is called the division method. Additionally, if we take N to be a prime
number, then this hash function helps “spread out” the distribution of hashed values.
Indeed, if N is not prime, there is a higher likelihood that patterns in the distribution
of keys will be repeated in the distribution of hash codes, thereby causing collisions.
For example, if we hash the keys {200,205,210,215,220, . . . ,600} to a bucket
array of size 100 using the division method, then each hash code collides with
three others. But if this same set of keys is similarly hashed to a bucket array of
size 101, then there are no collisions. If a hash function is chosen well, it should
ensure that the probability of two different keys getting hashed to the same bucket
is 1/N. Choosing N to be a prime number is not always enough, however, because
if there is a repeated pattern of key values of the form iN + j for several different
i’s, then there are still collisions.

The MAD Method

A more sophisticated compression function, which helps eliminate repeated pat-
terns in a set of integer keys is the multiply add and divide (or “MAD”) method. In
using this method, we define the compression function as

h(k) = |ak + b| mod N,

where N is a prime number, and a and b are nonnegative integers randomly chosen
at the time the compression function is determined, so that a mod N 6= 0. This
compression function is chosen in order to eliminate repeated patterns in the set of
hash codes and to get us closer to having a “good” hash function, that is, one having
the probability that any two different keys collide is 1/N. This good behavior would
be the same as if these keys were “thrown” into A uniformly at random.

With a compression function such as this, that spreads n integers fairly evenly
in the range [0,N− 1], and a mapping of the keys in our map to integers, we have
an effective hash function. Together, such a hash function and a bucket array define
the key ingredients of the hash table implementation of the map ADT.

But before we can give the details of how to perform such operations as find,
insert, and erase, we must first resolve the issue of how we to handle collisions.
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9.2.5 Collision-Handling Schemes

The main idea of a hash table is to take a bucket array, A, and a hash function,
h, and use them to implement a map by storing each entry (k,v) in the “bucket”
A[h(k)]. This simple idea is challenged, however, when we have two distinct keys,
k1 and k2, such that h(k1) = h(k2). The existence of such collisions prevents us
from simply inserting a new entry (k,v) directly in the bucket A[h(k)]. Collisions
also complicate our procedure for performing the find(k), put(k,v), and erase(k)
operations.

Separate Chaining

A simple and efficient way for dealing with collisions is to have each bucket A[i]
store a small map, Mi, implemented using a list, as described in Section 9.1.4,
holding entries (k,v) such that h(k) = i. That is, each separate Mi chains together
the entries that hash to index i in a linked list. This collision-resolution rule is
known as separate chaining. Assuming that we initialize each bucket A[i] to be an
empty list-based map, we can easily use the separate-chaining rule to perform the
fundamental map operations as shown in Code Fragment 9.5.

Algorithm find(k):
Output: The position of the matching entry of the map, or end if there is no key

k in the map

return A[h(k)].find(k) {delegate the find(k) to the list-based map at A[h(k)]}
Algorithm put(k,v):

p← A[h(k)].put(k,v) {delegate the put to the list-based map at A[h(k)]}
n← n+ 1
return p

Algorithm erase(k):
Output: None

A[h(k)].erase(k) {delegate the erase to the list-based map at A[h(k)]}
n← n−1

Code Fragment 9.5: The fundamental functions of the map ADT, implemented with
a hash table that uses separate chaining to resolve collisions among its n entries.

For each fundamental map operation involving a key k, the separate-chaining
approach delegates the handling of this operation to the miniature list-based map
stored at A[h(k)]. So, put(k,v) scans this list looking for an entry with key equal
to k; if it finds one, it replaces its value with v, otherwise, it puts (k,v) at the end
of this list. Likewise, find(k) searches through this list until it reaches the end or
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finds an entry with key equal to k. And erase(k) performs a similar search but
additionally removes an entry after it is found. We can “get away” with this simple
list-based approach because the spreading properties of the hash function help keep
each bucket’s list small. Indeed, a good hash function tries to minimize collisions
as much as possible, which implies that most of our buckets are either empty or
store just a single entry. In Figure 9.4, we give an illustration of a hash table with
separate chaining.

Figure 9.4: A hash table of size 13, storing 10 entries with integer keys, with colli-
sions resolved by separate chaining. The compression function is h(k) = k mod 13.
For simplicity, we do not show the values associated with the keys.

Assuming we use a good hash function to index the n entries of our map in a
bucket array of capacity N, we expect each bucket to be of size n/N. This value,
called the load factor of the hash table (and denoted with λ), should be bounded
by a small constant, preferably below 1. Given a good hash function, the expected
running time of operations find, put, and erase in a map implemented with a hash
table that uses this function is O(⌈n/N⌉). Thus, we can implement these operations
to run in O(1) expected time provided n is O(N).

Open Addressing

The separate-chaining rule has many nice properties, such as allowing for simple
implementations of map operations, but it nevertheless has one slight disadvan-
tage. It requires the use of an auxiliary data structure—a list—to hold entries with
colliding keys. We can handle collisions in other ways besides using the separate-
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chaining rule, however. In particular, if space is at a premium (for example, if we
are writing a program for a small handheld device), then we can use the alternative
approach of always storing each entry directly in a bucket, at most one entry per
bucket. This approach saves space because no auxiliary structures are employed,
but it requires a bit more complexity to deal with collisions. There are several vari-
ants of this approach, collectively referred to as open-addressing schemes, which
we discuss next. Open addressing requires that the load factor is always at most 1
and that entries are stored directly in the cells of the bucket array itself.

Linear Probing and its Variants

A simple open-addressing method for collision handling is linear probing. In this
method, if we try to insert an entry (k,v) into a bucket A[i] that is already occupied
(where i = h(k)), then we try next at A[(i+ 1) mod N]. If A[(i+ 1) mod N] is also
occupied, then we try A[(i + 2) mod N], and so on, until we find an empty bucket
that can accept the new entry. Once this bucket is located, we simply insert the en-
try there. Of course, this collision-resolution strategy requires that we change the
implementation of the get(k,v) operation. In particular, to perform such a search,
followed by either a replacement or insertion, we must examine consecutive buck-
ets, starting from A[h(k)], until we either find an entry with key equal to k or we
find an empty bucket. (See Figure 9.5.) The name “linear probing” comes from the
fact that accessing a cell of the bucket array can be viewed as a “probe.”

Figure 9.5: An insertion into a hash table using linear probing to resolve collisions.
Here we use the compression function h(k) = k mod 11.

To implement erase(k), we might, at first, think we need to do a considerable
amount of shifting of entries to make it look as though the entry with key k was
never inserted, which would be very complicated. A typical way to get around this
difficulty is to replace a deleted entry with a special “available” marker object. With
this special marker possibly occupying buckets in our hash table, we modify our
search algorithm for erase(k) or find(k) so that the search for a key k skips over cells
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containing the available marker and continue probing until reaching the desired
entry or an empty bucket (or returning back to where we started). Additionally, our
algorithm for put(k,v) should remember an available cell encountered during the
search for k, since this is a valid place to put a new entry (k,v). Thus, linear probing
saves space, but it complicates removals.

Even with the use of the available marker object, linear probing suffers from an
additional disadvantage. It tends to cluster the entries of the map into contiguous
runs, which may even overlap (particularly if more than half of the cells in the hash
table are occupied). Such contiguous runs of occupied hash cells causes searches
to slow down considerably.

Quadratic Probing

Another open-addressing strategy, known as quadratic probing, involves iteratively
trying the buckets A[(i + f ( j)) mod N], for j = 0,1,2, . . ., where f ( j) = j2, until
finding an empty bucket. As with linear probing, the quadratic-probing strategy
complicates the removal operation, but it does avoid the kinds of clustering patterns
that occur with linear probing. Nevertheless, it creates its own kind of clustering,
called secondary clustering, where the set of filled array cells “bounces” around
the array in a fixed pattern. If N is not chosen as a prime, then the quadratic-probing
strategy may not find an empty bucket in A even if one exists. In fact, even if N is
prime, this strategy may not find an empty slot if the bucket array is at least half
full. We explore the cause of this type of clustering in an exercise (Exercise C-9.9).

Double Hashing

Another open-addressing strategy that does not cause clustering of the kind pro-
duced by linear probing or by quadratic probing is the double-hashing strategy. In
this approach, we choose a secondary hash function, h′, and if h maps some key k
to a bucket A[i], with i = h(k), that is already occupied, then we iteratively try the
buckets A[(i+ f ( j)) mod N] next, for j = 1,2,3, . . ., where f ( j) = j ·h′(k). In this
scheme, the secondary hash function is not allowed to evaluate to zero; a common
choice is h′(k) = q− (k mod q), for some prime number q < N. Also, N should be
a prime. Moreover, we should choose a secondary hash function that attempts to
minimize clustering as much as possible.

These open-addressing schemes save some space over the separate-chaining
method, but they are not necessarily faster. In experimental and theoretical anal-
yses, the chaining method is either competitive or faster than the other methods,
depending on the load factor of the bucket array. So, if memory space is not a ma-
jor issue, the collision-handling method of choice seems to be separate chaining.
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9.2.6 Load Factors and Rehashing

In all of the hash-table schemes described above, the load factor, λ = n/N, should
be kept below 1. Experiments and average-case analyses suggest that we should
maintain λ < 0.5 for the open-addressing schemes and we should maintain λ < 0.9
for separate chaining.

As we explore in Exercise C-9.9, some open-addressing schemes can start to
fail when λ ≥ 0.5. Although the details of the average-case analysis of hashing
are beyond the scope of this book, its probabilistic basis is quite intuitive. If our
hash function is good, then we expect the hash function values to be uniformly
distributed in the range [0,N− 1]. Thus, to store n items in our map, the expected
number of keys in a bucket would be ⌈n/N⌉ at most, which is O(1) if n is O(N).

With open addressing, as the load factor λ grows beyond 0.5 and starts ap-
proaching 1, clusters of items in the bucket array start to grow as well. These
clusters cause the probing strategies to “bounce around” the bucket array for a con-
siderable amount of time before they can finish. At the limit, when λ is close to
1, all map operations have linear expected running times, since, in this case, we
expect to encounter a linear number of occupied buckets before finding one of the
few remaining empty cells.

Rehashing into a New Table

Keeping the load factor below a certain threshold is vital for open-addressing schemes
and is also of concern to the separate-chaining method. If the load factor of a hash
table goes significantly above a specified threshold, then it is common to require
that the table be resized (to regain the specified load factor) and all the objects in-
serted into this new resized table. Indeed, if we let our hash table become full, some
implementations may crash. When rehashing to a new table, a good requirement
is having the new array’s size be at least double the previous size. Once we have
allocated this new bucket array, we must define a new hash function to go with it
(possibly computing new parameters, as in the MAD method). Given this new hash
function, we then reinsert every item from the old array into the new array using
this new hash function. This process is known as rehashing.

Even with periodic rehashing, a hash table is an efficient means of implement-
ing an unordered map. Indeed, if we always double the size of the table with each
rehashing operation, then we can amortize the cost of rehashing all the elements
in the table against the time used to insert them in the first place. The analysis
of this rehashing process is similar to that used to analyze vector growth. (See
Section 6.1.3.) Each rehashing generally scatters the elements throughout the new
bucket array. Thus, a hash table is a practical and effective implementation for an
unordered map.
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9.2.7 A C++ Hash Table Implementation

In Code Fragments 9.6 through 9.13, we present a C++ implementation of the map
ADT, called HashMap, which is based on hashing with separate chaining. The
class is templated with the key type K, the value type V , and the hash comparator
type H . The hash comparator defines a function, hash(k), which maps a key into an
integer index. As with less-than comparators (see Section 8.1.2), a hash comparator
class does this by overriding the “()” operator.

We present the general class structure in Code Fragment 9.6. The definition
begins with the public types required by the map interface, the entry type Entry,
and the iterator type Iterator. This is followed by the declarations of the public
member functions. We then give the private member data, which consists of the
number of entries n, the hash comparator function hash, and the bucket array B.
We have omitted two sections, which are filled in later. The first is a declaration
of some utility types and functions and the second is the declaration of the map’s
iterator class.

template <typename K, typename V, typename H>
class HashMap {
public: // public types

typedef Entry<const K,V> Entry; // a (key,value) pair
class Iterator; // a iterator/position

public: // public functions
HashMap(int capacity = 100); // constructor
int size() const; // number of entries
bool empty() const; // is the map empty?
Iterator find(const K& k); // find entry with key k
Iterator put(const K& k, const V& v); // insert/replace (k,v)
void erase(const K& k); // remove entry with key k
void erase(const Iterator& p); // erase entry at p
Iterator begin(); // iterator to first entry
Iterator end(); // iterator to end entry

protected: // protected types
typedef std::list<Entry> Bucket; // a bucket of entries
typedef std::vector<Bucket> BktArray; // a bucket array
// . . .insert HashMap utilities here

private:
int n; // number of entries
H hash; // the hash comparator
BktArray B; // bucket array

public: // public types
// . . .insert Iterator class declaration here
};

Code Fragment 9.6: The class HashMap, which implements the map ADT.
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We have defined the key part of Entry to be “const K,” rather than “K.” This
prevents a user from inadvertently modifying a key. The class makes use of two
major data types. The first is an STL list of entries, called a Bucket, each storing a
single bucket. The other is an STL vector of buckets, called BktArray.

Before describing the main elements of the class, we introduce a few local (pro-
tected) utilities in Code Fragment 9.7. We declare three helper functions, finder,
inserter, and eraser, which, respectively, handle the low-level details of finding, in-
serting, and removing entries. For convenience, we define two iterator types, one
called BItor for iterating over the buckets of the bucket array, and one called EItor,
for iterating over the entries of a bucket. We also give two utility functions, nextBkt
and endOfBkt, which are used to iterate through the entries of a single bucket.

Iterator finder(const K& k); // find utility
Iterator inserter(const Iterator& p, const Entry& e); // insert utility
void eraser(const Iterator& p); // remove utility
typedef typename BktArray::iterator BItor; // bucket iterator
typedef typename Bucket::iterator EItor; // entry iterator
static void nextEntry(Iterator& p) // bucket’s next entry
{ ++p.ent; }

static bool endOfBkt(const Iterator& p) // end of bucket?
{ return p.ent == p.bkt−>end(); }

Code Fragment 9.7: Declarations of utilities to be inserted into HashMap.

We present the class Iterator in Code Fragment 9.8. An iterator needs to store
enough information about the position of an entry to allow it to navigate. The mem-
bers ent, bkt, and ba store, respectively, an iterator to the current entry, the bucket
containing this entry, and the bucket array containing the bucket. The first two are
of types EItor and BItor, respectively, and the third is a pointer. Our implementa-
tion is minimal. In addition to a constructor, we provide operators for dereferencing
(“*”), testing equality (“==”), and advancing through the map (“++”).

class Iterator { // an iterator (& position)
private:

EItor ent; // which entry
BItor bkt; // which bucket
const BktArray* ba; // which bucket array

public:
Iterator(const BktArray& a, const BItor& b, const EItor& q = EItor())

: ent(q), bkt(b), ba(&a) { }
Entry& operator*() const; // get entry
bool operator==(const Iterator& p) const; // are iterators equal?
Iterator& operator++(); // advance to next entry
friend class HashMap; // give HashMap access
};

Code Fragment 9.8: Declaration of the Iterator class for HashMap.
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Iterator Dereferencing and Condensed Function Definitions

Let us now present the definitions of the class member functions for our map’s
Iterator class. In Code Fragment 9.9, we present an implementation of the deref-
erencing operator. The function body itself is very simple and involves return-
ing a reference to the corresponding entry. However, the rules of C++ syntax de-
mand an extraordinary number of template qualifiers. First, we need to qualify the
function itself as being a member of HashMap’s iterator class, which we do with
the qualifier HashMap<K,V,H>::Iterator. Second, we need to qualify the func-
tion’s return type as being HashMap’s entry class, which we do with the qualifier
HashMap<K,V,H>::Entry. On top of this, we must recall from Section 8.2.1 that,
since we are using a template parameter to define a type, we need to include the
keyword typename.

template <typename K, typename V, typename H> // get entry
typename HashMap<K,V,H>::Entry&
HashMap<K,V,H>::Iterator::operator*() const
{ return *ent; }

Code Fragment 9.9: The Iterator dereferencing operator (complete form).

In order to make our function definitions more readable, we adopt a notational
convention in some of our future code fragments of specifying the scoping qualifier
for the code fragment in italic blue font. We omit this qualifier from the code frag-
ment, and we also omit the template statement and the typename specifications.
Adding these back is a simple mechanical exercise. Although this is not valid C++

Caution syntax, it conveys the important content in a much more succinct manner. An ex-
ample of the same dereferencing operator is shown in Code Fragment 9.10.

/* HashMap〈K,V,H〉 :: */ // get entry
Entry& Iterator::operator*() const
{ return *ent; }

Code Fragment 9.10: The same dereferencing operator of Code Fragment 9.9 in
condensed form.

Definitions of the Other Iterator Member Functions

Let us next consider the Iterator operator “operator == (p),” which tests whether
this iterator is equal to iterator p. We first check that they belong to the same bucket
array and the same bucket within this array. If not, the iterators certainly differ.
Otherwise, we check whether they both refer to the end of the bucket array. (Since
we have established that the buckets are equal, it suffices to test just one of them.)
If so, they are both equal to HashMap::end(). If not, we check whether they both
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refer to the same entry of the bucket. This is implemented in Code Fragment 9.11.

/* HashMap〈K,V,H〉 :: */ // are iterators equal?
bool Iterator::operator==(const Iterator& p) const {

if (ba != p.ba | | bkt != p.bkt) return false; // ba or bkt differ?
else if (bkt == ba−>end()) return true; // both at the end?
else return (ent == p.ent); // else use entry to decide
}
Code Fragment 9.11: The Iterator operators for equality testing and increment.

Next, let us consider the Iterator increment operator, shown in Code Frag-
ment 9.12. The objective is to advance the iterator to the next valid entry. Typ-
ically, this involves advancing to the next entry within the current bucket. But, if
we fall off the end of this bucket, we must advance to the first element of the next
nonempty bucket. To do this, we first advance to the next bucket entry by applying
the STL increment operator on the entry iterator ent. We then use the utility func-
tion endOfBkt to determine whether we have arrived at the end of this bucket. If
so, we search for the next nonempty bucket. To do this, we repeatedly increment
bkt and check whether we have fallen off the end of the bucket array. If so, this is
the end of the map and we are done. Otherwise, we check whether the bucket is
empty. When we first find a nonempty bucket, we move ent to the first entry of this
bucket.

/* HashMap〈K,V,H〉 :: */ // advance to next entry
Iterator& Iterator::operator++() {

++ent; // next entry in bucket
if (endOfBkt(*this)) { // at end of bucket?

++bkt; // go to next bucket
while (bkt != ba−>end() && bkt−>empty()) // find nonempty bucket

++bkt;
if (bkt == ba−>end()) return *this; // end of bucket array?
ent = bkt−>begin(); // first nonempty entry
}
return *this; // return self
}
Code Fragment 9.12: The Iterator operators for equality testing and increment.

Definitions of the HashMap Member Functions

Before discussing the main functions of class HashMap, let us present the functions
begin and end. These are given in Code Fragment 9.13. The function end is the
simpler of the two. It involves generating an iterator whose bucket component is the
end of the bucket array. We do not bother to specify a value for the entry part of the
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iterator. The reason is that our iterator equality test (shown in Code Fragment 9.11)
does not bother to compare the entry iterator values if the bucket iterators are at the
end of the bucket array.

/* HashMap〈K,V,H〉 :: */ // iterator to end
Iterator end()
{ return Iterator(B, B.end()); }

/* HashMap〈K,V,H〉 :: */ // iterator to front
Iterator begin() {

if (empty()) return end(); // emtpty - return end
BItor bkt = B.begin(); // else search for an entry
while (bkt−>empty()) ++bkt; // find nonempty bucket
return Iterator(B, bkt, bkt−>begin()); // return first of bucket
}

Code Fragment 9.13: The functions of HashMap returning iterators to the beginning
and end of the map.

The function begin, shown in the bottom part of Code Fragment 9.13, is more
complex, since we need to search for a nonempty bucket. We first check whether
the map is empty. If so, we simply return the map’s end. Otherwise, starting at the
beginning of the bucket array, we search for a nonempty bucket. (We know we will
succeed in finding one.) Once we find it, we return an iterator that points to the first
entry of this bucket.

Now that we have presented the iterator-related functions, we are ready to
present the functions for class HashMap. We begin with the constructor and sim-
ple container functions. The constructor is given the bucket array’s capacity and
creates a vector of this size. The member n tracks the number of entries. These are
given in Code Fragment 9.14.

/* HashMap〈K,V,H〉 :: */ // constructor
HashMap(int capacity) : n(0), B(capacity) { }

/* HashMap〈K,V,H〉 :: */ // number of entries
int size() const { return n; }

/* HashMap〈K,V,H〉 :: */ // is the map empty?
bool empty() const { return size() == 0; }

Code Fragment 9.14: The constructor and standard functions for HashMap.

Next, we present the functions related to finding keys in the top part of Code
Fragment 9.15. Most of the work is done by the utility function finder. It first
applies the hash function associated with the given hash comparator to the key k.
It converts this to an index into the bucket array by taking the hash value modulo
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the array size. To obtain an iterator to the desired bucket, we add this index to
the beginning iterator of the bucket array. (We are using the fact mentioned in
Section 6.1.4 that STL vectors provide a random access iterator, so addition is
allowed.) Let bkt be an iterator to this bucket. We create an iterator p, which is
initialized to the beginning of this bucket. We then perform a search for an entry
whose key matches k or until we fall off the end of the list. In either case, we return
the final value of the iterator as the search result.

/* HashMap〈K,V,H〉 :: */ // find utility
Iterator finder(const K& k) {

int i = hash(k) % B.size(); // get hash index i
BItor bkt = B.begin() + i; // the ith bucket
Iterator p(B, bkt, bkt−>begin()); // start of ith bucket
while (!endOfBkt(p) && (*p).key() != k) // search for k

nextEntry(p);
return p; // return final position
}

/* HashMap〈K,V,H〉 :: */ // find key
Iterator find(const K& k) {

Iterator p = finder(k); // look for k
if (endOfBkt(p)) // didn’t find it?

return end(); // return end iterator
else

return p; // return its position
}

Code Fragment 9.15: The functions of HashMap related to finding keys.

The public member function find is shown in the bottom part of Code Frag-
ment 9.15. It invokes the finder utility. If the entry component is at the end of the
bucket, we know that the key was not found, so we return the special iterator end()
to the end of the map. (In this way, all unsuccessful searches produce the same
result.) This is shown in Code Fragment 9.15.

The insertion utility, inserter, is shown in the top part of Code Fragment 9.16.
This utility is given the desired position at which to insert the new entry. It invokes
the STL list insert function to perform the insertion. It also increments the count of
the number of entries in the map and returns an iterator to the inserted position.

The public insert function, put, first applies finder to determine whether any
entry with this key exists in the map. We first determine whether it was not found
by testing whether the iterator as fallen off the end of the bucket. If so, we insert
it at the end of this bucket. Otherwise, we modify the existing value of this entry.
Later, in Section 9.5.2, we present an alternative approach, which inserts a new
entry, even when a duplicate key is discovered.
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/* HashMap〈K,V,H〉 :: */ // insert utility

Iterator inserter(const Iterator& p, const Entry& e) {
EItor ins = p.bkt−>insert(p.ent, e); // insert before p
n++; // one more entry
return Iterator(B, p.bkt, ins); // return this position
}

/* HashMap〈K,V,H〉 :: */ // insert/replace (v,k)
Iterator put(const K& k, const V& v) {

Iterator p = finder(k); // search for k
if (endOfBkt(p)) { // k not found?

return inserter(p, Entry(k, v)); // insert at end of bucket
}
else { // found it?

p.ent−>setValue(v); // replace value with v
return p; // return this position
}
}

Code Fragment 9.16: The functions of HashMap for inserting and replacing entries.

The removal functions are also quite straightforward and are given in Code
Fragment 9.17. The main utility is the function eraser, which removes an entry at
a given position by invoking the STL list erase function. It also decrements the
number of entries. The iterator-based removal function simply invokes eraser. The
key-based removal function first applies the finder utility to look up the key. If it is
not found, that is, if the returned position is the end of the bucket, an exception is
thrown. Otherwise, the eraser utility is invoked to remove the entry.

/* HashMap〈K,V,H〉 :: */ // remove utility
void eraser(const Iterator& p) {

p.bkt−>erase(p.ent); // remove entry from bucket
n−−; // one fewer entry
}

/* HashMap〈K,V,H〉 :: */ // remove entry at p
void erase(const Iterator& p)
{ eraser(p); }

/* HashMap〈K,V,H〉 :: */ // remove entry with key k
void erase(const K& k) {

Iterator p = finder(k); // find k
if (endOfBkt(p)) // not found?

throw NonexistentElement("Erase of nonexistent"); // . . .error
eraser(p); // remove it
}

Code Fragment 9.17: The functions of HashMap involved with removing entries.
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9.3 Ordered Maps

In some applications, simply looking up values based on associated keys is not
enough. We often also want to keep the entries in a map sorted according to some
total order and be able to look up keys and values based on this ordering. That is,
in an ordered map, we want to perform the usual map operations, but also maintain
an order relation for the keys in our map and use this order in some of the map
functions. We can use a comparator to provide the order relation among keys,
allowing us to define an ordered map relative to this comparator, which can be
provided to the ordered map as an argument to its constructor.

When the entries of a map are stored in order, we can provide efficient im-
plementations for additional functions in the map ADT. As with the standard map
ADT, in order to indicate that an object is not present, the class provides a spe-
cial sentinel iterator called end. The ordered map includes all the functions of the
standard map ADT plus the following:

firstEntry(k): Return an iterator to the entry with smallest key value; if
the map is empty, it returns end.

lastEntry(k): Return an iterator to the entry with largest key value; if
the map is empty, it returns end.

ceilingEntry(k): Return an iterator to the entry with the least key value
greater than or equal to k; if there is no such entry, it
returns end.

floorEntry(k): Return an iterator to the entry with the greatest key value
less than or equal to k; if there is no such entry, it returns
end.

lowerEntry(k): Return an iterator to the entry with the greatest key value
less than k; if there is no such entry, it returns end.

higherEntry(k): Return an iterator to the entry with the least key value
greater than k; if there is no such entry, it returns end.

Implementing an Ordered Map

The ordered nature of the operations given above for the ordered map ADT makes
the use of an unordered list or a hash table inappropriate, because neither of these
data structures maintains any ordering information for the keys in the map. Indeed,
hash tables achieve their best search speeds when their keys are distributed almost
at random. Thus, we should consider an alternative implementation when dealing
with ordered maps. We discuss one such implementation next, and we discuss other
implementations in Section 9.4 and Chapter 10.
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9.3.1 Ordered Search Tables and Binary Search

If the keys in a map come from a total order, we can store the map’s entries in a
vector L in increasing order of the keys. (See Figure 9.6.) We specify that L is
a vector, rather than a node list, because the ordering of the keys in the vector L
allows for faster searching than would be possible had L been, say, implemented
with a linked list. Admittedly, a hash table has good expected running time for
searching. But its worst-case time for searching is no better than a linked list, and
in some applications, such as in real-time processing, we need to guarantee a worst-
case searching bound. The fast algorithm for searching in an ordered vector, which
we discuss in this subsection, has a good worst-case guarantee on its running time.
So it might be preferred over a hash table in certain applications. We refer to this
ordered vector implementation of a map as an ordered search table.

Figure 9.6: Realization of a map by means of an ordered search table. We show
only the keys for this map in order to highlight their ordering.

The space requirement of an ordered search table is O(n), which is similar to
the list-based map implementation (Section 9.1.4), assuming we grow and shrink
the array supporting the vector L to keep the size of this array proportional to the
number of entries in L. Unlike an unordered list, however, performing updates in
a search table takes a considerable amount of time. In particular, performing the
insert(k,v) operation in a search table requires O(n) time in the worst case, since we
need to shift up all the entries in the vector with key greater than k to make room for
the new entry (k,v). A similar observation applies to the operation erase(k), since
it takes O(n) time in the worst case to shift all the entries in the vector with key
greater than k to close the “hole” left by the removed entry (or entries). The search
table implementation is therefore inferior to the linked list implementation in terms
of the worst-case running times of the map update operations. Nevertheless, we
can perform the find function much faster in a search table.

Binary Search

A significant advantage of using an ordered vector L to implement a map with n
entries is that accessing an element of L by its index takes O(1) time. We recall,
from Section 6.1, that the index of an element in a vector is the number of elements
preceding it. Thus, the first element in L has index 0, and the last element has
index n− 1. In this subsection, we give a classic algorithm, binary search, to
locate an entry in an ordered search table. We show how this method can be used
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to quickly perform the find function of the map ADT, but a similar method can be
used for each of the ordered-map functions, ceilingEntry, floorEntry, lowerEntry,
and higherEntry.

The elements stored in L are the entries of a map, and since L is ordered, the en-
try at index i has a key no smaller than the keys of the entries at indices 0, . . . , i−1,
and no larger than the keys of the entries at indices i+1, . . . ,n−1. This observation
allows us to quickly “home in” on a search key k using a variant of the children’s
game “high-low.” We call an entry of our map a candidate if, at the current stage
of the search, we cannot rule out that this entry has key equal to k. The algorithm
maintains two parameters, low and high, such that all the candidate entries have
index at least low and at most high in L. Initially, low = 0 and high = n− 1. We
then compare k to the key of the median candidate e, that is, the entry e with index

mid = ⌊(low + high)/2⌋.
We consider three cases:
• If k = e.key(), then we have found the entry we were looking for, and the

search terminates successfully returning e
• If k < e.key(), then we recur on the first half of the vector, that is, on the

range of indices from low to mid−1
• If k > e.key(), we recur on the range of indices from mid + 1 to high

This search method is called binary search, and is given in pseudo-code in Code
Fragment 9.18. Operation find(k) on an n-entry map implemented with an ordered
vector L consists of calling BinarySearch(L,k,0,n−1).

Algorithm BinarySearch(L,k, low,high):
Input: An ordered vector L storing n entries and integers low and high
Output: An entry of L with key equal to k and index between low and high, if

such an entry exists, and otherwise the special sentinel end

if low > high then
return end

else
mid← ⌊(low + high)/2⌋
e← L.at(mid)
if k = e.key() then

return e
else if k < e.key() then

return BinarySearch(L,k, low,mid−1)
else

return BinarySearch(L,k,mid + 1,high)

Code Fragment 9.18: Binary search in an ordered vector.
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We illustrate the binary search algorithm in Figure 9.7.

Figure 9.7: Example of a binary search to perform operation find(22), in a map
with integer keys, implemented with an ordered vector. For simplicity, we show
the keys, not the whole entries.

Considering the running time of binary search, we observe that a constant num-
ber of primitive operations are executed at each recursive call of function Binary-
Search. Hence, the running time is proportional to the number of recursive calls
performed. A crucial fact is that with each recursive call the number of candidate
entries still to be searched in the vector L is given by the value

high− low+ 1.

Moreover, the number of remaining candidates is reduced by at least one half with
each recursive call. Specifically, from the definition of mid, the number of remain-
ing candidates is either

(mid−1)− low+ 1 =

⌊
low + high

2

⌋
− low≤ high− low+ 1

2

or
high− (mid + 1)+ 1 = high−

⌊
low + high

2

⌋
≤ high− low+ 1

2
.

Initially, the number of candidate entries is n; after the first call to BinarySearch, it
is at most n/2; after the second call, it is at most n/4; and so on. In general, after the
ith call to BinarySearch, the number of candidate entries remaining is at most n/2i.
In the worst case (unsuccessful search), the recursive calls stop when there are no
more candidate entries. Hence, the maximum number of recursive calls performed,
is the smallest integer m, such that

n/2m < 1.
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In other words (recalling that we omit a logarithm’s base when it is 2), m > logn.
Thus, we have

m = ⌊logn⌋+ 1,

which implies that binary search runs in O(logn) time.

Thus, we can use an ordered search table to perform fast searches in an ordered
map, but using such a table for lots of map updates would take a considerable
amount of time. For this reason, the primary applications for search tables are in
situations where we expect few updates but many searches. Such a situation could
arise, for example, in an ordered list of English words we use to order entries in an
encyclopedia or help file.

Comparing Map Implementations

Note that we can use an ordered search table to implement the map ADT even if
we don’t want to use the additional functions of the ordered map ADT. Table 9.2
compares the running times of the functions of a (standard) map realized by either
an unordered list, a hash table, or an ordered search table. Note that an unordered
list allows for fast insertions but slow searches and removals, whereas a search ta-
ble allows for fast searches but slow insertions and removals. Incidentally, although
we don’t explicitly discuss it, we note that a sorted list implemented with a doubly
linked list would be slow in performing almost all the map operations. (See Exer-
cise R-9.5.) Nevertheless, the list-like data structure we discuss in the next section
can perform the functions of the ordered map ADT quite efficiently.

Method List Hash Table Search Table
size, empty O(1) O(1) O(1)

find O(n) O(1) exp., O(n) worst-case O(log n)

insert O(1) O(1) O(n)

erase O(n) O(1) exp., O(n) worst-case O(n)

Table 9.2: Comparison of the running times of the functions of a map realized
by means of an unordered list, a hash table, or an ordered search table. We let n
denote the number of entries in the map and we let N denote the capacity of the
bucket array in the hash table implementation. The space requirement of all the
implementations is O(n), assuming that the arrays supporting the hash-table and
search-table implementations are maintained such that their capacity is proportional
to the number of entries in the map.
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9.3.2 Two Applications of Ordered Maps

As we have mentioned in the preceding sections, unordered and ordered maps have
many applications. In this section, we explore some specific applications of ordered
maps.

Flight Databases

There are several web sites on the Internet that allow users to perform queries on
flight databases to find flights between various cities, typically with the intent of
buying a ticket. To make a query, a user specifies origin and destination cities, a
departure date, and a departure time. To support such queries, we can model the
flight database as a map, where keys are Flight objects that contain fields corre-
sponding to these four parameters. That is, a key is a tuple

k = (origin, destination, date, time).

Additional information about a flight, such as the flight number, the number of seats
still available in first (F) and coach (Y) class, the flight duration, and the fare, can
be stored in the value object.

Finding a requested flight is not simply a matter of finding a key in the map
matching the requested query, however. The main difficulty is that, although a user
typically wants to exactly match the origin and destination cities, as well as the
departure date, he or she will probably be content with any departure time that is
close to his or her requested departure time. We can handle such a query, of course,
by ordering our keys lexicographically. Thus, given a user query key k, we could,
for instance, call ceilingEntry(k) to return the flight between the desired cities on
the desired date, with departure time at the desired time or after. A similar use
of floorEntry(k) would give us the flight with departure time at the desired time
or before. Given these entries, we could then use the higherEntry or lowerEntry
functions to find flights with the next close-by departure times that are respectively
higher or lower than the desired time, k. Therefore, an efficient implementation for
an ordered map would be a good way to satisfy such queries. For example, calling
ceilingEntry(k) on a query key k = (ORD, PVD, 05May, 09:30), followed by the
respective calls to higherEntry, might result in the following sequence of entries:

( (ORD, PVD, 05May, 09:53), (AA 1840, F5, Y15, 02:05, $251) )
( (ORD, PVD, 05May, 13:29), (AA 600, F2, Y0, 02:16, $713) )
( (ORD, PVD, 05May, 17:39), (AA 416, F3, Y9, 02:09, $365) )
( (ORD, PVD, 05May, 19:50), (AA 1828, F9, Y25, 02:13, $186) )
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Maxima Sets

Life is full of trade-offs. We often have to trade off a desired performance measure
against a corresponding cost. Suppose, for the sake of an example, we are interested
in maintaining a database rating automobiles by their maximum speeds and their
cost. We would like to allow someone with a certain amount to spend to query our
database to find the fastest car they can possibly afford.

We can model such a trade-off problem as this by using a key-value pair to
model the two parameters that we are trading off, which in this case would be the
pair (cost,speed) for each car. Notice that some cars are strictly better than other
cars using this measure. For example, a car with cost-speed pair (20,000, 100) is
strictly better than a car with cost-speed pair (30,000, 90). At the same time, there
are some cars that are not strictly dominated by another car. For example, a car
with cost-speed pair (20,000, 100) may be better or worse than a car with cost-
speed pair (30,000, 120), depending on how much money we have to spend. (See
Figure 9.8.)

Figure 9.8: The cost-performance trade-off with key-value pairs represented by
points in the plane. Notice that point p is strictly better than points c, d, and e, but
may be better or worse than points a, b, f , g, and h, depending on the price we are
willing to pay. Thus, if we were to add p to our set, we could remove the points c,
d, and e, but not the others.

Formally, we say a price-performance pair (a,b) dominates a pair (c,d) if a < c
and b > d. A pair (a,b) is called a maximum pair if it is not dominated by any other
pairs. We are interested in maintaining the set of maxima of a collection C of price-
performance pairs. That is, we would like to add new pairs to this collection (for
example, when a new car is introduced), and we would like to query this collection
for a given dollar amount, d, to find the fastest car that costs no more than d dollars.
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Maintaining a Maxima Set with an Ordered Map

We can store the set of maxima pairs in an ordered map, M, ordered by cost, so that
the cost is the key field and performance (speed) is the value field. We can then
implement operations add(c, p), which adds a new cost-performance pair (c, p),
and best(c), which returns the best pair with cost at most c, as shown in Code
Fragments 9.19 and 9.20.

Algorithm best(c):
Input: A cost c
Output: The cost-performance pair in M with largest cost less than or equal to

c, or the special sentinel end, if there is no such pair

return M.floorEntry(c)

Code Fragment 9.19: The best() function, used in a class maintaining a set of max-
ima implemented with an ordered map M.

Algorithm add(c, p):
Input: A cost-performance pair (c, p)
Output: None (but M will have (c, p) added to the set of cost-performance

pairs)

e←M.floorEntry(c) {the greatest pair with cost at most c}
if e 6= end then

if e.value() > p then
return {(c, p) is dominated, so don’t insert it in M}

e←M.ceilingEntry(c) {next pair with cost at least c}
{Remove all the pairs that are dominated by (c, p)}
while e 6= end and e.value() < p do

M.erase(e.key()) {this pair is dominated by (c, p)}
e←M.higherEntry(e.key()) {the next pair after e}

M.put(c, p) {Add the pair (c, p), which is not dominated}

Code Fragment 9.20: The add(c, p) function used in a class for maintaining a set of
maxima implemented with an ordered map M.

Unfortunately, if we implement M using any of the data structures described
above, it results in a poor running time for the above algorithm. If, on the other
hand, we implement M using a skip list, which we describe next, then we can
perform best(c) queries in O(logn) expected time and add(c, p) updates in O((1+
r) log n) expected time, where r is the number of points removed.
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9.4 Skip Lists

An interesting data structure for efficiently realizing the ordered map ADT is the
skip list. This data structure makes random choices in arranging the entries in such
a way that search and update times are O(logn) on average, where n is the number
of entries in the dictionary. Interestingly, the notion of average time complexity
used here does not depend on the probability distribution of the keys in the input.
Instead, it depends on the use of a random-number generator in the implementation
of the insertions to help decide where to place the new entry. The running time is
averaged over all possible outcomes of the random numbers used when inserting
entries.

Because they are used extensively in computer games, cryptography, and com-
puter simulations, functions that generate numbers that can be viewed as random
numbers are built into most modern computers. Some functions, called pseudo-
random number generators, generate random-like numbers, starting with an initial
seed. Other functions use hardware devices to extract “true” random numbers from
nature. In any case, we assume that our computer has access to numbers that are
sufficiently random for our analysis.

The main advantage of using randomization in data structure and algorithm
design is that the structures and functions that result are usually simple and efficient.
We can devise a simple randomized data structure, called the skip list, which has the
same logarithmic time bounds for searching as is achieved by the binary searching
algorithm. Nevertheless, the bounds are expected for the skip list, while they are
worst-case bounds for binary searching in a lookup table. On the other hand, skip
lists are much faster than lookup tables for map updates.

A skip list S for a map M consists of a series of lists {S0,S1, . . . ,Sh}. Each list
Si stores a subset of the entries of M sorted by increasing keys plus entries with
two special keys, denoted −∞ and +∞, where −∞ is smaller than every possible
key that can be inserted in M and +∞ is larger than every possible key that can be
inserted in M. In addition, the lists in S satisfy the following:

• List S0 contains every entry of the map M (plus the special entries with keys
−∞ and +∞)

• For i = 1, . . . ,h−1, list Si contains (in addition to −∞ and +∞) a randomly
generated subset of the entries in list Si−1

• List Sh contains only −∞ and +∞.

An example of a skip list is shown in Figure 9.9. It is customary to visualize a skip
list S with list S0 at the bottom and lists S1, . . . ,Sh above it. Also, we refer to h as
the height of skip list S.
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Figure 9.9: Example of a skip list storing 10 entries. For simplicity, we show only
the keys of the entries.

Intuitively, the lists are set up so that Si+1 contains more or less every other
entry in Si. As can be seen in the details of the insertion method, the entries in Si+1

are chosen at random from the entries in Si by picking each entry from Si to also
be in Si+1 with probability 1/2. That is, in essence, we “flip a coin” for each entry
in Si and place that entry in Si+1 if the coin comes up “heads.” Thus, we expect S1

to have about n/2 entries, S2 to have about n/4 entries, and, in general, Si to have
about n/2i entries. In other words, we expect the height h of S to be about logn.
The halving of the number of entries from one list to the next is not enforced as an
explicit property of skip lists, however. Instead, randomization is used.

Using the position abstraction used for lists and trees, we view a skip list as a
two-dimensional collection of positions arranged horizontally into levels and ver-
tically into towers. Each level is a list Si and each tower contains positions storing
the same entry across consecutive lists. The positions in a skip list can be traversed
using the following operations:

after(p): Return the position following p on the same level.

before(p): Return the position preceding p on the same level.

below(p): Return the position below p in the same tower.

above(p): Return the position above p in the same tower.

We conventionally assume that the above operations return a null position if the
position requested does not exist. Without going into the details, we note that we
can easily implement a skip list by means of a linked structure such that the above
traversal functions each take O(1) time, given a skip-list position p. Such a linked
structure is essentially a collection of h doubly linked lists aligned at towers, which
are also doubly linked lists.
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9.4.1 Search and Update Operations in a Skip List

The skip list structure allows for simple map search and update algorithms. In fact,
all of the skip list search and update algorithms are based on an elegant SkipSearch
function that takes a key k and finds the position p of the entry e in list S0 such that
e has the largest key (which is possibly −∞) less than or equal to k.

Searching in a Skip List

Suppose we are given a search key k. We begin the SkipSearch function by setting
a position variable p to the top-most, left position in the skip list S, called the start
position of S. That is, the start position is the position of Sh storing the special
entry with key −∞. We then perform the following steps (see Figure 9.10), where
key(p) denotes the key of the entry at position p:

1. If S.below(p) is null, then the search terminates—we are at the bottom and
have located the largest entry in S with key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p← S.below(p).

2. Starting at position p, we move p forward until it is at the right-most position
on the present level such that key(p)≤ k. We call this the scan forward step.
Note that such a position always exists, since each level contains the keys
+∞ and −∞. In fact, after we perform the scan forward for this level, p
may remain where it started. In any case, we then repeat the previous step.

Figure 9.10: Example of a search in a skip list. The positions visited when searching
for key 50 are highlighted in blue.

We give a pseudo-code description of the skip-list search algorithm, SkipSearch,
in Code Fragment 9.21. Given this function, it is now easy to implement the op-
eration find(k)—we simply perform p← SkipSearch(k) and test whether or not
key(p) = k. If these two keys are equal, we return p; otherwise, we return null.
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Algorithm SkipSearch(k):
Input: A search key k
Output: Position p in the bottom list S0 such that the entry at p has the largest

key less than or equal to k

p← s
while below(p) 6= null do

p← below(p) {drop down}
while k ≥ key(after(p)) do

p← after(p) {scan forward}
return p.

Code Fragment 9.21: Search in a skip list S. Variable s holds the start position of S.

As it turns out, the expected running time of algorithm SkipSearch on a skip
list with n entries is O(logn). We postpone the justification of this fact, however,
until after we discuss the implementation of the update functions for skip lists.

Insertion in a Skip List

The insertion algorithm for skip lists uses randomization to decide the height of the
tower for the new entry. We begin the insertion of a new entry (k,v) by performing
a SkipSearch(k) operation. This gives us the position p of the bottom-level entry
with the largest key less than or equal to k (note that p may hold the special entry
with key −∞). We then insert (k,v) immediately after position p. After inserting
the new entry at the bottom level, we “flip” a coin. If the flip comes up tails, then
we stop here. Else (the flip comes up heads), we backtrack to the previous (next
higher) level and insert (k,v) in this level at the appropriate position. We again
flip a coin; if it comes up heads, we go to the next higher level and repeat. Thus,
we continue to insert the new entry (k,v) in lists until we finally get a flip that
comes up tails. We link together all the references to the new entry (k,v) created
in this process to create the tower for the new entry. A coin flip can be simulated
with C++’s built-in, pseudo-random number generator by testing whether a random
integer is even or odd.

We give the insertion algorithm for a skip list S in Code Fragment 9.22 and we
illustrate it in Figure 9.11. The algorithm uses function insertAfterAbove(p,q,(k,v))
that inserts a position storing the entry (k,v) after position p (on the same level as
p) and above position q, returning the position r of the new entry (and setting in-
ternal references so that after, before, above, and below functions work correctly
for p, q, and r). The expected running time of the insertion algorithm on a skip list
with n entries is O(logn), which we show in Section 9.4.2.
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Algorithm SkipInsert(k,v):
Input: Key k and value v
Output: Topmost position of the entry inserted in the skip list

p← SkipSearch(k)
q← null
e← (k,v)
i←−1
repeat

i← i+ 1
if i≥ h then

h← h+ 1 {add a new level to the skip list}
t← after(s)
s← insertAfterAbove(null,s,(−∞,null))
insertAfterAbove(s, t,(+∞,null))

while above(p) = null do
p← before(p) {scan backward}

p← above(p) {jump up to higher level}
q← insertAfterAbove(p,q,e) {add a position to the tower of the new entry}

until coinFlip() = tails
n← n+ 1
return q

Code Fragment 9.22: Insertion in a skip list. Method coinFlip() returns “heads” or
“tails,” each with probability 1/2. Variables n, h, and s hold the number of entries,
the height, and the start node of the skip list.

Figure 9.11: Insertion of an entry with key 42 into the skip list of Figure 9.9. We
assume that the random “coin flips” for the new entry came up heads three times
in a row, followed by tails. The positions visited are highlighted in blue. The
positions inserted to hold the new entry are drawn with thick lines, and the positions
preceding them are flagged.
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Removal in a Skip List

Like the search and insertion algorithms, the removal algorithm for a skip list is
quite simple. In fact, it is even easier than the insertion algorithm. That is, to
perform an erase(k) operation, we begin by executing function SkipSearch(k). If
the position p stores an entry with key different from k, we return null. Otherwise,
we remove p and all the positions above p, which are easily accessed by using
above operations to climb up the tower of this entry in S starting at position p. The
removal algorithm is illustrated in Figure 9.12 and a detailed description of it is
left as an exercise (Exercise R-9.17). As we show in the next subsection, operation
erase in a skip list with n entries has O(log n) expected running time.

Before we give this analysis, however, there are some minor improvements to
the skip list data structure we would like to discuss. First, we don’t actually need
to store references to entries at the levels of the skip list above the bottom level,
because all that is needed at these levels are references to keys. Second, we don’t
actually need the above function. In fact, we don’t need the before function either.
We can perform entry insertion and removal in strictly a top-down, scan-forward
fashion, thus saving space for “up” and “prev” references. We explore the details
of this optimization in Exercise C-9.10. Neither of these optimizations improve
the asymptotic performance of skip lists by more than a constant factor, but these
improvements can, nevertheless, be meaningful in practice. In fact, experimental
evidence suggests that optimized skip lists are faster in practice than AVL trees and
other balanced search trees, which are discussed in Chapter 10.

The expected running time of the removal algorithm is O(logn), which we
show in Section 9.4.2.

Figure 9.12: Removal of the entry with key 25 from the skip list of Figure 9.11.
The positions visited after the search for the position of S0 holding the entry are
highlighted in blue. The positions removed are drawn with dashed lines.
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Maintaining the Top-most Level

A skip list S must maintain a reference to the start position (the top-most, left
position in S) as a member variable, and must have a policy for any insertion that
wishes to continue inserting a new entry past the top level of S. There are two
possible courses of action we can take, both of which have their merits.

One possibility is to restrict the top level, h, to be kept at some fixed value that
is a function of n, the number of entries currently in the map (from the analysis
we see that h = max{10,2⌈log n⌉} is a reasonable choice, and picking h = 3⌈log n⌉
is even safer). Implementing this choice means that we must modify the insertion
algorithm to stop inserting a new position once we reach the top-most level (unless
⌈log n⌉< ⌈log(n+ 1)⌉, in which case we can now go at least one more level, since
the bound on the height is increasing).

The other possibility is to let an insertion continue inserting a new position as
long as heads keeps getting returned from the random number generator. This is
the approach taken in Algorithm SkipInsert of Code Fragment 9.22. As we show
in the analysis of skip lists, the probability that an insertion will go to a level that is
more than O(logn) is very low, so this design choice should also work.

Either choice still results in the expected O(logn) time to perform search, in-
sertion, and removal, however, which we show in the next section.

9.4.2 A Probabilistic Analysis of Skip Lists ⋆

As we have shown above, skip lists provide a simple implementation of an ordered
map. In terms of worst-case performance, however, skip lists are not a superior
data structure. In fact, if we don’t officially prevent an insertion from continuing
significantly past the current highest level, then the insertion algorithm can go into
what is almost an infinite loop (it is not actually an infinite loop, however, since
the probability of having a fair coin repeatedly come up heads forever is 0). More-
over, we cannot infinitely add positions to a list without eventually running out of
memory. In any case, if we terminate position insertion at the highest level h, then
the worst-case running time for performing the find, insert, and erase operations in
a skip list S with n entries and height h is O(n + h). This worst-case performance
occurs when the tower of every entry reaches level h−1, where h is the height of S.
However, this event has very low probability. Judging from this worst case, we
might conclude that the skip list structure is strictly inferior to the other map im-
plementations discussed earlier in this chapter. But this would not be a fair analysis
because this worst-case behavior is a gross overestimate.
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Bounding the Height of a Skip List

Because the insertion step involves randomization, a more accurate analysis of skip
lists involves a bit of probability. At first, this might seem like a major undertaking,
since a complete and thorough probabilistic analysis could require deep mathemat-
ics (and, indeed, there are several such deep analyses that have appeared in the
research literature related to data structures). Fortunately, such an analysis is not
necessary to understand the expected asymptotic behavior of skip lists. The infor-
mal and intuitive probabilistic analysis we give below uses only basic concepts of
probability theory.

Let us begin by determining the expected value of the height h of a skip list S
with n entries (assuming that we do not terminate insertions early). The probability
that a given entry has a tower of height i≥ 1 is equal to the probability of getting i
consecutive heads when flipping a coin, that is, this probability is 1/2i. Hence, the
probability Pi that level i has at least one position is at most

Pi ≤
n
2i ,

because the probability that any one of n different events occurs is at most the sum
of the probabilities that each occurs.

The probability that the height h of S is larger than i is equal to the probability
that level i has at least one position, that is, it is no more than Pi. This means that h
is larger than, say, 3log n with probability at most

P3 logn ≤ n
23 log n

=
n
n3 =

1
n2 .

For example, if n = 1000, this probability is a one-in-a-million long shot. More
generally, given a constant c > 1, h is larger than c log n with probability at most
1/nc−1. That is, the probability that h is smaller than c log n is at least 1−1/nc−1.
Thus, with high probability, the height h of S is O(logn).

Analyzing Search Time in a Skip List

Next, consider the running time of a search in skip list S, and recall that such a
search involves two nested while loops. The inner loop performs a scan forward on
a level of S as long as the next key is no greater than the search key k, and the outer
loop drops down to the next level and repeats the scan forward iteration. Since the
height h of S is O(logn) with high probability, the number of drop-down steps is
O(logn) with high probability.
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So we have yet to bound the number of scan-forward steps we make. Let ni be
the number of keys examined while scanning forward at level i. Observe that, after
the key at the starting position, each additional key examined in a scan-forward at
level i cannot also belong to level i + 1. If any of these keys were on the previous
level, we would have encountered them in the previous scan-forward step. Thus,
the probability that any key is counted in ni is 1/2. Therefore, the expected value of
ni is exactly equal to the expected number of times we must flip a fair coin before
it comes up heads. This expected value is 2.

Hence, the expected amount of time spent scanning forward at any level i
is O(1). Since S has O(log n) levels with high probability, a search in S takes ex-
pected time O(logn). By a similar analysis, we can show that the expected running
time of an insertion or a removal is O(logn).

Space Usage in a Skip List

Finally, let us turn to the space requirement of a skip list S with n entries. As we
observed above, the expected number of positions at level i is n/2i, which means
that the expected total number of positions in S is

h

∑
i=0

n
2i = n

h

∑
i=0

1
2i .

Using Proposition 4.5 on geometric summations, we have

h

∑
i=0

1
2i =

(
1
2

)h+1−1
1
2 −1

= 2 ·
(

1− 1
2h+1

)
< 2 for all h≥ 0.

Hence, the expected space requirement of S is O(n).
Table 9.3 summarizes the performance of an ordered map realized by a skip

list.

Operation Time
size, empty O(1)

firstEntry, lastEntry O(1)

find, insert, erase O(log n) (expected)
ceilingEntry, floorEntry, lowerEntry, higherEntry O(log n) (expected)

Table 9.3: Performance of an ordered map implemented with a skip list. We use
n to denote the number of entries in the dictionary at the time the operation is
performed. The expected space requirement is O(n).
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9.5 Dictionaries

Like a map, a dictionary stores key-value pairs (k,v), which we call entries, where
k is the key and v is the value. Similarly, a dictionary allows for keys and values
to be of any object type. But, whereas a map insists that entries have unique keys,
a dictionary allows for multiple entries to have the same key, much like an English
dictionary, which allows for multiple definitions for the same word.

The ability to store multiple entries with the same key has several applications.
For example, we might want to store records for computer science authors indexed
by their first and last names. Since there are a few cases of different authors with
the same first and last name, there will naturally be some instances where we have
to deal with different entries having equal keys. Likewise, a multi-user computer
game involving players visiting various rooms in a large castle might need a map-
ping from rooms to players. It is natural in this application to allow users to be
in the same room simultaneously, however, to engage in battles. Thus, this game
would naturally be another application where it would be useful to allow for multi-
ple entries with equal keys.

9.5.1 The Dictionary ADT

The dictionary ADT is quite similar to the map ADT, which was presented in Sec-
tion 9.1. The principal differences involve the issue of multiple values sharing a
common key. As with the map ADT, we assume that there is an object, called It-
erator, that provides a way to reference entries of the dictionary. There is a special
sentinel value, end, which is used to indicate a nonexistent entry. The iterator may
be incremented from entry to entry, making it possible to enumerate entries from
the collection.

As an ADT, a (unordered) dictionary D supports the following functions:

size(): Return the number of entries in D.

empty(): Return true if D is empty and false otherwise.

find(k): If D contains an entry with key equal to k, then return an
iterator p referring any such entry, else return the special
iterator end.

findAll(k): Return a pair of iterators (b,e), such that all the entries
with key value k lie in the range from b up to, but not
including, e.

insert(k,v): Insert an entry with key k and value v into D, returning
an iterator referring to the newly created entry.
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erase(k): Remove from D an arbitrary entry with key equal to k;
an error condition occurs if D has no such entry.

erase(p): Remove from D the entry referenced by iterator p; an
error condition occurs if p points to the end sentinel.

begin(): Return an iterator to the first entry of D.

end(): Return an iterator to a position just beyond the end of D.

Note that operation find(k) returns an arbitrary entry, whose key is equal to k, and
erase(k) removes an arbitrary entry with key value k. In order to remove a specific
entry among those having the same key, it would be necessary to remember the
iterator value p returned by insert(k,v), and then use the operation erase(p).

Example 9.2: In the following, we show a series of operations on an initially
empty dictionary storing entries with integer keys and character values. In the
column “Output,” we use the notation pi : [(k,v)] to mean that the operation returns
an iterator denoted by pi that refers to the entry (k,v).

Although the entries are not necessarily stored in any particular order, in order
to implement the operation findAll, we assume that items with the same keys are
stored contiguously. (Alternatively, the operation findAll would need to return a
smarter form of iterator that returns keys of equal value.)

Operation Output Dictionary
empty() true ∅
insert(5,A) p1 : [(5,A)] {(5,A)}
insert(7,B) p2 : [(7,B) {(5,A),(7,B)}
insert(2,C) p3 : [(2,C) {(5,A),(7,B),(2,C)}
insert(8,D) p4 : [(8,D) {(5,A),(7,B),(2,C),(8,D)}
insert(2,E) p5 : [(2,E) {(5,A),(7,B),(2,C),(2,E),(8,D)}
find(7) p2 : [(7,B) {(5,A),(7,B),(2,C),(2,E),(8,D)}
find(4) end {(5,A),(7,B),(2,C),(2,E),(8,D)}
find(2) p3 : [(2,C) {(5,A),(7,B),(2,C),(2,E),(8,D)}
findAll(2) (p3, p4) {(5,A),(7,B),(2,C),(2,E),(8,D)}
size() 5 {(5,A),(7,B),(2,C),(2,E),(8,D)}
erase(5) – {(7,B),(2,C),(2,E),(8,D)}
erase(p3) – {(7,B),(2,E),(8,D)}
find(2) p5 : [(2,E)] {(7,B),(2,E),(8,D)}

The operation findAll(2) returns the iterator pair (p3, p4), referring to the en-
tries (2,C) and (8,D). Assuming that the entries are stored in the order listed
above, iterating from p3 up to, but not including, p4, would enumerate the entries
{(2,C),(2,E)}.
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9.5.2 A C++ Dictionary Implementation

In this Section, we describe a C++ implementation of the dictionary ADT. Our
implementation, called HashDict, is a subclass of the HashMap class, from Sec-
tion 9.2.7. The map ADT already includes most of the functions of the dictionary
ADT. Our HashDict class implements the new function insert, which inserts a key-
value pair, and the function findAll, which generates an iterator range for all the
values equal to a given key. All the other functions are inherited from HashMap.

In order to support the return type of findAll, we define a nested class called
Range. It is presented in Code Fragment 9.23. This simple class stores a pair of
objects of type Iterator, a constructor, and two member functions for accessing each
of them. This definition will be nested inside the public portion of the HashMap
class definition.

class Range { // an iterator range
private:

Iterator begin; // front of range
Iterator end; // end of range

public:
Range(const Iterator& b, const Iterator& e) // constructor

: begin(b), end(e) { }
Iterator& begin() { return begin; } // get beginning
Iterator& end() { return end; } // get end
};

Code Fragment 9.23: Definition of the Range class to be added to HashMap.

The HashDict class definition is presented in Code Fragment 9.24. As indicated
in the first line of the declaration, this is a subclass of HashMap. The class begins
with type definitions for the Iterator and Entry types from the base class. This is
followed by the code for class Range from Code Fragment 9.23, and the public
function declarations.

template <typename K, typename V, typename H>
class HashDict : public HashMap<K,V,H> {
public: // public functions

typedef typename HashMap<K,V,H>::Iterator Iterator;
typedef typename HashMap<K,V,H>::Entry Entry;
// . . .insert Range class declaration here

public: // public functions
HashDict(int capacity = 100); // constructor
Range findAll(const K& k); // find all entries with k
Iterator insert(const K& k, const V& v); // insert pair (k,v)
};

Code Fragment 9.24: The class HashDict, which implements the dictionary ADT.
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Observe that, when referring to the parent class, HashMap, we need to specify
its template parameters. To avoid the need for continually repeating these parame-
ters, we have provided type definitions for the iterator and entry classes. Because
most of the dictionary ADT functions are already provided by HashMap, we need
only provide a constructor and the missing dictionary ADT functions.

The constructor definition is presented in Code Fragment 9.25. It simply in-
vokes the constructor for the base class. Note that we employ the condensed func-
tion notation that we introduced in Section 9.2.7.

/* HashDict〈K,V,H〉 :: */ // constructor
HashDict(int capacity) : HashMap<K,V,H>(capacity) { }

Code Fragment 9.25: The class HashDict constructor.

In Code Fragment 9.26, we present an implementation of the function insert. It
first locates the key by invoking the finder utility (see Code Fragment 9.15). Recall
that this utility returns an iterator to an entry containing this key, if found, and
otherwise it returns an iterator to the end of the bucket. In either case, we insert the
new entry immediately prior to this location by invoking the inserter utility. (See
Code Fragment 9.16.) An iterator referencing the resulting location is returned.

/* HashDict〈K,V,H〉 :: */ // insert pair (k,v)
Iterator insert(const K& k, const V& v) {

Iterator p = finder(k); // find key
Iterator q = inserter(p, Entry(k, v)); // insert it here
return q; // return its position
}

Code Fragment 9.26: An implementation of the dictionary function insert.

We exploit a property of how insert works. Whenever a new entry (k,v) is
inserted, if the structure already contains another entry (k,v′) with the same key, the
finder utility function returns an iterator to the first such occurrence. The inserter
utility then inserts the new entry just prior to this. It follows that all the entries
having the same key are stored in a sequence of contiguous positions, all within
the same bucket. (In fact, they appear in the reverse of their insertion order.) This
means that, in order to produce an iterator range (b,e) for the call findAll(k), it
suffices to set b to the first entry of this sequence and set e to the entry immediately
following the last one.

Our implementation of findAll is given in Code Fragment 9.27. We first invoke
the finder function to locate the key. If the finder returns a position at the end of
some bucket, we know that the key is not present, and we return the empty iterator
(end,end). Otherwise, recall from Code Fragment 9.15 that finder returns the first
entry with the given key value. We store this in the entry iterator b. We then traverse
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the bucket until either coming to the bucket’s end or encountering an entry with a
key of different value. Let p be this iterator value. We return the iterator range
(b, p).

/* HashDict〈K,V,H〉 :: */ // find all entries with k
Range findAll(const K& k) {

Iterator b = finder(k); // look up k
Iterator p = b;
while (!endOfBkt(p) && (*p).key() == (*b).key()) { // find next unequal key

++p;
}
return Range(b, p); // return range of positions
}

Code Fragment 9.27: An implementation of the dictionary function findAll.

9.5.3 Implementations with Location-Aware Entries

As with the map ADT, there are several possible ways we can implement the dic-
tionary ADT, including an unordered list, a hash table, an ordered search table, or
a skip list. As we did for adaptable priority queues (Section 8.4.2), we can also
use location-aware entries to speed up the running time for some operations in a
dictionary. In removing a location-aware entry e, for instance, we could simply
go directly to the place in our data structure where we are storing e and remove
it. We could implement a location-aware entry, for example, by augmenting our
entry class with a private location variable and protected functions location() and
setLocation(p), which return and set this variable respectively. We would then re-
quire that the location variable for an entry e would always refer to e’s position or
index in the data structure. We would, of course, have to update this variable any
time we moved an entry, as follows.

• Unordered list: In an unordered list, L, implementing a dictionary, we can
maintain the location variable of each entry e to point to e’s position in the
underlying linked list for L. This choice allows us to perform erase(e) as
L.erase(e.location()), which would run in O(1) time.

• Hash table with separate chaining: Consider a hash table, with bucket array
A and hash function h, that uses separate chaining for handling collisions.
We use the location variable of each entry e to point to e’s position in the list
L implementing the list A[h(k)]. This choice allows us to perform an erase(e)
as L.erase(e.location()), which would run in constant expected time.

• Ordered search table: In an ordered table, T , implementing a dictionary, we
should maintain the location variable of each entry e to be e’s index in T .
This choice would allow us to perform erase(e) as T.erase(e.location()).
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(Recall that location() now returns an integer.) This approach would run fast
if entry e was stored near the end of T .

• Skip list: In a skip list, S, implementing a dictionary, we should maintain the
location variable of each entry e to point to e’s position in the bottom level
of S. This choice would allow us to skip the search step in our algorithm for
performing erase(e) in a skip list.

We summarize the performance of entry removal in a dictionary with location-
aware entries in Table 9.4.

List Hash Table Search Table Skip List
O(1) O(1) (expected) O(n) O(logn) (expected)

Table 9.4: Performance of the erase function in dictionaries implemented with
location-aware entries. We use n to denote the number of entries in the dictionary.
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9.6 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-9.1 Which of the hash table collision-handling schemes could tolerate a load
factor above 1 and which could not?

R-9.2 What is the worst-case running time for inserting n key-value entries into
an initially empty map M that is implemented with a list?

R-9.3 What is the worst-case asymptotic running time for performing n (correct)
erase() operations on a map, implemented with an ordered search table,
that initially contains 2n entries?

R-9.4 Describe how to use a skip-list map to implement the dictionary ADT,
allowing the user to insert different entries with equal keys.

R-9.5 Describe how an ordered list implemented as a doubly linked list could be
used to implement the map ADT.

R-9.6 What would be a good hash code for a vehicle identification that is a string
of numbers and letters of the form “9X9XX99X9XX999999,” where a “9”
represents a digit and an “X” represents a letter?

R-9.7 Draw the 11-entry hash table that results from using the hash function,
h(i) = (3i+5) mod 11, to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20,
16, and 5, assuming collisions are handled by chaining.

R-9.8 What is the result of the previous exercise, assuming collisions are han-
dled by linear probing?

R-9.9 Show the result of Exercise R-9.7, assuming collisions are handled by
quadratic probing, up to the point where the method fails.

R-9.10 What is the result of Exercise R-9.7 when collisions are handled by double
hashing using the secondary hash function h′(k) = 7− (k mod 7)?

R-9.11 Give a pseudo-code description of an insertion into a hash table that uses
quadratic probing to resolve collisions, assuming we also use the trick of
replacing deleted items with a special “deactivated item” object.

R-9.12 Describe a set of operations for an ordered dictionary ADT that would
correspond to the functions of the ordered map ADT. Be sure to define
the meaning of the functions so that they can deal with the possibility of
different entries with equal keys.

R-9.13 Show the result of rehashing the hash table shown in Figure 9.4, into a
table of size 19, using the new hash function h(k) = 3k mod 17.

www.wiley.com/college/goodrich
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418 Chapter 9. Hash Tables, Maps, and Skip Lists

R-9.14 Explain why a hash table is not suited to implement the ordered dictio-
nary ADT.

R-9.15 What is the worst-case running time for inserting n items into an initially
empty hash table, where collisions are resolved by chaining? What is the
best case?

R-9.16 Draw an example skip list that results from performing the following
series of operations on the skip list shown in Figure 9.12: erase(38),
insert(48,x), insert(24,y), erase(55). Record your coin flips, as well.

R-9.17 Give a pseudo-code description of the erase operation in a skip list.
R-9.18 What is the expected running time of the functions for maintaining a max-

ima set if we insert n pairs such that each pair has lower cost and perfor-
mance than the one before it? What is contained in the ordered dictionary
at the end of this series of operations? What if each pair had a lower cost
and higher performance than the one before it?

R-9.19 Argue why location-aware entries are not really needed for a dictionary
implemented with a good hash table.

Creativity

C-9.1 Describe how you could perform each of the additional functions of the
ordered map ADT using a skip list.

C-9.2 Describe how to use a skip list to implement the vector ADT, so that index-
based insertions and removals both run in O(logn) expected time.

C-9.3 Suppose we are given two ordered dictionaries S and T , each with n items,
and that S and T are implemented by means of array-based ordered se-
quences. Describe an O(log2 n)-time algorithm for finding the kth small-
est key in the union of the keys from S and T (assuming no duplicates).

C-9.4 Give an O(log n)-time solution for the previous problem.
C-9.5 Design a variation of binary search for performing findAll(k) in an ordered

dictionary implemented with an ordered array, and show that it runs in
time O(logn+ s), where n is the number of elements in the dictionary and
s is the size of the iterator returned.

C-9.6 The hash table dictionary implementation requires that we find a prime
number between a number M and a number 2M. Implement a function for
finding such a prime by using the sieve algorithm. In this algorithm, we
allocate a 2M cell Boolean array A, such that cell i is associated with the
integer i. We then initialize the array cells to all be “true” and we “mark
off” all the cells that are multiples of 2, 3, 5, 7, and so on. This process
can stop after it reaches a number larger than

√
2M.

(Hint: Consider a bootstrapping method for computing the primes up to√
2M.)
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C-9.7 Describe how to perform a removal from a hash table that uses linear
probing to resolve collisions where we do not use a special marker to
represent deleted elements. That is, we must rearrange the contents so that
it appears that the removed entry was never inserted in the first place.

C-9.8 Given a collection C of n cost-performance pairs (c, p), describe an algo-
rithm for finding the maxima pairs of C in O(n logn) time.

C-9.9 The quadratic probing strategy has a clustering problem that relates to
the way it looks for open slots when a collision occurs. Namely, when
a collision occurs at bucket h(k), we check A[(h(k)+ f ( j)) mod N], for
f ( j) = j2, using j = 1,2, . . . ,N−1.

a. Show that f ( j) mod N will assume at most (N + 1)/2 distinct val-
ues, for N prime, as j ranges from 1 to N − 1. As a part of this
justification, note that f (R) = f (N−R) for all R.

b. A better strategy is to choose a prime N, such that N is congruent
to 3 modulo 4 and then to check the buckets A[(h(k)± j2) mod N]
as j ranges from 1 to (N− 1)/2, alternating between addition and
subtraction. Show that this alternate type of quadratic probing is
guaranteed to check every bucket in A.

C-9.10 Show that the functions above(p) and before(p) are not actually needed
to efficiently implement a dictionary using a skip list. That is, we can
implement entry insertion and removal in a skip list using a strictly top-
down, scan-forward approach, without ever using the above or before
functions.

(Hint: In the insertion algorithm, first repeatedly flip the coin to determine
the level where you should start inserting the new entry.)

C-9.11 Suppose that each row of an n×n array A consists of 1’s and 0’s such that,
in any row of A, all the 1’s come before any 0’s in that row. Assuming A
is already in memory, describe a method running in O(n logn) time (not
O(n2) time!) for counting the number of 1’s in A.

C-9.12 Describe an efficient ordered dictionary structure for storing n elements
that have an associated set of k < n keys that come from a total order.
That is, the set of keys is smaller than the number of elements. Your
structure should perform all the ordered dictionary operations in O(log k+
s) expected time, where s is the number of elements returned.

C-9.13 Describe an efficient dictionary structure for storing n entries whose r < n
keys have distinct hash codes. Your structure should perform operation
findAll in O(1 + s) expected time, where s is the number of entries re-
turned, and the remaining operations of the dictionary ADT in O(1) ex-
pected time.
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C-9.14 Describe an efficient data structure for implementing the bag ADT, which
supports a function add(e), for adding an element e to the bag, and a
function remove, which removes an arbitrary element in the bag. Show
that both of these functions can be done in O(1) time.

C-9.15 Describe how to modify the skip list data structure to support the function
median(), which returns the position of the element in the “bottom” list
S0 at index ⌊n/2⌋. Show that your implementation of this function runs in
O(logn) expected time.

Projects

P-9.1 Write a spell-checker class that stores a set of words, W , in a hash table
and implements a function, spellCheck(s), which performs a spell check
on the string s with respect to the set of words, W . If s is in W , then
the call to spellCheck(s) returns an iterable collection that contains only
s, since it is assumed to be spelled correctly in this case. Otherwise, if s
is not in W , then the call to spellCheck(s) returns a list of every word in
W that could be a correct spelling of s. Your program should be able to
handle all the common ways that s might be a misspelling of a word in
W , including swapping adjacent characters in a word, inserting a single
character inbetween two adjacent characters in a word, deleting a single
character from a word, and replacing a character in a word with another
character. For an extra challenge, consider phonetic substitutions as well.

P-9.2 Write an implementation of the dictionary ADT using a linked list.

P-9.3 Write an implementation of the map ADT using a vector.

P-9.4 Implement a class that implements a version of an ordered dictionary ADT
using a skip list. Be sure to carefully define and implement dictionary
versions of corresponding functions of the ordered map ADT.

P-9.5 Implement the map ADT with a hash table with separate-chaining colli-
sion handling (do not adapt any of the STL classes).

P-9.6 Implement the ordered map ADT using a skip list.

P-9.7 Extend the previous project by providing a graphical animation of the
skip list operations. Visualize how entries move up the skip list during
insertions and are linked out of the skip list during removals. Also, in a
search operation, visualize the scan-forward and drop-down actions.

P-9.8 Implement a dictionary that supports location-aware entries by means of
an ordered list.

P-9.9 Perform a comparative analysis that studies the collision rates for various
hash codes for character strings, such as various polynomial hash codes
for different values of the parameter a. Use a hash table to determine



i

i

“main” — 2011/1/13 — 9:10 — page 421 — #443
i

i

i

i

i

i

Chapter Notes 421

collisions, but only count collisions where different strings map to the
same hash code (not if they map to the same location in this hash table).
Test these hash codes on text files found on the Internet.

P-9.10 Perform a comparative analysis as in the previous exercise but for 10-digit
telephone numbers instead of character strings.

P-9.11 Design a C++ class that implements the skip-list data structure. Use this
class to create implementations of both the map and dictionary ADTs,
including location-aware functions for the dictionary.

Chapter Notes

Hashing is a well studied technique. The reader interested in further study is encouraged to
explore the book by Knuth [60], as well as the book by Vitter and Chen [100]. Interestingly,
binary search was first published in 1946, but was not published in a fully correct form
until 1962. For further discussions on lessons learned, please see papers by Bentley [11]
and Levisse [64]. Skip lists were introduced by Pugh [86]. Our analysis of skip lists is
a simplification of a presentation given by Motwani and Raghavan [80]. For a more in-
depth analysis of skip lists, please see the various research papers on skip lists that have
appeared in the data structures literature [54, 82, 83]. Exercise C-9.9 was contributed by
James Lee.
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