
i

i

“main” — 2011/1/13 — 9:10 — page 153 — #175
i

i

i

i

i

i

Chapter

4 Analysis Tools

Contents

4.1 The Seven Functions Used in This Book 154

4.1.1 The Constant Function 154

4.1.2 The Logarithm Function 154

4.1.3 The Linear Function 156

4.1.4 The N-Log-N Function 156

4.1.5 The Quadratic Function 156

4.1.6 The Cubic Function and Other Polynomials 158

4.1.7 The Exponential Function 159

4.1.8 Comparing Growth Rates 161

4.2 Analysis of Algorithms 162

4.2.1 Experimental Studies 163

4.2.2 Primitive Operations 164

4.2.3 Asymptotic Notation 166

4.2.4 Asymptotic Analysis 170

4.2.5 Using the Big-Oh Notation 172

4.2.6 A Recursive Algorithm for Computing Powers 176

4.2.7 Some More Examples of Algorithm Analysis 177

4.3 Simple Justification Techniques 181

4.3.1 By Example . 181

4.3.2 The “Contra” Attack 181

4.3.3 Induction and Loop Invariants 182

4.4 Exercises . 185

i

i

“main” — 2011/1/13 — 9:10 — page 154 — #176
i

i

i

i

i

i

154 Chapter 4. Analysis Tools

4.1 The Seven Functions Used in This Book

In this section, we briefly discuss the seven most important functions used in the
analysis of algorithms. We use only these seven simple functions for almost all
the analysis we do in this book. In fact, sections that use a function other than
one of these seven are marked with a star (⋆) to indicate that they are optional. In
addition to these seven fundamental functions, Appendix A contains a list of other
useful mathematical facts that apply in the context of data structure and algorithm
analysis.

4.1.1 The Constant Function

The simplest function we can think of is the constant function. This is the function,

f (n) = c,

for some fixed constant c, such as c = 5, c = 27, or c = 210. That is, for any argu-
ment n, the constant function f (n) assigns the value c. In other words, it doesn’t
matter what the value of n is, f (n) is always be equal to the constant value c.

Since we are most interested in integer functions, the most fundamental con-
stant function is g(n) = 1, and this is the typical constant function we use in this
book. Note that any other constant function, f (n) = c, can be written as a constant
c times g(n). That is, f (n) = cg(n) in this case.

As simple as it is, the constant function is useful in algorithm analysis because
it characterizes the number of steps needed to do a basic operation on a computer,
like adding two numbers, assigning a value to some variable, or comparing two
numbers.

4.1.2 The Logarithm Function

One of the interesting and sometimes even surprising aspects of the analysis of
data structures and algorithms is the ubiquitous presence of the logarithm function,
f (n) = logb n, for some constant b > 1. This function is defined as follows:

x = logb n if and only if bx = n.

By definition, logb 1 = 0. The value b is known as the base of the logarithm.
Computing the logarithm function exactly for any integer n involves the use

of calculus, but we can use an approximation that is good enough for our pur-
poses without calculus. In particular, we can easily compute the smallest integer
greater than or equal to loga n, since this number is equal to the number of times

i

i

“main” — 2011/1/13 — 9:10 — page 155 — #177
i

i

i

i

i

i

4.1. The Seven Functions Used in This Book 155

we can divide n by a until we get a number less than or equal to 1. For exam-
ple, this evaluation of log3 27 is 3, since 27/3/3/3 = 1. Likewise, this evaluation
of log4 64 is 3, since 64/4/4/4 = 1, and this approximation to log2 12 is 4, since
12/2/2/2/2 = 0.75 ≤ 1. This base-2 approximation arises in algorithm analysis,
since a common operation in many algorithms is to repeatedly divide an input in
half.

Indeed, since computers store integers in binary, the most common base for the
logarithm function in computer science is 2. In fact, this base is so common that
we typically leave it off when it is 2. That is, for us,

log n = log2 n.

We note that most handheld calculators have a button marked LOG, but this is
typically for calculating the logarithm base 10, not base 2.

There are some important rules for logarithms, similar to the exponent rules.

Proposition 4.1 (Logarithm Rules): Given real numbers a > 0, b > 1, c > 0
and d > 1, we have:

1. logb ac = logb a+ logb c
2. logb a/c = logb a− logb c
3. logb ac = c logb a
4. logb a = (logd a)/ logd b
5. blogd a = alogd b

Also, as a notational shorthand, we use logc n to denote the function (log n)c.
Rather than show how we could derive each of the identities above which all follow
from the definition of logarithms and exponents, let us illustrate these identities
with a few examples instead.

Example 4.2: We demonstrate below some interesting applications of the loga-
rithm rules from Proposition 4.1 (using the usual convention that the base of a
logarithm is 2 if it is omitted).

• log(2n) = log2+ logn = 1+ logn, by rule 1
• log(n/2) = log n− log2 = logn−1, by rule 2
• log n3 = 3log n, by rule 3
• log 2n = n log 2 = n ·1 = n, by rule 3
• log4 n = (log n)/ log 4 = (log n)/2, by rule 4
• 2log n = nlog 2 = n1 = n, by rule 5

As a practical matter, we note that rule 4 gives us a way to compute the base-2
logarithm on a calculator that has a base-10 logarithm button, LOG, for

log2 n = LOG n/LOG 2.

i

i

“main” — 2011/1/13 — 9:10 — page 156 — #178
i

i

i

i

i

i

156 Chapter 4. Analysis Tools

4.1.3 The Linear Function

Another simple yet important function is the linear function,

f (n) = n.

That is, given an input value n, the linear function f assigns the value n itself.
This function arises in algorithm analysis any time we have to do a single basic

operation for each of n elements. For example, comparing a number x to each
element of an array of size n requires n comparisons. The linear function also
represents the best running time we can hope to achieve for any algorithm that
processes a collection of n objects that are not already in the computer’s memory,
since reading in the n objects itself requires n operations.

4.1.4 The N-Log-N Function

The next function we discuss in this section is the n-log-n function,

f (n) = n log n.

That is, the function that assigns to an input n the value of n times the logarithm
base 2 of n. This function grows a little faster than the linear function and a lot
slower than the quadratic function. Thus, as we show on several occasions, if we
can improve the running time of solving some problem from quadratic to n-log-n,
we have an algorithm that runs much faster in general.

4.1.5 The Quadratic Function

Another function that appears quite often in algorithm analysis is the quadratic
function,

f (n) = n2.

That is, given an input value n, the function f assigns the product of n with itself
(in other words, “n squared”).

The main reason why the quadratic function appears in the analysis of algo-
rithms is that there are many algorithms that have nested loops, where the inner
loop performs a linear number of operations and the outer loop is performed a
linear number of times. Thus, in such cases, the algorithm performs n · n = n2

operations.

i

i

“main” — 2011/1/13 — 9:10 — page 157 — #179
i

i

i

i

i

i

4.1. The Seven Functions Used in This Book 157

Nested Loops and the Quadratic Function

The quadratic function can also arise in the context of nested loops where the first
iteration of a loop uses one operation, the second uses two operations, the third uses
three operations, and so on. That is, the number of operations is

1+ 2+ 3+ · · ·+(n−2)+ (n−1)+ n.

In other words, this is the total number of operations that are performed by the
nested loop if the number of operations performed inside the loop increases by one
with each iteration of the outer loop. This quantity also has an interesting history.

In 1787, a German schoolteacher decided to keep his 9- and 10-year-old pupils
occupied by adding up the integers from 1 to 100. But almost immediately one
of the children claimed to have the answer! The teacher was suspicious, for the
student had only the answer on his slate. But the answer was correct—5,050—and
the student, Carl Gauss, grew up to be one of the greatest mathematicians of his
time. It is widely suspected that young Gauss used the following identity.

Proposition 4.3: For any integer n≥ 1, we have:

1+ 2+ 3+ · · ·+(n−2)+ (n−1)+ n =
n(n+ 1)

2
.

We give two “visual” justifications of Proposition 4.3 in Figure 4.1.

(a) (b)
Figure 4.1: Visual justifications of Proposition 4.3. Both illustrations visualize the
identity in terms of the total area covered by n unit-width rectangles with heights
1,2, . . . ,n. In (a), the rectangles are shown to cover a big triangle of area n2/2 (base
n and height n) plus n small triangles of area 1/2 each (base 1 and height 1). In
(b), which applies only when n is even, the rectangles are shown to cover a big
rectangle of base n/2 and height n+ 1.

i

i

“main” — 2011/1/13 — 9:10 — page 158 — #180
i

i

i

i

i

i

158 Chapter 4. Analysis Tools

The lesson to be learned from Proposition 4.3 is that if we perform an algorithm
with nested loops such that the operations in the inner loop increase by one each
time, then the total number of operations is quadratic in the number of times, n, we
perform the outer loop. In particular, the number of operations is n2/2 + n/2, in this
case, which is a little more than a constant factor (1/2) times the quadratic function
n2. In other words, such an algorithm is only slightly better than an algorithm that
uses n operations each time the inner loop is performed. This observation might at
first seem nonintuitive, but it is nevertheless true as shown in Figure 4.1.

4.1.6 The Cubic Function and Other Polynomials

Continuing our discussion of functions that are powers of the input, we consider
the cubic function,

f (n) = n3,

which assigns to an input value n the product of n with itself three times. This func-
tion appears less frequently in the context of algorithm analysis than the constant,
linear, and quadratic functions previously mentioned, but it does appear from time
to time.

Polynomials

Interestingly, the functions we have listed so far can be viewed as all being part of
a larger class of functions, the polynomials.

A polynomial function is a function of the form,

f (n) = a0 + a1n+ a2n2 + a3n3 + · · ·+ adnd ,

where a0,a1, . . . ,ad are constants, called the coefficients of the polynomial, and
ad 6= 0. Integer d, which indicates the highest power in the polynomial, is called
the degree of the polynomial.

For example, the following functions are all polynomials:
• f (n) = 2+ 5n+ n2

• f (n) = 1+ n3

• f (n) = 1
• f (n) = n
• f (n) = n2

Therefore, we could argue that this book presents just four important functions used
in algorithm analysis, but we stick to saying that there are seven, since the constant,
linear, and quadratic functions are too important to be lumped in with other poly-
nomials. Running times that are polynomials with degree, d, are generally better
than polynomial running times of larger degree.

i

i

“main” — 2011/1/13 — 9:10 — page 159 — #181
i

i

i

i

i

i

4.1. The Seven Functions Used in This Book 159

Summations

A notation that appears again and again in the analysis of data structures and algo-
rithms is the summation, which is defined as

b

∑
i=a

f (i) = f (a)+ f (a+ 1)+ f (a+ 2)+ · · ·+ f (b),

where a and b are integers and a≤ b. Summations arise in data structure and algo-
rithm analysis because the running times of loops naturally give rise to summations.

Using a summation, we can rewrite the formula of Proposition 4.3 as

n

∑
i=1

i =
n(n+ 1)

2
.

Likewise, we can write a polynomial f (n) of degree d with coefficients a0, . . . ,ad as

f (n) =
d

∑
i=0

ain
i.

Thus, the summation notation gives us a shorthand way of expressing sums of in-
creasing terms that have a regular structure.

4.1.7 The Exponential Function

Another function used in the analysis of algorithms is the exponential function,

f (n) = bn,

where b is a positive constant, called the base, and the argument n is the exponent.
That is, function f (n) assigns to the input argument n the value obtained by multi-
plying the base b by itself n times. In algorithm analysis, the most common base for
the exponential function is b = 2. For instance, if we have a loop that starts by per-
forming one operation and then doubles the number of operations performed with
each iteration, then the number of operations performed in the nth iteration is 2n.
In addition, an integer word containing n bits can represent all the nonnegative in-
tegers less than 2n. Thus, the exponential function with base 2 is quite common.
The exponential function is also referred to as exponent function.

We sometimes have other exponents besides n, however; hence, it is useful
for us to know a few handy rules for working with exponents. In particular, the
following exponent rules are quite helpful.

i

i

“main” — 2011/1/13 — 9:10 — page 160 — #182
i

i

i

i

i

i

160 Chapter 4. Analysis Tools

Proposition 4.4 (Exponent Rules): Given positive integers a, b, and c, we have:
1. (ba)c = bac

2. babc = ba+c

3. ba/bc = ba−c

For example, we have the following:
• 256 = 162 = (24)2 = 24·2 = 28 = 256 (Exponent Rule 1)
• 243 = 35 = 32+3 = 3233 = 9 ·27 = 243 (Exponent Rule 2)
• 16 = 1024/64 = 210/26 = 210−6 = 24 = 16 (Exponent Rule 3)
We can extend the exponential function to exponents that are fractions or real

numbers and to negative exponents, as follows. Given a positive integer k, we de-
fine b1/k to be kth root of b, that is, the number r such that rk = b. For example,
251/2 = 5, since 52 = 25. Likewise, 271/3 = 3 and 161/4 = 2. This approach al-
lows us to define any power whose exponent can be expressed as a fraction, since
ba/c = (ba)1/c, by Exponent Rule 1. For example, 93/2 = (93)1/2 = 7291/2 = 27.
Thus, ba/c is really just the cth root of the integral exponent ba.

We can further extend the exponential function to define bx for any real num-
ber x, by computing a series of numbers of the form ba/c for fractions a/c that get
progressively closer and closer to x. Any real number x can be approximated arbi-
trarily close by a fraction a/c; hence, we can use the fraction a/c as the exponent
of b to get arbitrarily close to bx. So, for example, the number 2π is well defined.
Finally, given a negative exponent d, we define bd = 1/b−d , which corresponds to
applying Exponent Rule 3 with a = 0 and c =−d.

Geometric Sums

Suppose we have a loop where each iteration takes a multiplicative factor longer
than the previous one. This loop can be analyzed using the following proposition.

Proposition 4.5: For any integer n≥ 0 and any real number a such that a > 0 and
a 6= 1, consider the summation

n

∑
i=0

ai = 1+ a+ a2 + · · ·+ an

(remembering that a0 = 1 if a > 0). This summation is equal to

an+1−1
a−1

.

Summations as shown in Proposition 4.5 are called geometric summations, be-
cause each term is geometrically larger than the previous one if a > 1. For example,
everyone working in computing should know that

1+ 2+ 4+ 8+ · · ·+ 2n−1 = 2n−1,

since this is the largest integer that can be represented in binary notation using n
bits.

i

i

“main” — 2011/1/13 — 9:10 — page 161 — #183
i

i

i

i

i

i

4.1. The Seven Functions Used in This Book 161

4.1.8 Comparing Growth Rates

To sum up, Table 4.1 shows each of the seven common functions used in algorithm
analysis in order.

constant logarithm linear n-log-n quadratic cubic exponential
1 logn n n logn n2 n3 an

Table 4.1: Classes of functions. Here we assume that a > 1 is a constant.

Ideally, we would like data structure operations to run in times proportional
to the constant or logarithm function, and we would like our algorithms to run in
linear or n-log-n time. Algorithms with quadratic or cubic running times are less
practical, but algorithms with exponential running times are infeasible for all but
the smallest sized inputs. Plots of the seven functions are shown in Figure 4.2.

1.E+00

1.E+04

1.E+08

1.E+12

1.E+16

1.E+20

1.E+24

1.E+28

1.E+32

1.E+36

1.E+40

1.E+44

1.E
+00

1.E
+01

1.E
+02

1.E
+03

1.E
+04

1.E
+05

1.E
+06

1.E
+07

1.E
+08

1.E
+09

1.E
+10

1.E
+11

1.E
+12

1.E
+13

1.E
+14

1.E
+15

Exponential

Cubic

Quadratic

N-Log-N

Linear

Logarithmic

Constant

Figure 4.2: Growth rates for the seven fundamental functions used in algorithm
analysis. We use base a = 2 for the exponential function. The functions are plotted
in a log-log chart, to compare the growth rates primarily as slopes. Even so, the
exponential function grows too fast to display all its values on the chart. Also, we
use the scientific notation for numbers, where aE+b denotes a10b.

The Ceiling and Floor Functions

One additional comment concerning the functions above is in order. The value
of a logarithm is typically not an integer, yet the running time of an algorithm is
usually expressed by means of an integer quantity, such as the number of operations
performed. Thus, the analysis of an algorithm may sometimes involve the use of
the floor function and ceiling function, which are defined respectively as follows:
• ⌊x⌋ = the largest integer less than or equal to x
• ⌈x⌉ = the smallest integer greater than or equal to x

i

i

“main” — 2011/1/13 — 9:10 — page 162 — #184
i

i

i

i

i

i

162 Chapter 4. Analysis Tools

4.2 Analysis of Algorithms

In a classic story, the famous mathematician Archimedes was asked to determine if
a golden crown commissioned by the king was indeed pure gold, and not part silver,
as an informant had claimed. Archimedes discovered a way to perform this analysis
while stepping into a (Greek) bath. He noted that water spilled out of the bath in
proportion to the amount of him that went in. Realizing the implications of this
fact, he immediately got out of the bath and ran naked through the city shouting,
“Eureka, eureka!,” for he had discovered an analysis tool (displacement), which,
when combined with a simple scale, could determine if the king’s new crown was
good or not. That is, Archimedes could dip the crown and an equal-weight amount
of gold into a bowl of water to see if they both displaced the same amount. This
discovery was unfortunate for the goldsmith, however, for when Archimedes did
his analysis, the crown displaced more water than an equal-weight lump of pure
gold, indicating that the crown was not, in fact, pure gold.

In this book, we are interested in the design of “good” data structures and algo-
rithms. Simply put, a data structure is a systematic way of organizing and access-
ing data, and an algorithm is a step-by-step procedure for performing some task in
a finite amount of time. These concepts are central to computing, but to be able to
classify some data structures and algorithms as “good,” we must have precise ways
of analyzing them.

The primary analysis tool we use in this book involves characterizing the run-
ning times of algorithms and data structure operations, with space usage also being
of interest. Running time is a natural measure of “goodness,” since time is a pre-
cious resource—computer solutions should run as fast as possible.

In general, the running time of an algorithm or data structure method increases
with the input size, although it may also vary for different inputs of the same size.
Also, the running time is affected by the hardware environment (as reflected in the
processor, clock rate, memory, disk, etc.) and software environment (as reflected in
the operating system, programming language, compiler, interpreter, etc.) in which
the algorithm is implemented, compiled, and executed. All other factors being
equal, the running time of the same algorithm on the same input data is smaller if
the computer has, say, a much faster processor or if the implementation is done in a
program compiled into native machine code instead of an interpreted implementa-
tion run on a virtual machine. Nevertheless, in spite of the possible variations that
come from different environmental factors, we would like to focus on the relation-
ship between the running time of an algorithm and the size of its input.

We are interested in characterizing an algorithm’s running time as a function of
the input size. But what is the proper way of measuring it?

i

i

“main” — 2011/1/13 — 9:10 — page 163 — #185
i

i

i

i

i

i

4.2. Analysis of Algorithms 163

4.2.1 Experimental Studies

If an algorithm has been implemented, we can study its running time by executing
it on various test inputs and recording the actual time spent in each execution. For-
tunately, such measurements can be taken in an accurate manner by using system
calls that are built into the language or operating system (for example, by using the
clock() function or calling the run-time environment with profiling enabled). Such
tests assign a specific running time to a specific input size, but we are interested in
determining the general dependence of running time on the size of the input. In or-
der to determine this dependence, we should perform several experiments on many
different test inputs of various sizes. Then we can visualize the results of such
experiments by plotting the performance of each run of the algorithm as a point
with x-coordinate equal to the input size, n, and y-coordinate equal to the running
time, t. (See Figure 4.3.) From this visualization and the data that supports it, we
can perform a statistical analysis that seeks to fit the best function of the input size
to the experimental data. To be meaningful, this analysis requires that we choose
good sample inputs and test enough of them to be able to make sound statistical
claims about the algorithm’s running time.

50 1000

t (ms)

n

10

20

30

40

50

60

Figure 4.3: Results of an experimental study on the running time of an algorithm.
A dot with coordinates (n, t) indicates that on an input of size n, the running time
of the algorithm is t milliseconds (ms).

i

i

“main” — 2011/1/13 — 9:10 — page 164 — #186
i

i

i

i

i

i

164 Chapter 4. Analysis Tools

While experimental studies of running times are useful, they have three major
limitations:

• Experiments can be done only on a limited set of test inputs; hence, they
leave out the running times of inputs not included in the experiment (and
these inputs may be important).

• We have difficulty comparing the experimental running times of two algo-
rithms unless the experiments were performed in the same hardware and
software environments.

• We have to fully implement and execute an algorithm in order to study its
running time experimentally.

This last requirement is obvious, but it is probably the most time consuming aspect
of performing an experimental analysis of an algorithm. The other limitations im-
pose serious hurdles too, of course. Thus, we would ideally like to have an analysis
tool that allows us to avoid performing experiments.

In the rest of this chapter, we develop a general way of analyzing the running
times of algorithms that:

• Takes into account all possible inputs.
• Allows us to evaluate the relative efficiency of any two algorithms in a way

that is independent from the hardware and software environment.
• Can be performed by studying a high-level description of the algorithm with-

out actually implementing it or running experiments on it.

This methodology aims at associating, with each algorithm, a function f (n) that
characterizes the running time of the algorithm as a function of the input size n.
Typical functions that are encountered include the seven functions mentioned ear-
lier in this chapter.

4.2.2 Primitive Operations

As noted above, experimental analysis is valuable, but it has its limitations. If
we wish to analyze a particular algorithm without performing experiments on its
running time, we can perform an analysis directly on the high-level pseudo-code
instead. We define a set of primitive operations such as the following:

• Assigning a value to a variable
• Calling a function
• Performing an arithmetic operation (for example, adding two numbers)
• Comparing two numbers
• Indexing into an array
• Following an object reference
• Returning from a function

i

i

“main” — 2011/1/13 — 9:10 — page 165 — #187
i

i

i

i

i

i

4.2. Analysis of Algorithms 165

Counting Primitive Operations

Specifically, a primitive operation corresponds to a low-level instruction with an ex-
ecution time that is constant. Instead of trying to determine the specific execution
time of each primitive operation, we simply count how many primitive operations
are executed, and use this number t as a measure of the running time of the algo-
rithm.

This operation count correlates to an actual running time in a specific computer,
since each primitive operation corresponds to a constant-time instruction, and there
are only a fixed number of primitive operations. The implicit assumption in this
approach is that the running times of different primitive operations is fairly similar.
Thus, the number, t, of primitive operations an algorithm performs is proportional
to the actual running time of that algorithm.

An algorithm may run faster on some inputs than it does on others of the same
size. Thus, we may wish to express the running time of an algorithm as the function
of the input size obtained by taking the average over all possible inputs of the same
size. Unfortunately, such an average-case analysis is typically quite challenging.
It requires us to define a probability distribution on the set of inputs, which is often
a difficult task. Figure 4.4 schematically shows how, depending on the input distri-
bution, the running time of an algorithm can be anywhere between the worst-case
time and the best-case time. For example, what if inputs are really only of types
“A” or “D”?

Input Instance

R
un

ni
ng

 T
im

e

1 ms

2 ms

3 ms

4 ms

5 ms

A B C D E F G

worst-case time

best-case time

}average-case time?

Figure 4.4: The difference between best-case and worst-case time. Each bar repre-
sents the running time of some algorithm on a different possible input.

i

i

“main” — 2011/1/13 — 9:10 — page 166 — #188
i

i

i

i

i

i

166 Chapter 4. Analysis Tools

Focusing on the Worst Case

An average-case analysis usually requires that we calculate expected running times
based on a given input distribution, which usually involves sophisticated probability
theory. Therefore, for the remainder of this book, unless we specify otherwise, we
characterize running times in terms of the worst case, as a function of the input
size, n, of the algorithm.

Worst-case analysis is much easier than average-case analysis, as it requires
only the ability to identify the worst-case input, which is often simple. Also, this
approach typically leads to better algorithms. Making the standard of success for
an algorithm to perform well in the worst case necessarily requires that it does well
on every input. That is, designing for the worst case leads to stronger algorithmic
“muscles,” much like a track star who always practices by running up an incline.

4.2.3 Asymptotic Notation

In general, each basic step in a pseudo-code description or a high-level language
implementation corresponds to a small number of primitive operations (except for
function calls, of course). Thus, we can perform a simple analysis of an algorithm
written in pseudo-code that estimates the number of primitive operations executed
up to a constant factor, by pseudo-code steps (but we must be careful, since a single
line of pseudo-code may denote a number of steps in some cases).

In algorithm analysis, we focus on the growth rate of the running time as a
function of the input size n, taking a “big-picture” approach. It is often enough just
to know that the running time of an algorithm such as arrayMax, shown in Code
Fragment 4.1, grows proportionally to n, with its true running time being n times a
constant factor that depends on the specific computer.

We analyze algorithms using a mathematical notation for functions that disre-
gards constant factors. Namely, we characterize the running times of algorithms by
using functions that map the size of the input, n, to values that correspond to the
main factor that determines the growth rate in terms of n. This approach allows us
to focus on the “big-picture” aspects of an algorithm’s running time.

Algorithm arrayMax(A,n):
Input: An array A storing n≥ 1 integers.
Output: The maximum element in A.

currMax← A[0]
for i← 1 to n−1 do

if currMax < A[i] then
currMax← A[i]

return currMax
Code Fragment 4.1: Algorithm arrayMax.

i

i

“main” — 2011/1/13 — 9:10 — page 167 — #189
i

i

i

i

i

i

4.2. Analysis of Algorithms 167

The “Big-Oh” Notation

Let f (n) and g(n) be functions mapping nonnegative integers to real numbers. We
say that f (n) is O(g(n)) if there is a real constant c > 0 and an integer constant
n0 ≥ 1 such that

f (n) ≤ cg(n), for n≥ n0.

This definition is often referred to as the “big-Oh” notation, for it is sometimes
pronounced as “ f (n) is big-Oh of g(n).” Alternatively, we can also say “ f (n) is
order of g(n).” (This definition is illustrated in Figure 4.5.)

Input Size

R
un

ni
ng

 T
im

e

cg(n)

f(n)

n0

Figure 4.5: The “big-Oh” notation. The function f (n) is O(g(n)), since f (n) ≤
c ·g(n) when n≥ n0.

Example 4.6: The function 8n−2 is O(n).

Justification: By the big-Oh definition, we need to find a real constant c > 0 and
an integer constant n0 ≥ 1 such that 8n−2≤ cn for every integer n≥ n0. It is easy
to see that a possible choice is c = 8 and n0 = 1. Indeed, this is one of infinitely
many choices available because any real number greater than or equal to 8 works
for c, and any integer greater than or equal to 1 works for n0.

The big-Oh notation allows us to say that a function f (n) is “less than or equal
to” another function g(n) up to a constant factor and in the asymptotic sense as n
grows toward infinity. This ability comes from the fact that the definition uses “≤”
to compare f (n) to a g(n) times a constant, c, for the asymptotic cases when n≥ n0.

i

i

“main” — 2011/1/13 — 9:10 — page 168 — #190
i

i

i

i

i

i

168 Chapter 4. Analysis Tools

Characterizing Running Times using the Big-Oh Notation

The big-Oh notation is used widely to characterize running times and space bounds
in terms of some parameter n, which varies from problem to problem, but is always
defined as a chosen measure of the “size” of the problem. For example, if we are
interested in finding the largest element in an array of integers, as in the arrayMax
algorithm, we should let n denote the number of elements of the array. Using the
big-Oh notation, we can write the following mathematically precise statement on
the running time of algorithm arrayMax for any computer.

Proposition 4.7: The Algorithm arrayMax, for computing the maximum element
in an array of n integers, runs in O(n) time.

Justification: The number of primitive operations executed by algorithm array-
Max in each iteration is a constant. Hence, since each primitive operation runs in
constant time, we can say that the running time of algorithm arrayMax on an input
of size n is at most a constant times n, that is, we may conclude that the running
time of algorithm arrayMax is O(n).

Some Properties of the Big-Oh Notation

The big-Oh notation allows us to ignore constant factors and lower order terms and
focus on the main components of a function that affect its growth.

Example 4.8: 5n4 + 3n3 + 2n2 + 4n+ 1 is O(n4).

Justification: Note that 5n4 +3n3 +2n2 +4n+1≤ (5+3+2+4+1)n4 = cn4,
for c = 15, when n≥ n0 = 1.

In fact, we can characterize the growth rate of any polynomial function.

Proposition 4.9: If f (n) is a polynomial of degree d, that is,

f (n) = a0 + a1n+ · · ·+ adnd ,

and ad > 0, then f (n) is O(nd).

Justification: Note that, for n≥ 1, we have 1≤ n≤ n2 ≤ ·· · ≤ nd ; hence,

a0 + a1n+ a2n2 + · · ·+ adnd ≤ (a0 + a1 + a2 + · · ·+ ad)n
d .

Therefore, we can show f (n) is O(nd) by defining c = a0 +a1 + · · ·+ad and n0 = 1.

Thus, the highest-degree term in a polynomial is the term that determines the
asymptotic growth rate of that polynomial. We consider some additional properties
of the big-Oh notation in the exercises. Let us consider some further examples
here, however, focusing on combinations of the seven fundamental functions used
in algorithm design.

i

i

“main” — 2011/1/13 — 9:10 — page 169 — #191
i

i

i

i

i

i

4.2. Analysis of Algorithms 169

Example 4.10: 5n2 + 3n log n+ 2n+ 5 is O(n2).

Justification: 5n2 +3n log n+2n+5≤ (5+3+2+5)n2 = cn2, for c = 15, when
n≥ n0 = 2 (note that n log n is zero for n = 1).

Example 4.11: 20n3 + 10n log n+ 5 is O(n3).

Justification: 20n3 + 10n log n+ 5≤ 35n3, for n≥ 1.

Example 4.12: 3log n+ 2 is O(logn).

Justification: 3logn + 2 ≤ 5log n, for n ≥ 2. Note that logn is zero for n = 1.
That is why we use n≥ n0 = 2 in this case.

Example 4.13: 2n+2 is O(2n).

Justification: 2n+2 = 2n22 = 4 ·2n; hence, we can take c = 4 and n0 = 1 in this
case.

Example 4.14: 2n+ 100log n is O(n).

Justification: 2n+100log n≤ 102n, for n≥ n0 = 2; hence, we can take c = 102
in this case.

Characterizing Functions in Simplest Terms

In general, we should use the big-Oh notation to characterize a function as closely
as possible. While it is true that the function f (n) = 4n3 + 3n2 is O(n5) or even
O(n4), it is more accurate to say that f (n) is O(n3). Consider, by way of analogy,
a scenario where a hungry traveler driving along a long country road happens upon
a local farmer walking home from a market. If the traveler asks the farmer how
much longer he must drive before he can find some food, it may be truthful for the
farmer to say, “certainly no longer than 12 hours,” but it is much more accurate
(and helpful) for him to say, “you can find a market just a few minutes drive up this
road.” Thus, even with the big-Oh notation, we should strive as much as possible
to tell the whole truth.

It is also considered poor taste to include constant factors and lower order terms
in the big-Oh notation. For example, it is not fashionable to say that the function
2n2 is O(4n2 + 6n log n), although this is completely correct. We should strive
instead to describe the function in the big-Oh in simplest terms.

The seven functions listed in Section 4.1 are the most common functions used
in conjunction with the big-Oh notation to characterize the running times and space
usage of algorithms. Indeed, we typically use the names of these functions to refer
to the running times of the algorithms they characterize. So, for example, we would
say that an algorithm that runs in worst-case time 4n2 + n logn is a quadratic-time
algorithm, since it runs in O(n2) time. Likewise, an algorithm running in time at
most 5n+ 20log n+ 4 would be called a linear-time algorithm.

i

i

“main” — 2011/1/13 — 9:10 — page 170 — #192
i

i

i

i

i

i

170 Chapter 4. Analysis Tools

Big-Omega

Just as the big-Oh notation provides an asymptotic way of saying that a function is
“less than or equal to” another function, the following notations provide an asymp-
totic way of saying that a function grows at a rate that is “greater than or equal to”
that of another.

Let f (n) and g(n) be functions mapping nonnegative integers to real numbers.
We say that f (n) is Ω(g(n)) (pronounced “ f (n) is big-Omega of g(n)”) if g(n) is
O(f (n)), that is, there is a real constant c > 0 and an integer constant n0 ≥ 1 such
that

f (n) ≥ cg(n), for n≥ n0.

This definition allows us to say asymptotically that one function is greater than or
equal to another, up to a constant factor.

Example 4.15: 3n log n+ 2n is Ω(n log n).

Justification: 3n log n+ 2n≥ 3n log n, for n≥ 2.

Big-Theta

In addition, there is a notation that allows us to say that two functions grow at the
same rate, up to constant factors. We say that f (n) is Θ(g(n)) (pronounced “ f (n)
is big-Theta of g(n)”) if f (n) is O(g(n)) and f (n) is Ω(g(n)), that is, there are real
constants c′ > 0 and c′′ > 0, and an integer constant n0 ≥ 1 such that

c′g(n)≤ f (n) ≤ c′′g(n), for n≥ n0.

Example 4.16: 3n log n+ 4n+ 5logn is Θ(n log n).

Justification: 3n log n≤ 3n log n+ 4n+ 5logn≤ (3+ 4+ 5)n logn for n≥ 2.

4.2.4 Asymptotic Analysis

Suppose two algorithms solving the same problem are available: an algorithm A,
which has a running time of O(n), and an algorithm B, which has a running time
of O(n2). Which algorithm is better? We know that n is O(n2), which implies that
algorithm A is asymptotically better than algorithm B, although for a small value
of n, B may have a lower running time than A.

We can use the big-Oh notation to order classes of functions by asymptotic
growth rate. Our seven functions are ordered by increasing growth rate in the se-
quence below, that is, if a function f (n) precedes a function g(n) in the sequence,
then f (n) is O(g(n)):

1 logn n n log n n2 n3 2n.

i

i

“main” — 2011/1/13 — 9:10 — page 171 — #193
i

i

i

i

i

i

4.2. Analysis of Algorithms 171

We illustrate the growth rates of some important functions in Table 4.2.

n logn n n logn n2 n3 2n

8 3 8 24 64 512 256
16 4 16 64 256 4,096 65,536
32 5 32 160 1,024 32,768 4,294,967,296
64 6 64 384 4,096 262,144 1.84× 1019

128 7 128 896 16,384 2,097,152 3.40× 1038

256 8 256 2,048 65,536 16,777,216 1.15× 1077

512 9 512 4,608 262,144 134,217,728 1.34× 10154

Table 4.2: Selected values of fundamental functions in algorithm analysis.

We further illustrate the importance of the asymptotic viewpoint in Table 4.3.
This table explores the maximum size allowed for an input instance that is pro-
cessed by an algorithm in 1 second, 1 minute, and 1 hour. It shows the importance
of good algorithm design, because an asymptotically slow algorithm is beaten in
the long run by an asymptotically faster algorithm, even if the constant factor for
the asymptotically faster algorithm is worse.

Running Maximum Problem Size (n)
Time (µs) 1 second 1 minute 1 hour

400n 2,500 150,000 9,000,000
2n2 707 5,477 42,426
2n 19 25 31

Table 4.3: Maximum size of a problem that can be solved in 1 second, 1 minute,
and 1 hour, for various running times measured in microseconds.

The importance of good algorithm design goes beyond just what can be solved
effectively on a given computer, however. As shown in Table 4.4, even if we
achieve a dramatic speed-up in hardware, we still cannot overcome the handicap
of an asymptotically slow algorithm. This table shows the new maximum problem
size achievable for any fixed amount of time, assuming algorithms with the given
running times are now run on a computer 256 times faster than the previous one.

Running Time New Maximum Problem Size
400n 256m
2n2 16m
2n m + 8

Table 4.4: Increase in the maximum size of a problem that can be solved in a fixed
amount of time by using a computer that is 256 times faster than the previous one.
Each entry is a function of m, the previous maximum problem size.

i

i

“main” — 2011/1/13 — 9:10 — page 172 — #194
i

i

i

i

i

i

172 Chapter 4. Analysis Tools

4.2.5 Using the Big-Oh Notation

Having made the case of using the big-Oh notation for analyzing algorithms, let
us briefly discuss a few issues concerning its use. It is considered poor taste, in
general, to say “ f (n) ≤ O(g(n)),” since the big-Oh already denotes the “less-than-
or-equal-to” concept. Likewise, although common, it is not fully correct to say
“ f (n) = O(g(n))” (with the usual understanding of the “=” relation), since there
is no way to make sense of the statement “O(g(n)) = f (n).” In addition, it is
completely wrong to say “ f (n) ≥ O(g(n))” or “ f (n) > O(g(n)),” since the g(n) in
the big-Oh expresses an upper bound on f (n). It is best to say,

“ f (n) is O(g(n)).”

For the more mathematically inclined, it is also correct to say,

“ f (n) ∈ O(g(n)),”

for the big-Oh notation is, technically speaking, denoting a whole collection of
functions. In this book, we stick to presenting big-Oh statements as “ f (n) is
O(g(n)).” Even with this interpretation, there is considerable freedom in how
we can use arithmetic operations with the big-Oh notation, and with this freedom
comes a certain amount of responsibility.

Some Words of Caution

A few words of caution about asymptotic notation are in order at this point. First,
note that the use of the big-Oh and related notations can be somewhat misleading
should the constant factors they “hide” be very large. For example, while it is
true that the function 10100n is O(n), if this is the running time of an algorithm
being compared to one whose running time is 10n log n, we prefer the O(n logn)
time algorithm, even though the linear-time algorithm is asymptotically faster. This
preference is because the constant factor, 10100, which is called “one googol,” is
believed by many astronomers to be an upper bound on the number of atoms in
the observable universe. So we are unlikely to ever have a real-world problem that
has this number as its input size. Thus, even when using the big-Oh notation, we
should at least be somewhat mindful of the constant factors and lower order terms
we are “hiding.”

The observation above raises the issue of what constitutes a “fast” algorithm.
Generally speaking, any algorithm running in O(n logn) time (with a reasonable
constant factor) should be considered efficient. Even an O(n2) time method may
be fast enough in some contexts, that is, when n is small. But an algorithm running
in O(2n) time should almost never be considered efficient.

i

i

“main” — 2011/1/13 — 9:10 — page 173 — #195
i

i

i

i

i

i

4.2. Analysis of Algorithms 173

Exponential Running Times

There is a famous story about the inventor of the game of chess. He asked only that
his king pay him 1 grain of rice for the first square on the board, 2 grains for the
second, 4 grains for the third, 8 for the fourth, and so on. It is an interesting test of
programming skills to write a program to compute exactly the number of grains of
rice the king would have to pay. In fact, any C++ program written to compute this
number in a single integer value causes an integer overflow to occur (although the
run-time machine probably won’t complain).

If we must draw a line between efficient and inefficient algorithms, therefore,
it is natural to make this distinction be that between those algorithms running in
polynomial time and those running in exponential time. That is, make the distinc-
tion between algorithms with a running time that is O(nc), for some constant c > 1,
and those with a running time that is O(bn), for some constant b > 1. Like so many
notions we have discussed in this section, this too should be taken with a “grain of
salt,” for an algorithm running in O(n100) time should probably not be considered
“efficient.” Even so, the distinction between polynomial-time and exponential-time
algorithms is considered a robust measure of tractability.

To summarize, the asymptotic notations of big-Oh, big-Omega, and big-Theta
provide a convenient language for us to analyze data structures and algorithms. As
mentioned earlier, these notations provide convenience because they let us concen-
trate on the “big picture” rather than low-level details.

Two Examples of Asymptotic Algorithm Analysis

We conclude this section by analyzing two algorithms that solve the same problem
but have rather different running times. The problem we are interested in is the
one of computing the so-called prefix averages of a sequence of numbers. Namely,
given an array X storing n numbers, we want to compute an array A such that A[i]
is the average of elements X [0], . . . ,X [i], for i = 0, . . . ,n−1, that is,

A[i] =
∑i

j=0 X [j]

i+ 1
.

Computing prefix averages has many applications in economics and statistics. For
example, given the year-by-year returns of a mutual fund, an investor typically
wants to see the fund’s average annual returns for the last year, the last three years,
the last five years, and the last ten years. Likewise, given a stream of daily Web
usage logs, a Web site manager may wish to track average usage trends over various
time periods.

i

i

“main” — 2011/1/13 — 9:10 — page 174 — #196
i

i

i

i

i

i

174 Chapter 4. Analysis Tools

A Quadratic-Time Algorithm

Our first algorithm for the prefix averages problem, called prefixAverages1, is
shown in Code Fragment 4.2. It computes every element of A separately, following
the definition.

Algorithm prefixAverages1(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that A[i] is

the average of elements X [0], . . . ,X [i].

Let A be an array of n numbers.
for i← 0 to n−1 do

a← 0
for j← 0 to i do

a← a+ X [j]
A[i]← a/(i+ 1)

return array A

Code Fragment 4.2: Algorithm prefixAverages1.

Let us analyze the prefixAverages1 algorithm.

• Initializing and returning array A at the beginning and end can be done with
a constant number of primitive operations per element and takes O(n) time.

• There are two nested for loops that are controlled by counters i and j, re-
spectively. The body of the outer loop, controlled by counter i, is executed
n times for i = 0, . . . ,n− 1. Thus, statements a = 0 and A[i] = a/(i + 1) are
executed n times each. This implies that these two statements, plus the incre-
menting and testing of counter i, contribute a number of primitive operations
proportional to n, that is, O(n) time.

• The body of the inner loop, which is controlled by counter j, is executed
i+1 times, depending on the current value of the outer loop counter i. Thus,
statement a = a+X [j] in the inner loop is executed 1+2+3+ · · ·+n times.
By recalling Proposition 4.3, we know that 1+ 2+ 3+ · · ·+ n = n(n+ 1)/2,
which implies that the statement in the inner loop contributes O(n2) time. A
similar argument can be done for the primitive operations associated with the
incrementing and testing counter j, which also take O(n2) time.

The running time of algorithm prefixAverages1 is given by the sum of three terms.
The first and the second term are O(n), and the third term is O(n2). By a simple
application of Proposition 4.9, the running time of prefixAverages1 is O(n2).

i

i

“main” — 2011/1/13 — 9:10 — page 175 — #197
i

i

i

i

i

i

4.2. Analysis of Algorithms 175

A Linear-Time Algorithm

In order to compute prefix averages more efficiently, we can observe that two con-
secutive averages A[i−1] and A[i] are similar:

A[i−1] = (X [0]+ X [1]+ · · ·+ X [i−1])/i

A[i] = (X [0]+ X [1]+ · · ·+ X [i−1]+ X [i])/(i+ 1).

If we denote with Si the prefix sum X [0] + X [1] + · · ·+ X [i], we can compute
the prefix averages as A[i] = Si/(i+1). It is easy to keep track of the current prefix
sum while scanning array X with a loop. We are now ready to present Algorithm
prefixAverages2 in Code Fragment 4.3.

Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that A[i] is

the average of elements X [0], . . . ,X [i].

Let A be an array of n numbers.
s← 0
for i← 0 to n−1 do

s← s+ X [i]
A[i]← s/(i+ 1)

return array A

Code Fragment 4.3: Algorithm prefixAverages2.

The analysis of the running time of algorithm prefixAverages2 follows:

• Initializing and returning array A at the beginning and end can be done with
a constant number of primitive operations per element, and takes O(n) time.

• Initializing variable s at the beginning takes O(1) time.

• There is a single for loop, which is controlled by counter i. The body of the
loop is executed n times, for i = 0, . . . ,n− 1. Thus, statements s = s + X [i]
and A[i] = s/(i + 1) are executed n times each. This implies that these two
statements plus the incrementing and testing of counter i contribute a number
of primitive operations proportional to n, that is, O(n) time.

The running time of algorithm prefixAverages2 is given by the sum of three terms.
The first and the third term are O(n), and the second term is O(1). By a simple
application of Proposition 4.9, the running time of prefixAverages2 is O(n), which
is much better than the quadratic-time algorithm prefixAverages1.

i

i

“main” — 2011/1/13 — 9:10 — page 176 — #198
i

i

i

i

i

i

176 Chapter 4. Analysis Tools

4.2.6 A Recursive Algorithm for Computing Powers

As a more interesting example of algorithm analysis, let us consider the problem
of raising a number x to an arbitrary nonnegative integer, n. That is, we wish to
compute the power function p(x,n), defined as p(x,n) = xn. This function has an
immediate recursive definition based on linear recursion:

p(x,n) =

{
1 if n = 0
x · p(x,n−1) otherwise

This definition leads immediately to a recursive algorithm that uses O(n) function
calls to compute p(x,n). We can compute the power function much faster than
this, however, by using the following alternative definition, also based on linear
recursion, which employs a squaring technique:

p(x,n) =






1 if n = 0
x · p(x,(n−1)/2)2 if n > 0 is odd
p(x,n/2)2 if n > 0 is even

To illustrate how this definition works, consider the following examples:

24 = 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16

25 = 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32

26 = 2(6/2)2 = (26/2)2 = (23)2 = 82 = 64

27 = 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128

This definition suggests the algorithm of Code Fragment 4.4.

Algorithm Power(x,n):
Input: A number x and integer n≥ 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y← Power(x,(n−1)/2)
return x · y · y

else
y← Power(x,n/2)
return y · y

Code Fragment 4.4: Computing the power function using linear recursion.

To analyze the running time of the algorithm, we observe that each recur-
sive call of function Power(x,n) divides the exponent, n, by two. Thus, there
are O(logn) recursive calls, not O(n). That is, by using linear recursion and the
squaring technique, we reduce the running time for the computation of the power
function from O(n) to O(logn), which is a big improvement.

i

i

“main” — 2011/1/13 — 9:10 — page 177 — #199
i

i

i

i

i

i

4.2. Analysis of Algorithms 177

4.2.7 Some More Examples of Algorithm Analysis

Now that we have the big-Oh notation for doing algorithm analysis, let us give some
more examples of simple algorithms that can have their running times characterized
using this notation. Moreover, in keeping with our earlier promise, we illustrate
below how each of the seven functions given earlier in this chapter can be used to
characterize the running time of an example algorithm.

A Constant-Time Method

To illustrate a constant-time algorithm, consider the following C++ function, which
returns the size of an STL vector, that is, the current number of cells in the array:

int capacity(const vector<int>& arr) {
return arr.size();

}

This is a very simple algorithm, because the size of a vector is stored as a
member variable in the vector object, so it takes only a constant-time lookup to
return this value. Thus, the capacity function runs in O(1) time; that is, the running
time of this function is independent of the value of n, the size of the array.

Revisiting the Method for Finding the Maximum in an Array

For our next example, let us reconsider a simple problem studied earlier, finding
the largest value in an array of integers. We assume that the array is stored as an
STL vector. This can be done in C++ as follows:

int findMax(const vector<int>& arr) {
int max = arr[0];

for (int i = 1; i < arr.size(); i++) {
if (max < arr[i]) max = arr[i];

}
return max;

}

This function, which amounts to a C++ implementation of the arrayMax al-
gorithm of Section 4.2.3, compares each of the n elements in the input array to a
current maximum, and each time it finds an element larger than the current maxi-
mum, it updates the current maximum to be this value. Thus, it spends a constant
amount of time for each of the n elements in the array; hence, as with the pseudo-
code version of the arrayMax algorithm, the running time of this algorithm is O(n).

i

i

“main” — 2011/1/13 — 9:10 — page 178 — #200
i

i

i

i

i

i

178 Chapter 4. Analysis Tools

Further Analysis of the Maximum-Finding Algorithm

A more interesting question, with respect to the above maximum-finding algorithm,
is to ask how many times we update the current maximum value. Note that this
statement is executed only if we encounter a value of the array that is larger than
our current maximum. In the worst case, this condition could be true each time
we perform the test. For instance, this situation would occur if the input array is
given to us in sorted order. Thus, in the worst-case, the statement max = arr[i] is
performed n−1 times, hence O(n) times.

But what if the input array is given to us in random order, with all orders equally
likely; what would be the expected number of times we updated the maximum value
in this case? To answer this question, note that we update the current maximum in
the ith iteration only if the ith element in the array is bigger than all the elements
that precede it. But if the array is given to us in random order, the probability that
the ith element is larger than all elements that precede it is 1/i; hence, the expected
number of times we update the maximum in this case is Hn = ∑n

i=1 1/i, which is
known as the nth Harmonic number. It turns out (see Proposition A.16) that Hn is
O(logn). Therefore, the expected number of times the maximum is updated when
the above maximum-finding algorithm is run on a random array is O(logn).

Three-Way Set Disjointness

Suppose we are given three sets, A, B, and C, with these sets stored in three different
integer arrays, a, b, and c, respectively. The three-way set disjointness problem is
to determine if these three sets are disjoint, that is, whether there is no element x
such that x∈ A, x ∈ B, and x ∈C. A simple C++ function to determine this property
is given below:

bool areDisjoint(const vector<int>& a, const vector<int>& b,
const vector<int>& c) {

for (int i = 0; i < a.size(); i++)
for (int j = 0; j < b.size(); j++)

for (int k = 0; k < c.size(); k++)
if ((a[i] == b[j]) && (b[j] == c[k])) return false;

return true;
}

This simple algorithm loops through each possible triple of indices i, j, and k
to check if the respective elements indexed in a, b, and c are equal. Thus, if each of
these arrays is of size n, then the worst-case running time of this function is O(n3).
Moreover, the worst case is achieved when the sets are disjoint, since in this case
we go through all n3 triples of valid indices, i, j, and k. Such a running time would
generally not be considered very efficient, but, fortunately, there is a better way to
solve this problem, which we explore in Exercise C-4.3.

i

i

“main” — 2011/1/13 — 9:10 — page 179 — #201
i

i

i

i

i

i

4.2. Analysis of Algorithms 179

Recursion Run Amok

The next few example algorithms we study are for solving the element uniqueness
problem, in which we are given a range, i, i + 1, . . . , j, of indices for an array, A,
which we assume is given as an STL vector. We want to determine if the elements
of this range, A[i],A[i + 1], . . . ,A[j], are all unique, that is, there is no repeated
element in this group of array entries. The first algorithm we give for solving the
element uniqueness problem is a recursive one. But it uses recursion in a very
inefficient manner, as shown in the following C++ implementation.

bool isUnique(const vector<int>& arr, int start, int end) {
if (start >= end) return true;
if (!isUnique(arr, start, end−1))

return false;
if (!isUnique(arr, start+1, end))

return false;
return (arr[start] != arr[end]);
}

You should first convince yourself that the function is correct. To analyze this
recursive algorithm’s running time, let us first determine how much time we spend
outside of recursive calls in any invocation of this function. Note, in particular, that
there are no loops—just comparisons, arithmetic operations, array element refer-
ences, and function returns. Thus, the nonrecursive part of each function invocation
runs in constant time, that is, O(1) time; hence, to determine the worst-case run-
ning time of this function we only need to determine the worst-case total number
of calls we make to the isUnique function.

Let n denote the number of entries under consideration, that is, let

n = end− start + 1.

If n = 1, then the running time of the isUnique is O(1), since there are no recursive
calls for this case. To characterize the running time of the general case, the impor-
tant observation to make is that in order to solve a problem of size n, the isUnique
function makes two recursive calls on problems of size n− 1. Thus, in the worst
case, a call for a range of size n makes two calls on ranges of size n− 1, which
each make two calls on ranges of size n−2, which each make two calls on ranges
of size n−3, and so on. Thus, in the worst case, the total number of function calls
is given by the geometric summation

1+ 2+ 4+ · · ·+ 2n−1,

which is equal to 2n− 1 by Proposition 4.5. Thus, the worst-case running time of
function isUnique is O(2n). This is an incredibly inefficient method for solving the
element uniqueness problem. Its inefficiency comes not from the fact that it uses
recursion—it comes from the fact that it uses recursion poorly, which is something
we address in Exercise C-4.2.

i

i

“main” — 2011/1/13 — 9:10 — page 180 — #202
i

i

i

i

i

i

180 Chapter 4. Analysis Tools

An Iterative Method for Solving the Element Uniqueness Problem

We can do much better than the above exponential-time method by using the fol-
lowing iterative algorithm:

bool isUniqueLoop(const vector<int>& arr, int start, int end) {
if (start >= end) return true;
for (int i = start; i < end; i++)

for (int j = i+1; j <= end; j++)
if (arr[i] == arr[j]) return false;

return true;
}

This function solves the element uniqueness problem by looping through all
distinct pairs of indices, i and j, and checking if any of them indexes a pair of
elements that are equal to each other. It does this using two nested for loops, such
that the first iteration of the outer loop causes n−1 iterations of the inner loop, the
second iteration of the outer loop causes n−2 iterations of the inner loop, the third
iteration of the outer loop causes n−3 iterations of the inner loop, and so on. Thus,
the worst-case running time of this function is proportional to

1+ 2+ 3+ · · ·+(n−1),

which is O(n2) as we saw earlier in this chapter (Proposition 4.3).

Using Sorting as a Problem-Solving Tool

An even better algorithm for the element uniqueness problem is based on using
sorting as a problem-solving tool. In this case, by sorting an array of elements, we
are guaranteed that any duplicate elements will be placed next to each other. Thus,
it suffices to sort the array and look for duplicates among consecutive elements. A
C++ implementation of this algorithm follows.

bool isUniqueSort(const vector<int>& arr, int start, int end) {
if (start >= end) return true;
vector<int> buf(arr); // duplicate copy of arr
sort(buf.begin()+start, buf.begin()+end); // sort the subarray
for (int i = start; i < end; i++) // check for duplicates

if (buf[i] == buf[i+1]) return false;
return true;
}

The function sort is provided by the STL. On most systems, it runs in O(n logn)
time. Since the other steps run in O(n) time, the entire algorithm runs in O(n logn)
time. Incidentally, we can solve the element uniqueness problem even faster, at
least in terms of its average-case running time, by using the hash table data structure
we explore in Section 9.2.

i

i

“main” — 2011/1/13 — 9:10 — page 181 — #203
i

i

i

i

i

i

4.3. Simple Justification Techniques 181

4.3 Simple Justification Techniques

Sometimes, we want to make claims about an algorithm, such as showing that it is
correct or that it runs fast. In order to rigorously make such claims, we must use
mathematical language, and in order to back up such claims, we must justify or
prove our statements. Fortunately, there are several simple ways to do this.

4.3.1 By Example

Some claims are of the generic form, “There is an element x in a set S that has
property P.” To justify such a claim, we only need to produce a particular x in S
that has property P. Likewise, some hard-to-believe claims are of the generic form,
“Every element x in a set S has property P.” To justify that such a claim is false, we
only need to produce a particular x from S that does not have property P. Such an
instance is called a counterexample.

Example 4.17: Professor Amongus claims that every number of the form 2i− 1
is a prime, when i is an integer greater than 1. Professor Amongus is wrong.

Justification: To prove Professor Amongus is wrong, we find a counter-example.
Fortunately, we need not look too far, for 24−1 = 15 = 3 ·5.

4.3.2 The “Contra” Attack

Another set of justification techniques involves the use of the negative. The two
primary such methods are the use of the contrapositive and the contradiction. The
use of the contrapositive method is like looking through a negative mirror. To
justify the statement “if p is true, then q is true” we establish that “if q is not true,
then p is not true” instead. Logically, these two statements are the same, but the
latter, which is called the contrapositive of the first, may be easier to think about.

Example 4.18: Let a and b be integers. If ab is even, then a is even or b is even.

Justification: To justify this claim, consider the contrapositive, “If a is odd and
b is odd, then ab is odd.” So, suppose a = 2i+ 1 and b = 2 j + 1, for some integers
i and j. Then ab = 4i j + 2i+ 2 j + 1 = 2(2i j + i+ j)+ 1; hence, ab is odd.

Besides showing a use of the contrapositive justification technique, the previous
example also contains an application of DeMorgan’s Law. This law helps us deal
with negations, for it states that the negation of a statement of the form “p or q” is
“not p and not q.” Likewise, it states that the negation of a statement of the form
“p and q” is “not p or not q.”

i

i

“main” — 2011/1/13 — 9:10 — page 182 — #204
i

i

i

i

i

i

182 Chapter 4. Analysis Tools

Contradiction

Another negative justification technique is justification by contradiction, which
also often involves using DeMorgan’s Law. In applying the justification by con-
tradiction technique, we establish that a statement q is true by first supposing that
q is false and then showing that this assumption leads to a contradiction (such as
2 6= 2 or 1 > 3). By reaching such a contradiction, we show that no consistent sit-
uation exists with q being false, so q must be true. Of course, in order to reach this
conclusion, we must be sure our situation is consistent before we assume q is false.

Example 4.19: Let a and b be integers. If ab is odd, then a is odd and b is odd.

Justification: Let ab be odd. We wish to show that a is odd and b is odd. So,
with the hope of leading to a contradiction, let us assume the opposite, namely,
suppose a is even or b is even. In fact, without loss of generality, we can assume
that a is even (since the case for b is symmetric). Then a = 2i for some integer i.
Hence, ab = (2i)b = 2(ib), that is, ab is even. But this is a contradiction: ab cannot
simultaneously be odd and even. Therefore a is odd and b is odd.

4.3.3 Induction and Loop Invariants

Most of the claims we make about a running time or a space bound involve an inte-
ger parameter n (usually denoting an intuitive notion of the “size” of the problem).
Moreover, most of these claims are equivalent to saying some statement q(n) is true
“for all n ≥ 1.” Since this is making a claim about an infinite set of numbers, we
cannot justify this exhaustively in a direct fashion.

Induction

We can often justify claims such as those above as true, however, by using the
technique of induction. This technique amounts to showing that, for any particular
n ≥ 1, there is a finite sequence of implications that starts with something known
to be true and ultimately leads to showing that q(n) is true. Specifically, we begin a
justification by induction by showing that q(n) is true for n = 1 (and possibly some
other values n = 2,3, . . . ,k, for some constant k). Then we justify that the inductive
“step” is true for n > k, namely, we show “if q(i) is true for i < n, then q(n) is true.”
The combination of these two pieces completes the justification by induction.

i

i

“main” — 2011/1/13 — 9:10 — page 183 — #205
i

i

i

i

i

i

4.3. Simple Justification Techniques 183

Proposition 4.20: Consider the Fibonacci function F(n), where we define F(1)=
1, F(2) = 2, and F(n) = F(n− 1)+ F(n− 2) for n > 2. (See Section 2.2.3.) We
claim that F(n) < 2n.

Justification: We show our claim is right by induction.
Base cases: (n≤ 2). F(1) = 1 < 2 = 21 and F(2) = 2 < 4 = 22.
Induction step: (n > 2). Suppose our claim is true for n′ < n. Consider F(n). Since
n > 2, F(n) = F(n− 1)+ F(n− 2). Moreover, since n− 1 < n and n− 2 < n, we
can apply the inductive assumption (sometimes called the “inductive hypothesis”)
to imply that F(n) < 2n−1 + 2n−2, since

2n−1 + 2n−2 < 2n−1 + 2n−1 = 2 ·2n−1 = 2n.

Let us do another inductive argument, this time for a fact we have seen before.

Proposition 4.21: (which is the same as Proposition 4.3)

n

∑
i=1

i =
n(n+ 1)

2
.

Justification: We justify this equality by induction.
Base case: n = 1. Trivial, for 1 = n(n+ 1)/2, if n = 1.
Induction step: n≥ 2. Assume the claim is true for n′ < n. Consider n.

n

∑
i=1

i = n+
n−1

∑
i=1

i.

By the induction hypothesis, then

n

∑
i=1

i = n+
(n−1)n

2
,

which we can simplify as

n+
(n−1)n

2
=

2n+ n2−n
2

=
n2 + n

2
=

n(n+ 1)

2
.

We may sometimes feel overwhelmed by the task of justifying something true
for all n≥ 1. We should remember, however, the concreteness of the inductive tech-
nique. It shows that, for any particular n, there is a finite step-by-step sequence of
implications that starts with something true and leads to the truth about n. In short,
the inductive argument is a formula for building a sequence of direct justifications.

i

i

“main” — 2011/1/13 — 9:10 — page 184 — #206
i

i

i

i

i

i

184 Chapter 4. Analysis Tools

Loop Invariants

The final justification technique we discuss in this section is the loop invariant. To
prove some statement S about a loop is correct, define S in terms of a series of
smaller statements S0,S1, . . . ,Sk, where:

1. The initial claim, S0, is true before the loop begins.
2. If Si−1 is true before iteration i, then Si is true after iteration i.
3. The final statement, Sk, implies the statement S that we wish to be true.

Let us give a simple example of using a loop-invariant argument to justify the
correctness of an algorithm. In particular, let us consider using a loop invariant to
justify the correctness of arrayFind, shown in Code Fragment 4.5, for finding an
element x in an array A.

Algorithm arrayFind(x,A):
Input: An element x and an n-element array, A.
Output: The index i such that x = A[i] or −1 if no element of A is equal to x.

i← 0
while i < n do

if x = A[i] then
return i

else
i← i+ 1

return −1

Code Fragment 4.5: Algorithm arrayFind for finding a given element in an array.

To show that arrayFind is correct, we inductively define a series of statements,
Si, that lead to the correctness of our algorithm. Specifically, we claim the follow-
ing is true at the beginning of iteration i of the while loop:

Si: x is not equal to any of the first i elements of A.
This claim is true at the beginning of the first iteration of the loop, since there are
no elements among the first 0 in A (this kind of a trivially true claim is said to hold
vacuously). In iteration i, we compare element x to element A[i] and return the
index i if these two elements are equal, which is clearly correct and completes the
algorithm in this case. If the two elements x and A[i] are not equal, then we have
found one more element not equal to x and we increment the index i. Thus, the
claim Si is true for this new value of i; hence, it is true at the beginning of the next
iteration. If the while-loop terminates without ever returning an index in A, then we
have i = n. That is, Sn is true—there are no elements of A equal to x. Therefore,
the algorithm correctly returns −1 to indicate that x is not in A.

i

i

“main” — 2011/1/13 — 9:10 — page 185 — #207
i

i

i

i

i

i

4.4. Exercises 185

4.4 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-4.1 There is a well-known city (which will go nameless here) whose inhabi-
tants have the reputation of enjoying a meal only if that meal is the best
they have ever experienced in their life. Otherwise, they hate it. Assum-
ing meal quality is distributed uniformly across a person’s life, what is
the expected number of times inhabitants of this city are happy with their
meals?

R-4.2 Give a pseudo-code description of the O(n)-time algorithm for computing
the power function p(x,n). Also, draw the recursion trace of this algorithm
for the computation of p(2,5).

R-4.3 Give a C++ description of Algorithm Power for computing the power
function p(x,n) (Code Fragment 4.4).

R-4.4 Draw the recursion trace of the Power algorithm (Code Fragment 4.4,
which computes the power function p(x,n)) for computing p(2,9).

R-4.5 Analyze the running time of Algorithm BinarySum (Code Fragment 3.41)
for arbitrary values of the input parameter n.

R-4.6 Graph the functions 8n, 4n log n, 2n2, n3, and 2n using a logarithmic scale
for the x- and y-axes. That is, if the function is f (n) is y, plot this as a
point with x-coordinate at logn and y-coordinate at logy.

R-4.7 The number of operations executed by algorithms A and B is 8n log n and
2n2, respectively. Determine n0 such that A is better than B for n≥ n0.

R-4.8 The number of operations executed by algorithms A and B is 40n2 and
2n3, respectively. Determine n0 such that A is better than B for n≥ n0.

R-4.9 Give an example of a function that is plotted the same on a log-log scale
as it is on a standard scale.

R-4.10 Explain why the plot of the function nc is a straight line with slope c on a
log-log scale.

R-4.11 What is the sum of all the even numbers from 0 to 2n, for any positive
integer n?

R-4.12 Show that the following two statements are equivalent:

(a) The running time of algorithm A is always O(f (n)).

(b) In the worst case, the running time of algorithm A is O(f (n)).

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 186 — #208
i

i

i

i

i

i

186 Chapter 4. Analysis Tools

R-4.13 Order the following functions by asymptotic growth rate.

4n log n+ 2n 210 2log n

3n+ 100log n 4n 2n

n2 + 10n n3 n log n

R-4.14 Show that if d(n) is O(f (n)), then ad(n) is O(f (n)), for any constant
a > 0.

R-4.15 Show that if d(n) is O(f (n)) and e(n) is O(g(n)), then the product d(n)e(n)
is O(f (n)g(n)).

R-4.16 Give a big-Oh characterization, in terms of n, of the running time of the
Ex1 function shown in Code Fragment 4.6.

R-4.17 Give a big-Oh characterization, in terms of n, of the running time of the
Ex2 function shown in Code Fragment 4.6.

R-4.18 Give a big-Oh characterization, in terms of n, of the running time of the
Ex3 function shown in Code Fragment 4.6.

R-4.19 Give a big-Oh characterization, in terms of n, of the running time of the
Ex4 function shown in Code Fragment 4.6.

R-4.20 Give a big-Oh characterization, in terms of n, of the running time of the
Ex5 function shown in Code Fragment 4.6.

R-4.21 Bill has an algorithm, find2D, to find an element x in an n× n array A.
The algorithm find2D iterates over the rows of A, and calls the algorithm
arrayFind, of Code Fragment 4.5, on each row, until x is found or it has
searched all rows of A. What is the worst-case running time of find2D in
terms of n? What is the worst-case running time of find2D in terms of N,
where N is the total size of A? Would it be correct to say that Find2D is a
linear-time algorithm? Why or why not?

R-4.22 For each function f (n) and time t in the following table, determine the
largest size n of a problem P that can be solved in time t if the algorithm
for solving P takes f (n) microseconds (one entry is already completed).

1 Second 1 Hour 1 Month 1 Century

logn ≈ 10300000

n

n logn

n2

2n

R-4.23 Show that if d(n) is O(f (n)) and e(n) is O(g(n)), then d(n) + e(n) is
O(f (n)+ g(n)).

i

i

“main” — 2011/1/13 — 9:10 — page 187 — #209
i

i

i

i

i

i

4.4. Exercises 187

Algorithm Ex1(A):
Input: An array A storing n≥ 1 integers.
Output: The sum of the elements in A.

s← A[0]
for i← 1 to n−1 do

s← s+ A[i]
return s

Algorithm Ex2(A):
Input: An array A storing n≥ 1 integers.
Output: The sum of the elements at even cells in A.

s← A[0]
for i← 2 to n−1 by increments of 2 do

s← s+ A[i]
return s

Algorithm Ex3(A):
Input: An array A storing n≥ 1 integers.
Output: The sum of the prefix sums in A.

s← 0
for i← 0 to n−1 do

s← s+ A[0]
for j← 1 to i do

s← s+ A[j]
return s

Algorithm Ex4(A):
Input: An array A storing n≥ 1 integers.
Output: The sum of the prefix sums in A.

s← A[0]
t← s
for i← 1 to n−1 do

s← s+ A[i]
t← t + s

return t
Algorithm Ex5(A,B):

Input: Arrays A and B each storing n≥ 1 integers.
Output: The number of elements in B equal to the sum of prefix sums in A.

c← 0
for i← 0 to n−1 do

s← 0
for j← 0 to n−1 do

s← s+ A[0]
for k← 1 to j do

s← s+ A[k]
if B[i] = s then

c← c + 1
return c

Code Fragment 4.6: Some algorithms.

i

i

“main” — 2011/1/13 — 9:10 — page 188 — #210
i

i

i

i

i

i

188 Chapter 4. Analysis Tools

R-4.24 Show that if d(n) is O(f (n)) and e(n) is O(g(n)), then d(n)− e(n) is not
necessarily O(f (n)−g(n)).

R-4.25 Show that if d(n) is O(f (n)) and f (n) is O(g(n)), then d(n) is O(g(n)).

R-4.26 Show that O(max{ f (n),g(n)}) = O(f (n)+ g(n)).

R-4.27 Show that f (n) is O(g(n)) if and only if g(n) is Ω(f (n)).

R-4.28 Show that if p(n) is a polynomial in n, then log p(n) is O(logn).

R-4.29 Show that (n+ 1)5 is O(n5).

R-4.30 Show that 2n+1 is O(2n).

R-4.31 Show that n is O(n log n).

R-4.32 Show that n2 is Ω(n log n).

R-4.33 Show that n log n is Ω(n).

R-4.34 Show that ⌈ f (n)⌉ is O(f (n)), if f (n) is a positive nondecreasing function
that is always greater than 1.

R-4.35 Algorithm A executes an O(log n)-time computation for each entry of an
n-element array. What is the worst-case running time of Algorithm A?

R-4.36 Given an n-element array X , Algorithm B chooses log n elements in X
at random and executes an O(n)-time calculation for each. What is the
worst-case running time of Algorithm B?

R-4.37 Given an n-element array X of integers, Algorithm C executes an O(n)-
time computation for each even number in X , and an O(logn)-time com-
putation for each odd number in X . What are the best-case and worst-case
running times of Algorithm C?

R-4.38 Given an n-element array X , Algorithm D calls Algorithm E on each el-
ement X [i]. Algorithm E runs in O(i) time when it is called on element
X [i].What is the worst-case running time of Algorithm D?

R-4.39 Al and Bob are arguing about their algorithms. Al claims his O(n log n)-
time method is always faster than Bob’s O(n2)-time method. To settle the
issue, they perform a set of experiments. To Al’s dismay, they find that if
n < 100, the O(n2)-time algorithm runs faster, and only when n ≥ 100 is
the O(n log n)-time one better. Explain how this is possible.

i

i

“main” — 2011/1/13 — 9:10 — page 189 — #211
i

i

i

i

i

i

4.4. Exercises 189

Creativity

C-4.1 Describe a recursive algorithm to compute the integer part of the base-2
logarithm of n using only addition and integer division.

C-4.2 Describe an efficient recursive method for solving the element uniqueness
problem, which runs in time that is at most O(n2) in the worst case without
using sorting.

C-4.3 Assuming it is possible to sort n numbers in O(n log n) time, show that it
is possible to solve the three-way set disjointness problem in O(n logn)
time.

C-4.4 Describe an efficient algorithm for finding the 10 largest elements in an
array of size n. What is the running time of your algorithm?

C-4.5 Suppose you are given an n-element array A containing distinct integers
that are listed in increasing order. Given a number k, describe a recursive
algorithm to find two integers in A that sum to k, if such a pair exists.
What is the running time of your algorithm?

C-4.6 Given an n-element unsorted array A of n integers and an integer k, de-
scribe a recursive algorithm for rearranging the elements in A so that all
elements less than or equal to k come before any elements larger than k.
What is the running time of your algorithm?

C-4.7 Communication security is extremely important in computer networks,
and one way many network protocols achieve security is to encrypt mes-
sages. Typical cryptographic schemes for the secure transmission of mes-
sages over such networks are based on the fact that no efficient algorithms
are known for factoring large integers. Hence, if we can represent a secret
message by a large prime number p, we can transmit, over the network,
the number r = p ·q, where q > p is another large prime number that acts
as the encryption key. An eavesdropper who obtains the transmitted num-
ber r on the network would have to factor r in order to figure out the secret
message p.
Using factoring to figure out a message is very difficult without knowing
the encryption key q. To understand why, consider the following naive
factoring algorithm:

for p = 2, · · · ,r−1 do
if p divides r then

return “The secret message is p!”

a. Suppose that the eavesdropper uses the above algorithm and has a
computer that can carry out in 1 microsecond (1 millionth of a sec-
ond) a division between two integers of up to 100 bits each. Give an
estimate of the time that it will take in the worst case to decipher the
secret message p if the transmitted message r has 100 bits.

i

i

“main” — 2011/1/13 — 9:10 — page 190 — #212
i

i

i

i

i

i

190 Chapter 4. Analysis Tools

b. What is the worst-case time complexity of the above algorithm?
Since the input to the algorithm is just one large number r, assume
that the input size n is the number of bytes needed to store r, that is,
n = ⌊(log2 r)/8⌋+ 1, and that each division takes time O(n).

C-4.8 Give an example of a positive function f (n) such that f (n) is neither O(n)
nor Ω(n).

C-4.9 Show that ∑n
i=1 i2 is O(n3).

C-4.10 Show that ∑n
i=1 i/2i < 2.

(Hint: Try to bound this sum term by term with a geometric progression.)
C-4.11 Show that logb f (n) is Θ(log f (n)) if b > 1 is a constant.
C-4.12 Describe a method for finding both the minimum and maximum of n num-

bers using fewer than 3n/2 comparisons.
(Hint: First construct a group of candidate minimums and a group of can-
didate maximums.)

C-4.13 Bob built a Web site and gave the URL only to his n friends, which he
numbered from 1 to n. He told friend number i that he/she can visit the
Web site at most i times. Now Bob has a counter, C, keeping track of
the total number of visits to the site (but not the identities of who visits).
What is the minimum value for C such that Bob should know that one of
his friends has visited his/her maximum allowed number of times?

C-4.14 Al says he can prove that all sheep in a flock are the same color:
Base case: One sheep. It is clearly the same color as itself.
Induction step: A flock of n sheep. Take a sheep, a, out. The remaining
n− 1 are all the same color by induction. Now put sheep a back in and
take out a different sheep, b. By induction, the n− 1 sheep (now with a)
are all the same color. Therefore, all the sheep in the flock are the same
color.
What is wrong with Al’s “justification”?

C-4.15 Consider the following “justification” that the Fibonacci function, F(n)
(see Proposition 4.20) is O(n):
Base case (n≤ 2): F(1) = 1 and F(2) = 2.
Induction step (n > 2): Assume the claim true for n′ < n. Consider n.
F(n) = F(n− 1) + F(n− 2). By induction, F(n− 1) is O(n− 1) and
F(n−2) is O(n−2). Then, F(n) is O((n−1)+ (n−2)), by the identity
presented in Exercise R-4.23. Therefore, F(n) is O(n).
What is wrong with this “justification”?

C-4.16 Let p(x) be a polynomial of degree n, that is, p(x) = ∑n
i=0 aixi.

(a) Describe a simple O(n2) time method for computing p(x).
(b) Now consider a rewriting of p(x) as

p(x) = a0 + x(a1 + x(a2 + x(a3 + · · ·+ x(an−1 + xan) · · ·))),

i

i

“main” — 2011/1/13 — 9:10 — page 191 — #213
i

i

i

i

i

i

4.4. Exercises 191

which is known as Horner’s method. Using the big-Oh notation, charac-
terize the number of arithmetic operations this method executes.

C-4.17 Consider the Fibonacci function, F(n) (see Proposition 4.20). Show by
induction that F(n) is Ω((3/2)n).

C-4.18 Given a set A = {a1,a2, . . . ,an} of n integers, describe, in pseudo-code,
an efficient method for computing each of partial sums sk = ∑k

i=1 ai, for
k = 1,2, . . . ,n. What is the running time of this method?

C-4.19 Draw a visual justification of Proposition 4.3 analogous to that of Fig-
ure 4.1(b) for the case when n is odd.

C-4.20 An array A contains n− 1 unique integers in the range [0,n− 1], that is,
there is one number from this range that is not in A. Design an O(n)-
time algorithm for finding that number. You are only allowed to use O(1)
additional space besides the array A itself.

C-4.21 Let S be a set of n lines in the plane such that no two are parallel and
no three meet in the same point. Show, by induction, that the lines in S
determine Θ(n2) intersection points.

C-4.22 Show that the summation ∑n
i=1⌈log2 i⌉ is O(n log n).

C-4.23 An evil king has n bottles of wine, and a spy has just poisoned one of
them. Unfortunately, they don’t know which one it is. The poison is very
deadly; just one drop diluted even a billion to one will still kill. Even so,
it takes a full month for the poison to take effect. Design a scheme for
determining exactly which one of the wine bottles was poisoned in just
one month’s time while expending O(logn) taste testers.

C-4.24 An array A contains n integers taken from the interval [0,4n], with repeti-
tions allowed. Describe an efficient algorithm for determining an integer
value k that occurs the most often in A. What is the running time of your
algorithm?

C-4.25 Describe, in pseudo-code, a method for multiplying an n×m matrix A
and an m× p matrix B. Recall that the product C = AB is defined so that
C[i][j] = ∑m

k=1 A[i][k] ·B[k][j]. What is the running time of your method?

C-4.26 Suppose each row of an n×n array A consists of 1’s and 0’s such that, in
any row i of A, all the 1’s come before any 0’s. Also suppose that the num-
ber of 1’s in row i is at least the number in row i+1, for i = 0,1, . . . ,n−2.
Assuming A is already in memory, describe a method running in O(n)
time (not O(n2)) for counting the number of 1’s in A.

C-4.27 Describe a recursive function for computing the nth Harmonic number,
Hn = ∑n

i=1 1/i.

i

i

“main” — 2011/1/13 — 9:10 — page 192 — #214
i

i

i

i

i

i

192 Chapter 4. Analysis Tools

Projects

P-4.1 Implement prefixAverages1 and prefixAverages2 from Section 4.2.5, and
perform an experimental analysis of their running times. Visualize their
running times as a function of the input size with a log-log chart.

P-4.2 Perform a careful experimental analysis that compares the relative running
times of the functions shown in Code Fragments 4.6.

P-4.3 Perform an experimental analysis to test the hypothesis that the STL func-
tion, sort, runs in O(n log n) time on average.

P-4.4 Perform an experimental analysis to determine the largest value of n for
each of the three algorithms given in the chapter for solving the element
uniqueness problem such that the given algorithm runs in one minute or
less.

Chapter Notes

The big-Oh notation has prompted several comments about its proper use [15, 43, 58].
Knuth [59, 58] defines it using the notation f (n) = O(g(n)), but says this “equality” is only
“one way.” We have chosen to take a more standard view of equality and view the big-
Oh notation as a set, following Brassard [15]. The reader interested in studying average-
case analysis is referred to the book chapter by Vitter and Flajolet [101]. We found the
story about Archimedes in [78]. For some additional mathematical tools, please refer to
Appendix A.

	4 Analysis Tools
	4.1 The Seven Functions Used in This Book
	4.1.1 The Constant Function
	4.1.2 The Logarithm Function
	4.1.3 The Linear Function
	4.1.4 The N-Log-N Function
	4.1.5 The Quadratic Function
	4.1.6 The Cubic Function and Other Polynomials
	4.1.7 The Exponential Function
	4.1.8 Comparing Growth Rates

	4.2 Analysis of Algorithms
	4.2.1 Experimental Studies
	4.2.2 Primitive Operations
	4.2.3 Asymptotic Notation
	4.2.4 Asymptotic Analysis
	4.2.5 Using the Big-Oh Notation
	4.2.6 A Recursive Algorithm for Computing Powers
	4.2.7 Some More Examples of Algorithm Analysis

	4.3 Simple Justification Techniques
	4.3.1 By Example
	4.3.2 The “Contra” Attack
	4.3.3 Induction and Loop Invariants

	4.4 Exercises

