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3.1 Using Arrays

In this section, we explore a few applications of arrays—the concrete data structures
introduced in Section 1.1.3 that access their entries using integer indices.

3.1.1 Storing Game Entries in an Array

The first application we study is for storing entries in an array; in particular, high
score entries for a video game. Storing objects in arrays is a common use for arrays,
and we could just as easily have chosen to store records for patients in a hospital or
the names of players on a football team. Nevertheless, let us focus on storing high
score entries, which is a simple application that is already rich enough to present
some important data structuring concepts.

Let us begin by thinking about what we want to include in an object represent-
ing a high score entry. Obviously, one component to include is an integer repre-
senting the score itself, which we call score. Another useful thing to include is the
name of the person earning this score, which we simply call name. We could go on
from here, adding fields representing the date the score was earned or game statis-
tics that led to that score. Let us keep our example simple, however, and just have
two fields, score and name. The class structure is shown in Code Fragment 3.1.

class GameEntry { // a game score entry
public:

GameEntry(const string& n="", int s=0); // constructor
string getName() const; // get player name
int getScore() const; // get score

private:
string name; // player’s name
int score; // player’s score
};

Code Fragment 3.1: A C++ class representing a game entry.

In Code Fragment 3.2, we provide the definitions of the class constructor and
two accessor member functions.

GameEntry::GameEntry(const string& n, int s) // constructor
: name(n), score(s) { }

// accessors
string GameEntry::getName() const { return name; }
int GameEntry::getScore() const { return score; }

Code Fragment 3.2: GameEntry constructor and accessors.
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A Class for High Scores

Let’s now design a class, called Scores, to store our game-score information. We
store the highest scores in an array entries. The maximum number of scores may
vary from instance to instance, so we create a member variable, maxEntries, stor-
ing the desired maximum. Its value is specified when a Scores object is first con-
structed. In order to keep track of the actual number of entries, we define a member
variable numEntries. It is initialized to zero, and it is updated as entries are added
or removed. We provide a constructor, a destructor, a member function for adding
a new score, and one for removing a score at a given index. The definition is given
in Code Fragment 3.3.

class Scores { // stores game high scores
public:

Scores(int maxEnt = 10); // constructor
˜Scores(); // destructor
void add(const GameEntry& e); // add a game entry
GameEntry remove(int i) // remove the ith entry

throw(IndexOutOfBounds);
private:

int maxEntries; // maximum number of entries
int numEntries; // actual number of entries
GameEntry* entries; // array of game entries
};

Code Fragment 3.3: A C++ class for storing high game scores.

In Code Fragment 3.4, we present the class constructor, which allocates the
desired amount of storage for the array using the “new” operator. Recall from
Section 1.1.3 that C++ represents a dynamic array as a pointer to its first element,
and this command returns such a pointer. The class destructor, ~Scores, deletes this
array.

Scores::Scores(int maxEnt) { // constructor
maxEntries = maxEnt; // save the max size
entries = new GameEntry[maxEntries]; // allocate array storage
numEntries = 0; // initially no elements
}

Scores::˜Scores() { // destructor
delete[ ] entries;
}

Code Fragment 3.4: A C++ class GameEntry representing a game entry.

The entries that have been added to the array are stored in indices 0 through
numEntries−1. As more users play our video game, additional GameEntry objects
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are copied into the array. This is done using the class’s add member function, which
we describe below. Only the highest maxEntries scores are retained. We also
provide a member function, remove(i), which removes the entry at index i from
the array. We assume that 0 ≤ i ≤ numEntries− 1. If not, the remove function,
throws an IndexOutOfBounds exception. We do not define this exception here, but
it is derived from the class RuntimeException from Section 2.4.

In our design, we have chosen to order the GameEntry objects by their score
values, from highest to lowest. (In Exercise C-3.2, we explore an alternative design
in which entries are not ordered.) We illustrate an example of the data structure in
Figure 3.1.

Mike

1105

0 1

Rob

750

2

Paul

720

3

Anna

660

4

Rose

590

5

Jack

510

6 7 8 9

Figure 3.1: The entries array of length eight storing six GameEntry objects in the
cells from index 0 to 5. Here maxEntries is 10 and numEntries is 6.

Insertion

Next, let us consider how to add a new GameEntry e to the array of high scores. In
particular, let us consider how we might perform the following update operation on
an instance of the Scores class.

add(e): Insert game entry e into the collection of high scores. If
this causes the number of entries to exceed maxEntries,
the smallest is removed.

The approach is to shift all the entries of the array whose scores are smaller than
e’s score to the right, in order to make space for the new entry. (See Figure 3.2.)

Mike

1105

0 1

Rob

750

2

Paul

720

3

Anna

660

4

Rose

590

5

Jack

510

6 7 8 9

Jill

740

Figure 3.2: Preparing to add a new GameEntry object (“Jill”,740) to the entries
array. In order to make room for the new entry, we shift all the entries with smaller
scores to the right by one position.
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Once we have identified the position in the entries array where the new game
entry, e, belongs, we copy e into this position. (See Figure 3.3.)

Mike

1105

0 1

Rob

750

Jill

740

2

Paul

720

3

Anna

660

4

Rose

590

5

Jack

510

6 7 8 9

Figure 3.3: After adding the new entry at index 2.

The details of our algorithm for adding the new game entry e to the entries array
are similar to this informal description and are given in Code Fragment 3.5. First,
we consider whether the array is already full. If so, we check whether the score of
the last entry in the array (which is at entries[maxEntries− 1]) is at least as large
as e’s score. If so, we can return immediately since e is not high enough to replace
any of the existing highest scores. If the array is not yet full, we know that one new
entry will be added, so we increment the value of numEntries. Next, we identify all
the entries whose scores are smaller than e’s and shift them one entry to the right.
To avoid overwriting existing array entries, we start from the right end of the array
and work to the left. The loop continues until we encounter an entry whose score
is not smaller than e’s, or we fall off the front end of the array. In either case, the
new entry is added at index i+ 1.

void Scores::add(const GameEntry& e) { // add a game entry
int newScore = e.getScore(); // score to add
if (numEntries == maxEntries) { // the array is full

if (newScore <= entries[maxEntries−1].getScore())
return; // not high enough - ignore

}
else numEntries++; // if not full, one more entry

int i = numEntries−2; // start with the next to last
while ( i >= 0 && newScore > entries[i].getScore() ) {

entries[i+1] = entries[i]; // shift right if smaller
i−−;
}
entries[i+1] = e; // put e in the empty spot
}

Code Fragment 3.5: C++ code for inserting a GameEntry object.

Check the code carefully to see that all the limiting cases have been handled
correctly by the add function (for example, largest score, smallest score, empty
array, full array). The number of times we perform the loop in this function depends
on the number of entries that we need to shift. This is pretty fast if the number of
entries is small. But if there are a lot to move, then this method could be fairly slow.
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Object Removal

Suppose some hot shot plays our video game and gets his or her name on our high
score list. In this case, we might want to have a function that lets us remove a game
entry from the list of high scores. Therefore, let us consider how we might remove
a GameEntry object from the entries array. That is, let us consider how we might
implement the following operation:

remove(i): Remove and return the game entry e at index i in the
entries array. If index i is outside the bounds of the
entries array, then this function throws an exception; oth-
erwise, the entries array is updated to remove the ob-
ject at index i and all objects previously stored at indices
higher than i are “shifted left” to fill in for the removed
object.

Our implementation of remove is similar to that of add, but in reverse. To
remove the entry at index i, we start at index i and move all the entries at indices
higher than i one position to the left. (See Figure 3.4.)

Mike

1105

0 1

Rob

750

Jill

740

2

Paul

720

3

Anna

660

4

Rose

590

5

Jack

510

6 7 8 9

Return:

Figure 3.4: Removal of the entry (“Paul”,720) at index 3.

The code for performing the removal is presented in Code Fragment 3.6.

GameEntry Scores::remove(int i) throw(IndexOutOfBounds) {
if ((i < 0) | | (i >= numEntries)) // invalid index

throw IndexOutOfBounds("Invalid index");
GameEntry e = entries[i]; // save the removed object
for (int j = i+1; j < numEntries; j++)

entries[j−1] = entries[j]; // shift entries left
numEntries−−; // one fewer entry
return e; // return the removed object
}

Code Fragment 3.6: C++ code for performing the remove operation.
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The removal operation involves a few subtle points. In order to return the value
of the removed game entry (let’s call it e), we must first save e in a temporary vari-
able. When we are done, the function will return this value. The shifting process
starts at the position just following the removal, j = i+ 1. We repeatedly copy the
entry at index j to index j− 1, and then increment j, until coming to the last ele-
ment of the set. Similar to the case of insertion, this left-to-right order is essential
to avoid overwriting existing entries. To complete the function, we return a copy of
the removed entry that was saved in e.

These functions for adding and removing objects in an array of high scores are
simple. Nevertheless, they form the basis of techniques that are used repeatedly
to build more sophisticated data structures. These other structures may be more
general than our simple array-based solution, and they may support many more
operations. But studying the concrete array data structure, as we are doing now, is
a great starting point for understanding these more sophisticated structures, since
every data structure has to be implemented using concrete means.

3.1.2 Sorting an Array

In the previous subsection, we worked hard to show how we can add or remove
objects at a certain index i in an array while keeping the previous order of the
objects intact. In this section, we consider how to rearrange objects of an array that
are ordered arbitrarily in ascending order. This is known as sorting.

We study several sorting algorithms in this book, most of which appear in Chap-
ter 11. As a warmup, we describe a simple sorting algorithm called insertion-sort.
In this case, we describe a specific version of the algorithm where the input is an ar-
ray of comparable elements. We consider more general kinds of sorting algorithms
later in this book.

We begin with a high-level outline of the insertion-sort algorithm. We start
with the first element in the array. One element by itself is already sorted. Then we
consider the next element in the array. If it is smaller than the first, we swap them.
Next we consider the third element in the array. We swap it leftward until it is in
its proper order with the first two elements. We continue in this manner with each
element of the array, swapping it leftward until it is in its proper position.

It is easy to see why this algorithm is called “insertion-sort”—each iteration
of the algorithm inserts the next element into the current sorted part of the array,
which was previously the subarray in front of that element. We may implement
the above outline using two nested loops. The outer loop considers each element
in the array in turn, and the inner loop moves that element to its proper location
with the (sorted) subarray of elements that are to its left. We illustrate the resulting
algorithm in Code Fragment 3.7.

This description is already quite close to actual C++ code. It indicates which
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Algorithm InsertionSort(A):
Input: An array A of n comparable elements
Output: The array A with elements rearranged in nondecreasing order

for i← 1 to n−1 do
{Insert A[i] at its proper location in A[0],A[1], . . . ,A[i−1]}
cur← A[i]
j← i−1
while j ≥ 0 and A[ j] > cur do

A[ j + 1]← A[ j]
j← j−1

A[ j + 1]← cur {cur is now in the right place}

Code Fragment 3.7: Algorithmic description of the insertion-sort algorithm.

temporary variables are needed, how the loops are structured, and what decisions
need to be made. We illustrate an example run in Figure 3.5.

We present C++ code for our insertion-sort algorithm in Code Fragment 3.8.
We assume that the array to be sorted consists of elements of type char, but it is easy
to generalize this to other data types. The array A in the algorithm is implemented
as a char array. Recall that each array in C++ is represented as a pointer to its first
element, so the parameter A is declared to be of type char*. We also pass the size
of the array in an integer parameter n. The rest is a straightforward translation of
the description given in Code Fragment 3.7 into C++ syntax.

void insertionSort(char* A, int n) { // sort an array of n characters
for (int i = 1; i < n; i++) { // insertion loop

char cur = A[i]; // current character to insert
int j = i − 1; // start at previous character
while ((j >= 0) && (A[j] > cur)) { // while A[j] is out of order

A[j + 1] = A[j]; // move A[j] right
j−−; // decrement j
}
A[j + 1] = cur; // this is the proper place for cur
}
}

Code Fragment 3.8: C++ code implementing the insertion-sort algorithm.

An interesting thing happens in the insertion-sort algorithm if the array is al-
ready sorted. In this case, the inner loop does only one comparison, determines that
there is no swap needed, and returns back to the outer loop. Of course, we might
have to do a lot more work than this if the input array is extremely out of order.
Indeed, the worst case arises if the initial array is given in descending order.
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3.1. Using Arrays 111

Figure 3.5: Execution of the insertion-sort algorithm on an array of eight characters.
We show the completed (sorted) part of the array in white, and we color the next
element that is being inserted into the sorted part of the array with light blue. We
also highlight the character on the left, since it is stored in the cur variable. Each
row corresponds to an iteration of the outer loop, and each copy of the array in a
row corresponds to an iteration of the inner loop. Each comparison is shown with
an arc. In addition, we indicate whether that comparison resulted in a move or not.

3.1.3 Two-Dimensional Arrays and Positional Games

Many computer games, be they strategy games, simulation games, or first-person
conflict games, use a two-dimensional “board.” Programs that deal with such po-
sitional games need a way of representing objects in a two-dimensional space. A
natural way to do this is with a two-dimensional array, where we use two indices,
say i and j, to refer to the cells in the array. The first index usually refers to a row
number and the second to a column number. Given such an array we can then main-
tain two-dimensional game boards, as well as perform other kinds of computations
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involving data that is stored in rows and columns.
Arrays in C++ are one-dimensional; we use a single index to access each cell

of an array. Nevertheless, there is a way we can define two-dimensional arrays in
C++—we can create a two-dimensional array as an array of arrays. That is, we can
define a two-dimensional array to be an array with each of its cells being another
array. Such a two-dimensional array is sometimes also called a matrix. In C++, we
declare a two-dimensional array as follows:

int M[8][10]; // matrix with 8 rows and 10 columns

This statement creates a two-dimensional “array of arrays,” M, which is 8× 10,
having 8 rows and 10 columns. That is, M is an array of length 8 such that each
element of M is an array of length 10 of integers. (See Figure 3.6.)

Figure 3.6: A two-dimensional integer array that has 8 rows and 10 columns. The
value of M[3][5] is 100 and the value of M[6][2] is 632.

Given integer variables i and j, we could output the element of row i and col-
umn j (or equivalently, the j th element of the i th array) as follows:

cout << M[i][j]; // output element in row i column j

It is often a good idea to use symbolic constants to define the dimensions in
order to make your intentions clearer to someone reading your program.

const int N DAYS = 7;
const int N HOURS = 24;
int schedule[N DAYS][N HOURS];

Dynamic Allocation of Matrices

If the dimensions of a two-dimensional array are not known in advance, it is nec-
essary to allocate the array dynamically. This can be done by applying the method
that we discussed earlier for allocating arrays in Section 1.1.3, but instead, we need
to apply it to each individual row of the matrix.
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For example, suppose that we wish to allocate an integer matrix with n rows and
m columns. Each row of the matrix is an array of integers of length m. Recall that
a dynamic array is represented as a pointer to its first element, so each row would
be declared to be of type int*. How do we group the individual rows together to
form the matrix? The matrix is an array of row pointers. Since each row pointer is
of type int*, the matrix is of type int**, that is, a pointer to a pointer of integers.

To generate our matrix, we first declare M to be of this type and allocate the
n row pointers with the command “M = new int*[n].” The ith row of the matrix
is allocated with the statement “M[i] = new int[m].” In Code Fragment 3.9, we
show how to do this given two integer variables n and m.

int** M = new int*[n]; // allocate an array of row pointers
for (int i = 0; i < n; i++)

M[i] = new int[m]; // allocate the i-th row

Code Fragment 3.9: Allocating storage for a matrix as an array of arrays.

Once allocated, we can access its elements just as before, for example, as
“M[i][ j].” As shown in Code Fragment 3.10, deallocating the matrix involves re-
versing these steps. First, we deallocate each of the rows, one by one. We then
deallocate the array of row pointers. Since we are deleting an array, we use the
command “delete[].”

for (int i = 0; i < n; i++)
delete[ ] M[i]; // delete the i-th row

delete[ ] M; // delete the array of row pointers

Code Fragment 3.10: Deallocating storage for a matrix as an array of arrays.

Using STL Vectors to Implement Matrices

As we can see from the previous section, dynamic allocation of matrices is rather
cumbersome. The STL vector class (recall Section 1.5.5) provides a much more
elegant way to process matrices. We adapt the same approach as above by imple-
menting a matrix as a vector of vectors. Each row of our matrix is declared as
“vector<int>.” Thus, the entire matrix is declared to be a vector of rows, that is,
“vector<vector<int>>.” Let us declare M to be of this type.

Letting n denote the desired number of rows in the matrix, the constructor call
M(n) allocates storage for the rows. However, this does not allocate the desired
number of columns. The reason is that the default constructor is called for each
row, and the default is to construct an empty array.

To fix this, we make use of a nice feature of the vector class constructor. There
is an optional second argument, which indicates the value to use when initializing
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each element of the vector. In our case, each element of M is a vector of m integers,
that is, “vector<int>(m).” Thus, given integer variables n and m, the following code
fragment generates an n×m matrix as a vector of vectors.

vector< vector<int> > M(n, vector<int>(m));
cout << M[i][j] << endl;

The space between vector<int> and the following “>” has been added to prevent
ambiguity with the C++ input operator “>>.” Because the STL vector class au-
tomatically takes care of deleting its members, we do not need to write a loop to
explicitly delete the rows, as we needed with dynamic arrays.

Two-dimensional arrays have many applications. Next, we explore a simple
application of two-dimensional arrays for implementing a positional game.

Tic-Tac-Toe

As most school children know, Tic-Tac-Toe is a game played on a three-by-three
board. Two players, X and O, alternate in placing their respective marks in the cells
of this board, starting with player X. If either player succeeds in getting three of his
or her marks in a row, column, or diagonal, then that player wins.

This is admittedly not a sophisticated positional game, and it’s not even that
much fun to play, since a good player O can always force a tie. Tic-Tac-Toe’s saving
grace is that it is a nice, simple example showing how two-dimensional arrays can
be used for positional games. Software for more sophisticated positional games,
such as checkers, chess, or the popular simulation games, are all based on the same
approach we illustrate here for using a two-dimensional array for Tic-Tac-Toe. (See
Exercise P-7.11.)

The basic idea is to use a two-dimensional array, board, to maintain the game
board. Cells in this array store values that indicate if that cell is empty or stores an X
or O. That is, board is a three-by-three matrix. For example, its middle row consists
of the cells board[1][0], board[1][1], and board[1][2]. In our case, we choose to
make the cells in the board array be integers, with a 0 indicating an empty cell, a 1
indicating an X, and a −1 indicating O. This encoding allows us to have a simple
way of testing whether a given board configuration is a win for X or O, namely, if
the values of a row, column, or diagonal add up to −3 or 3, respectively.

We give a complete C++ program for maintaining a Tic-Tac-Toe board for two
players in Code Fragments 3.11 and 3.12. We show the resulting output in Fig-
ure 3.8. Note that this code is just for maintaining the Tic-Tac-Toe board and regis-
tering moves; it doesn’t perform any strategy or allow someone to play Tic-Tac-Toe
against the computer. The details of such a program are beyond the scope of this
chapter, but it might nonetheless make a good project (see Exercise P-7.11).
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Figure 3.7: A Tic-Tac-Toe board and the array representing it.

#include <cstdlib> // system definitions
#include <iostream> // I/O definitions
using namespace std; // make std:: accessible

const int X = 1, O = −1, EMPTY = 0; // possible marks
int board[3][3]; // playing board
int currentPlayer; // current player (X or O)

void clearBoard() { // clear the board
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
board[i][j] = EMPTY; // every cell is empty

currentPlayer = X; // player X starts
}

void putMark(int i, int j) { // mark row i column j
board[i][j] = currentPlayer; // mark with current player
currentPlayer = −currentPlayer; // switch players
}

bool isWin(int mark) { // is mark the winner?
int win = 3*mark; // +3 for X and -3 for O
return ((board[0][0] + board[0][1] + board[0][2] == win) // row 0

| | (board[1][0] + board[1][1] + board[1][2] == win) // row 1
| | (board[2][0] + board[2][1] + board[2][2] == win) // row 2
| | (board[0][0] + board[1][0] + board[2][0] == win) // column 0
| | (board[0][1] + board[1][1] + board[2][1] == win) // column 1
| | (board[0][2] + board[1][2] + board[2][2] == win) // column 2
| | (board[0][0] + board[1][1] + board[2][2] == win) // diagonal
| | (board[2][0] + board[1][1] + board[0][2] == win)); // diagonal

}
Code Fragment 3.11: A C++ program for playing Tic-Tac-Toe between two players.
(Continues in Code Fragment 3.12.)
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int getWinner() { // who wins? (EMPTY means tie)
if (isWin(X)) return X;
else if (isWin(O)) return O;
else return EMPTY;
}

void printBoard() { // print the board
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {
switch (board[i][j]) {
case X: cout << "X"; break;
case O: cout << "O"; break;
case EMPTY: cout << " "; break;
}
if (j < 2) cout << "|"; // column boundary
}
if (i < 2) cout << "\n-+-+-\n"; // row boundary
}
}

int main() { // main program
clearBoard(); // clear the board
putMark(0,0); putMark(1,1); // add the marks
putMark(0,1); putMark(0,2);
putMark(2,0); putMark(1,2);
putMark(2,2); putMark(2,1);
putMark(1,0);
printBoard(); // print the final board
int winner = getWinner();
if (winner != EMPTY) // print the winner

cout << " " << (winner == X ? ’X’ : ’0’) << " wins" << endl;
else

cout << " Tie" << endl;
return EXIT SUCCESS;
}

Code Fragment 3.12: A C++ program for playing Tic-Tac-Toe between two players.
(Continued from Code Fragment 3.11.)

X|X|O

-+-+-

X|O|O

-+-+-

X|O|X X wins

Figure 3.8: Output of the Tic-Tac-Toe program.
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3.2 Singly Linked Lists

In the previous section, we presented the array data structure and discussed some
of its applications. Arrays are nice and simple for storing things in a certain order,
but they have drawbacks. They are not very adaptable. For instance, we have
to fix the size n of an array in advance, which makes resizing an array difficult.
(This drawback is remedied in STL vectors.) Insertions and deletions are difficult
because elements need to be shifted around to make space for insertion or to fill
empty positions after deletion. In this section, we explore an important alternate
implementation of sequence, known as the singly linked list.

A linked list, in its simplest form, is a collection of nodes that together form a
linear ordering. As in the children’s game “Follow the Leader,” each node stores
a pointer, called next, to the next node of the list. In addition, each node stores its
associated element. (See Figure 3.9.)

Figure 3.9: Example of a singly linked list of airport codes. The next pointers are
shown as arrows. The null pointer is denoted by ∅.

The next pointer inside a node is a link or pointer to the next node of the list.
Moving from one node to another by following a next reference is known as link
hopping or pointer hopping. The first and last nodes of a linked list are called
the head and tail of the list, respectively. Thus, we can link-hop through the list,
starting at the head and ending at the tail. We can identify the tail as the node having
a null next reference. The structure is called a singly linked list because each node
stores a single link.

Like an array, a singly linked list maintains its elements in a certain order, as
determined by the chain of next links. Unlike an array, a singly linked list does not
have a predetermined fixed size. It can be resized by adding or removing nodes.

3.2.1 Implementing a Singly Linked List

Let us implement a singly linked list of strings. We first define a class StringNode
shown in Code Fragment 3.13. The node stores two values, the member elem stores
the element stored in this node, which in this case is a character string. (Later, in
Section 3.2.4, we describe how to define nodes that can store arbitrary types of
elements.) The member next stores a pointer to the next node of the list. We make
the linked list class a friend, so that it can access the node’s private members.
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class StringNode { // a node in a list of strings
private:

string elem; // element value
StringNode* next; // next item in the list

friend class StringLinkedList; // provide StringLinkedList access
};

Code Fragment 3.13: A node in a singly linked list of strings.

In Code Fragment 3.14, we define a class StringLinkedList for the actual linked
list. It supports a number of member functions, including a constructor and destruc-
tor and functions for insertion and deletion. Their implementations are presented
later. Its private data consists of a pointer to the head node of the list.

class StringLinkedList { // a linked list of strings
public:

StringLinkedList(); // empty list constructor
˜StringLinkedList(); // destructor
bool empty() const; // is list empty?
const string& front() const; // get front element
void addFront(const string& e); // add to front of list
void removeFront(); // remove front item list

private:
StringNode* head; // pointer to the head of list
};

Code Fragment 3.14: A class definition for a singly linked list of strings.

A number of simple member functions are shown in Code Fragment 3.15. The
list constructor creates an empty list by setting the head pointer to NULL. The de-
structor repeatedly removes elements from the list. It exploits the fact that the func-
tion remove (presented below) destroys the node that it removes. To test whether
the list is empty, we simply test whether the head pointer is NULL.

StringLinkedList::StringLinkedList() // constructor
: head(NULL) { }

StringLinkedList::˜StringLinkedList() // destructor
{ while (!empty()) removeFront(); }

bool StringLinkedList::empty() const // is list empty?
{ return head == NULL; }

const string& StringLinkedList::front() const // get front element
{ return head−>elem; }

Code Fragment 3.15: Some simple member functions of class StringLinkedList.
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3.2.2 Insertion to the Front of a Singly Linked List

We can easily insert an element at the head of a singly linked list. We first create a
new node, and set its elem value to the desired string and set its next link to point to
the current head of the list. We then set head to point to the new node. The process
is illustrated in Figure 3.10.

(a)

(b)

(c)

Figure 3.10: Insertion of an element at the head of a singly linked list: (a) before
the insertion; (b) creation of a new node; (c) after the insertion.

An implementation is shown in Code Fragment 3.16. Note that access to the
private members elem and next of the StringNode class would normally be prohib-
ited, but it is allowed here because StringLinkedList was declared to be a friend of
StringNode.

void StringLinkedList::addFront(const string& e) { // add to front of list
StringNode* v = new StringNode; // create new node
v−>elem = e; // store data
v−>next = head; // head now follows v
head = v; // v is now the head
}

Code Fragment 3.16: Insertion to the front of a singly linked list.

3.2.3 Removal from the Front of a Singly Linked List

Next, we consider how to remove an element from the front of a singly linked list.
We essentially undo the operations performed for insertion. We first save a pointer
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to the old head node and advance the head pointer to the next node in the list. We
then delete the old head node. This operation is illustrated in Figure 3.11.

(a)

(b)

(c)

Figure 3.11: Removal of an element at the head of a singly linked list: (a) before
the removal; (b) “linking out” the old new node; (c) after the removal.

An implementation of this operation is provided in Code Fragment 3.17. We
assume that the user has checked that the list is nonempty before applying this
operation. (A more careful implementation would throw an exception if the list
were empty.) The function deletes the node in order to avoid any memory leaks.
We do not return the value of the deleted node. If its value is desired, we can call
the front function prior to the removal.

void StringLinkedList::removeFront() { // remove front item
StringNode* old = head; // save current head
head = old−>next; // skip over old head
delete old; // delete the old head
}

Code Fragment 3.17: Removal from the front of a singly linked list.

It is noteworthy that we cannot as easily delete the last node of a singly linked
list, even if we had a pointer to it. In order to delete a node, we need to update the
next link of the node immediately preceding the deleted node. Locating this node
involves traversing the entire list and could take a long time. (We remedy this in
Section 3.3 when we discuss doubly linked lists.)
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3.2.4 Implementing a Generic Singly Linked List

The implementation of the singly linked list given in Section 3.2.1 assumes that the
element type is a character string. It is easy to convert the implementation so that it
works for an arbitrary element type through the use of C++’s template mechanism.
The resulting generic singly linked list class is called SLinkedList.

We begin by presenting the node class, called SNode, in Code Fragment 3.18.
The element type associated with each node is parameterized by the type vari-
able E. In contrast to our earlier version in Code Fragment 3.13, references to the
data type “string” have been replaced by “E.” When referring to our templated
node and list class, we need to include the suffix “<E>.” For example, the class is
SLinkedList<E> and the associated node is SNode<E>.

template <typename E>
class SNode { // singly linked list node
private:

E elem; // linked list element value
SNode<E>* next; // next item in the list
friend class SLinkedList<E>; // provide SLinkedList access
};

Code Fragment 3.18: A node in a generic singly linked list.

The generic list class is presented in Code Fragment 3.19. As above, refer-
ences to the specific element type “string” have been replaced by references to the
generic type parameter “E.” To keep things simple, we have omitted housekeeping
functions such as a copy constructor.

template <typename E>
class SLinkedList { // a singly linked list
public:

SLinkedList(); // empty list constructor
˜SLinkedList(); // destructor
bool empty() const; // is list empty?
const E& front() const; // return front element
void addFront(const E& e); // add to front of list
void removeFront(); // remove front item list

private:
SNode<E>* head; // head of the list
};

Code Fragment 3.19: A class definition for a generic singly linked list.

In Code Fragment 3.20, we present the class member functions. Note the sim-
ilarity with Code Fragments 3.15 through 3.17. Observe that each definition is
prefaced by the template specifier template <typename E>.
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template <typename E>
SLinkedList<E>::SLinkedList() // constructor

: head(NULL) { }

template <typename E>
bool SLinkedList<E>::empty() const // is list empty?
{ return head == NULL; }

template <typename E>
const E& SLinkedList<E>::front() const // return front element
{ return head−>elem; }

template <typename E>
SLinkedList<E>::˜SLinkedList() // destructor
{ while (!empty()) removeFront(); }

template <typename E>
void SLinkedList<E>::addFront(const E& e) { // add to front of list

SNode<E>* v = new SNode<E>; // create new node
v−>elem = e; // store data
v−>next = head; // head now follows v
head = v; // v is now the head
}

template <typename E>
void SLinkedList<E>::removeFront() { // remove front item

SNode<E>* old = head; // save current head
head = old−>next; // skip over old head
delete old; // delete the old head
}
Code Fragment 3.20: Other member functions for a generic singly linked list.

We can generate singly linked lists of various types by simply setting the tem-
plate parameter as desired as shown in the following code fragment.

SLinkedList<string> a; // list of strings
a.addFront("MSP");
// . . .
SLinkedList<int> b; // list of integers
b.addFront(13);

Code Fragment 3.21: Examples using the generic singly linked list class.

Because templated classes carry a relatively high notational burden, we often
sacrifice generality for simplicity, and avoid the use of templated classes in some
of our examples.
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3.3 Doubly Linked Lists

As we saw in the previous section, removing an element at the tail of a singly
linked list is not easy. Indeed, it is time consuming to remove any node other than
the head in a singly linked list, since we do not have a quick way of accessing the
node immediately preceding the one we want to remove. There are many appli-
cations where we do not have quick access to such a predecessor node. For such
applications, it would be nice to have a way of going both directions in a linked list.

There is a type of linked list that allows us to go in both directions—forward
and reverse—in a linked list. It is the doubly linked list. In addition to its element
member, a node in a doubly linked list stores two pointers, a next link and a prev
link, which point to the next node in the list and the previous node in the list, re-
spectively. Such lists allow for a great variety of quick update operations, including
efficient insertion and removal at any given position.

Header and Trailer Sentinels

To simplify programming, it is convenient to add special nodes at both ends of
a doubly linked list: a header node just before the head of the list, and a trailer
node just after the tail of the list. These “dummy” or sentinel nodes do not store
any elements. They provide quick access to the first and last nodes of the list. In
particular, the header’s next pointer points to the first node of the list, and the prev
pointer of the trailer node points to the last node of the list. An example is shown
in Figure 3.12.

Figure 3.12: A doubly linked list with sentinels, header and trailer, marking the
ends of the list. An empty list would have these sentinels pointing to each other.
We do not show the null prev pointer for the header nor do we show the null next
pointer for the trailer.

3.3.1 Insertion into a Doubly Linked List

Because of its double link structure, it is possible to insert a node at any position
within a doubly linked list. Given a node v of a doubly linked list (which could
possibly be the header, but not the trailer), let z be a new node that we wish to insert
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immediately after v. Let w the be node following v, that is, w is the node pointed to
by v’s next link. (This node exists, since we have sentinels.) To insert z after v, we
link it into the current list, by performing the following operations:

• Make z’s prev link point to v
• Make z’s next link point to w
• Make w’s prev link point to z
• Make v’s next link point to z

This process is illustrated in Figure 3.13, where v points to the node JFK, w points
to PVD, and z points to the new node BWI. Observe that this process works if v is
any node ranging from the header to the node just prior to the trailer.

(a)

(b)

Figure 3.13: Adding a new node after the node storing JFK: (a) creating a new node
with element BWI and linking it in; (b) after the insertion.

3.3.2 Removal from a Doubly Linked List

Likewise, it is easy to remove a node v from a doubly linked list. Let u be the node
just prior to v, and w be the node just following v. (These nodes exist, since we
have sentinels.) To remove node v, we simply have u and w point to each other
instead of to v. We refer to this operation as the linking out of v. We perform the
following operations.

• Make w’s prev link point to u
• Make u’s next link point to w
• Delete node v

This process is illustrated in Figure 3.14, where v is the node PVD, u is the node
JFK, and w is the node SFO. Observe that this process works if v is any node from
the header to the tail node (the node just prior to the trailer).
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(a)

(b)

(c)

Figure 3.14: Removing the node storing PVD: (a) before the removal; (b) linking
out the old node; (c) after node deletion.

3.3.3 A C++ Implementation

Let us consider how to implement a doubly linked list in C++. First, we present a
C++ class for a node of the list in Code Fragment 3.22. To keep the code simple,
we have chosen not to derive a templated class as we did in Section 3.2.1 for singly
linked lists. Instead, we provide a typedef statement that defines the element type,
called Elem. We define it to be a string, but any other type could be used instead.
Each node stores an element. It also contains pointers to both the previous and next
nodes of the list. We declare DLinkedList to be a friend, so it can access the node’s
private members.

typedef string Elem; // list element type
class DNode { // doubly linked list node
private:

Elem elem; // node element value
DNode* prev; // previous node in list
DNode* next; // next node in list
friend class DLinkedList; // allow DLinkedList access
};

Code Fragment 3.22: C++ implementation of a doubly linked list node.

Next, we present the definition of the doubly linked list class, DLinkedList,
in Code Fragment 3.23. In addition to a constructor and destructor, the public
members consist of a function that indicates whether the list is currently empty
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(meaning that it has no nodes other than the sentinels) and accessors to retrieve
the front and back elements. We also provide methods for inserting and removing
elements from the front and back of the list. There are two private data members,
header and trailer, which point to the sentinels. Finally, we provide two protected
utility member functions, add and remove. They are used internally by the class
and by its subclasses, but they cannot be invoked from outside the class.

class DLinkedList { // doubly linked list
public:

DLinkedList(); // constructor
˜DLinkedList(); // destructor
bool empty() const; // is list empty?
const Elem& front() const; // get front element
const Elem& back() const; // get back element
void addFront(const Elem& e); // add to front of list
void addBack(const Elem& e); // add to back of list
void removeFront(); // remove from front
void removeBack(); // remove from back

private: // local type definitions
DNode* header; // list sentinels
DNode* trailer;

protected: // local utilities
void add(DNode* v, const Elem& e); // insert new node before v
void remove(DNode* v); // remove node v
};

Code Fragment 3.23: Implementation of a doubly linked list class.

Let us begin by presenting the class constructor and destructor as shown in
Code Fragment 3.24. The constructor creates the sentinel nodes and sets each to
point to the other, and the destructor removes all but the sentinel nodes.

DLinkedList::DLinkedList() { // constructor
header = new DNode; // create sentinels
trailer = new DNode;
header−>next = trailer; // have them point to each other
trailer−>prev = header;
}

DLinkedList::˜DLinkedList() { // destructor
while (!empty()) removeFront(); // remove all but sentinels
delete header; // remove the sentinels
delete trailer;
}

Code Fragment 3.24: Class constructor and destructor.
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Next, in Code Fragment 3.25 we show the basic class accessors. To determine
whether the list is empty, we check that there is no node between the two sentinels.
We do this by testing whether the trailer follows immediately after the header. To
access the front element of the list, we return the element associated with the node
that follows the list header. To access the back element, we return the element
associated with node that precedes the trailer. Both operations assume that the list
is nonempty. We could have enhanced these functions by throwing an exception if
an attempt is made to access the front or back of an empty list, just as we did in
Code Fragment 3.6.

bool DLinkedList::empty() const // is list empty?
{ return (header−>next == trailer); }

const Elem& DLinkedList::front() const // get front element
{ return header−>next−>elem; }

const Elem& DLinkedList::back() const // get back element
{ return trailer−>prev−>elem; }

Code Fragment 3.25: Accessor functions for the doubly linked list class.

In Section 3.3.1, we discussed how to insert a node into a doubly linked list.
The local utility function add, which is shown in Code Fragment 3.26, implements
this operation. In order to add a node to the front of the list, we create a new node,
and insert it immediately after the header, or equivalently, immediately before the
node that follows the header. In order to add a new node to the back of the list, we
create a new node, and insert it immediately before the trailer.

// insert new node before v
void DLinkedList::add(DNode* v, const Elem& e) {

DNode* u = new DNode; u−>elem = e; // create a new node for e
u−>next = v; // link u in between v
u−>prev = v−>prev; // . . .and v->prev
v−>prev−>next = v−>prev = u;
}

void DLinkedList::addFront(const Elem& e) // add to front of list
{ add(header−>next, e); }

void DLinkedList::addBack(const Elem& e) // add to back of list
{ add(trailer, e); }

Code Fragment 3.26: Inserting a new node into a doubly linked list. The protected
utility function add inserts a node z before an arbitrary node v. The public member
functions addFront and addBack both invoke this utility function.
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Observe that the above code works even if the list is empty (meaning that the
only nodes are the header and trailer). For example, if addBack is invoked on an
empty list, then the value of trailer->prev is a pointer to the list header. Thus,
the node is added between the header and trailer as desired. One of the major
advantages of providing sentinel nodes is to avoid handling of special cases, which
would otherwise be needed.

Finally, let us discuss deletion. In Section 3.3.2, we showed how to remove
an arbitrary node from a doubly linked list. In Code Fragment 3.27, we present
local utility function remove, which performs the operation. In addition to linking
out the node, it also deletes the node. The public member functions removeFront
and removeBack are implemented by deleting the nodes immediately following the
header and immediately preceding the trailer, respectively.

void DLinkedList::remove(DNode* v) { // remove node v
DNode* u = v−>prev; // predecessor
DNode* w = v−>next; // successor
u−>next = w; // unlink v from list
w−>prev = u;
delete v;
}

void DLinkedList::removeFront() // remove from font
{ remove(header−>next); }

void DLinkedList::removeBack() // remove from back
{ remove(trailer−>prev); }

Code Fragment 3.27: Removing a node from a doubly linked list. The local utility
function remove removes the node v. The public member functions removeFront
and removeBack invoke this utility function.

There are many more features that we could have added to our simple imple-
mentation of a doubly linked list. Although we have provided access to the ends of
the list, we have not provided any mechanism for accessing or modifying elements
in the middle of the list. Later, in Chapter 6, we discuss the concept of iterators,
which provides a mechanism for accessing arbitrary elements of a list.

We have also performed no error checking in our implementation. It is the
user’s responsibility not to attempt to access or remove elements from an empty
list. In a more robust implementation of a doubly linked list, we would design the
member functions front, back, removeFront, and removeBack to throw an excep-
tion when an attempt is made to perform one of these functions on an empty list.
Nonetheless, this simple implementation illustrates how easy it is to manipulate
this useful data structure.
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3.4 Circularly Linked Lists and List Reversal

In this section, we study some applications and extensions of linked lists.

3.4.1 Circularly Linked Lists

A circularly linked list has the same kind of nodes as a singly linked list. That is,
each node in a circularly linked list has a next pointer and an element value. But,
rather than having a head or tail, the nodes of a circularly linked list are linked
into a cycle. If we traverse the nodes of a circularly linked list from any node by
following next pointers, we eventually visit all the nodes and cycle back to the
node from which we started.

Even though a circularly linked list has no beginning or end, we nevertheless
need some node to be marked as a special node, which we call the cursor. The
cursor node allows us to have a place to start from if we ever need to traverse a
circularly linked list.

There are two positions of particular interest in a circular list. The first is the
element that is referenced by the cursor, which is called the back, and the element
immediately following this in the circular order, which is called the front. Although
it may seem odd to think of a circular list as having a front and a back, observe that,
if we were to cut the link between the node referenced by the cursor and this node’s
immediate successor, the result would be a singly linked list from the front node to
the back node.

LAX MSP ATL BOS

(front) (back)
cursor

Figure 3.15: A circularly linked list. The node referenced by the cursor is called the
back, and the node immediately following is called the front.

We define the following functions for a circularly linked list:

front(): Return the element referenced by the cursor; an error re-
sults if the list is empty.

back(): Return the element immediately after the cursor; an error
results if the list is empty.

advance(): Advance the cursor to the next node in the list.
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add(e): Insert a new node with element e immediately after the
cursor; if the list is empty, then this node becomes the
cursor and its next pointer points to itself.

remove(): Remove the node immediately after the cursor (not the
cursor itself, unless it is the only node); if the list be-
comes empty, the cursor is set to null.

In Code Fragment 3.28, we show a C++ implementation of a node of a cir-
cularly linked list, assuming that each node contains a single string. The node
structure is essentially identical to that of a singly linked list (recall Code Frag-
ment 3.13). To keep the code simple, we have not implemented a templated class.
Instead, we provide a typedef statement that defines the element type Elem to be
the base type of the list, which in this case is a string.

typedef string Elem; // element type
class CNode { // circularly linked list node
private:

Elem elem; // linked list element value
CNode* next; // next item in the list

friend class CircleList; // provide CircleList access
};

Code Fragment 3.28: A node of a circularly linked list.

Next, in Code Fragment 3.29, we present the class definition for a circularly
linked list called CircleList. In addition to the above functions, the class provides
a constructor, a destructor, and a function to detect whether the list is empty. The
private member consists of the cursor, which points to some node of the list.

class CircleList { // a circularly linked list
public:

CircleList(); // constructor
˜CircleList(); // destructor
bool empty() const; // is list empty?
const Elem& front() const; // element at cursor
const Elem& back() const; // element following cursor
void advance(); // advance cursor
void add(const Elem& e); // add after cursor
void remove(); // remove node after cursor

private:
CNode* cursor; // the cursor
};

Code Fragment 3.29: Implementation of a circularly linked list class.
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Code Fragment 3.30 presents the class’s constructor and destructor. The con-
structor generates an empty list by setting the cursor to NULL. The destructor iter-
atively removes nodes until the list is empty. We exploit the fact that the member
function remove (given below) deletes the node that it removes.

CircleList::CircleList() // constructor
: cursor(NULL) { }

CircleList::˜CircleList() // destructor
{ while (!empty()) remove(); }

Code Fragment 3.30: The constructor and destructor.

We present a number of simple member functions in Code Fragment 3.31. To
determine whether the list is empty, we test whether the cursor is NULL. The ad-
vance function advances the cursor to the next element.

bool CircleList::empty() const // is list empty?
{ return cursor == NULL; }

const Elem& CircleList::back() const // element at cursor
{ return cursor−>elem; }

const Elem& CircleList::front() const // element following cursor
{ return cursor−>next−>elem; }

void CircleList::advance() // advance cursor
{ cursor = cursor−>next; }

Code Fragment 3.31: Simple member functions.

Next, let us consider insertion. Recall that insertions to the circularly linked list
occur after the cursor. We begin by creating a new node and initializing its data
member. If the list is empty, we create a new node that points to itself. We then
direct the cursor to point to this element. Otherwise, we link the new node just after
the cursor. The code is presented in Code Fragment 3.32.

void CircleList::add(const Elem& e) { // add after cursor
CNode* v = new CNode; // create a new node
v−>elem = e;
if (cursor == NULL) { // list is empty?

v−>next = v; // v points to itself
cursor = v; // cursor points to v
}
else { // list is nonempty?

v−>next = cursor−>next; // link in v after cursor
cursor−>next = v;
}
}

Code Fragment 3.32: Inserting a node just after the cursor of a circularly linked list.
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Finally, we consider removal. We assume that the user has checked that the list
is nonempty before invoking this function. (A more careful implementation would
throw an exception if the list is empty.) There are two cases. If this is the last node
of the list (which can be tested by checking that the node to be removed points to
itself) we set the cursor to NULL. Otherwise, we link the cursor’s next pointer to
skip over the removed node. We then delete the node. The code is presented in
Code Fragment 3.33.

void CircleList::remove() { // remove node after cursor
CNode* old = cursor−>next; // the node being removed
if (old == cursor) // removing the only node?

cursor = NULL; // list is now empty
else

cursor−>next = old−>next; // link out the old node
delete old; // delete the old node
}

Code Fragment 3.33: Removing the node following the cursor.

To keep the code simple, we have omitted error checking. In front, back, and
advance, we should first test whether the list is empty, since otherwise the cursor
pointer will be NULL. In the first two cases, we should throw some sort of excep-
tion. In the case of advance, if the list is empty, we can simply return.

Maintaining a Playlist for a Digital Audio Player

To help illustrate the use of our CircleList implementation of the circularly linked
list, let us consider how to build a simple interface for maintaining a playlist for
a digital audio player, also known as an MP3 player. The songs of the player are
stored in a circular list. The cursor points to the current song. By advancing the
cursor, we can move from one song to the next. We can also add new songs and
remove songs by invoking the member functions insert and remove, respectively.
Of course, a complete implementation would need to provide a method for playing
the current song, but our purpose is to illustrate how the circularly linked list can
be applied to this task.

To make this more concrete, suppose that you have a friend who loves retro
music, and you want to create a playlist of songs from the bygone Disco Era. The
main program is presented Code Fragment 3.34. We declare an object playList
to be a CircleList. The constructor creates an empty playlist. We proceed to add
three songs, “Stayin Alive,” “Le Freak,” and “Jive Talkin.” The comments on the
right show the current contents of the list in square brackets. The first entry of the
list is the element immediately following the cursor (which is where insertion and
removal occur), and the last entry in the list is cursor (which is indicated with an
asterisk).
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Suppose that we decide to replace “Stayin Alive” with “Disco Inferno.” We
advance the cursor twice so that “Stayin Alive” comes immediately after the cursor.
We then remove this entry and insert its replacement.

int main() {
CircleList playList; // [ ]
playList.add("Stayin Alive"); // [Stayin Alive*]
playList.add("Le Freak"); // [Le Freak, Stayin Alive*]
playList.add("Jive Talkin"); // [Jive Talkin, Le Freak, Stayin Alive*]

playList.advance(); // [Le Freak, Stayin Alive, Jive Talkin*]
playList.advance(); // [Stayin Alive, Jive Talkin, Le Freak*]
playList.remove(); // [Jive Talkin, Le Freak*]
playList.add("Disco Inferno"); // [Disco Inferno, Jive Talkin, Le Freak*]
return EXIT SUCCESS;
}

Code Fragment 3.34: Using the CircleList class to implement a playlist for a digital
audio player.

3.4.2 Reversing a Linked List

As another example of the manipulation of linked lists, we present a simple function
for reversing the elements of a doubly linked list. Given a list L, our approach
involves first copying the contents of L in reverse order into a temporary list T , and
then copying the contents of T back into L (but without reversing).

To achieve the initial reversed copy, we repeatedly extract the first element of
L and copy it to the front of T . (To see why this works, observe that the later an
element appears in L, the earlier it will appear in T .) To copy the contents of T
back to L, we repeatedly extract elements from the front of T , but this time we
copy each one to the back of list L. Our C++ implementation is presented in Code
Fragment 3.35.

void listReverse(DLinkedList& L) { // reverse a list
DLinkedList T; // temporary list
while (!L.empty()) { // reverse L into T

string s = L.front(); L.removeFront();
T.addFront(s);
}
while (!T.empty()) { // copy T back to L

string s = T.front(); T.removeFront();
L.addBack(s);
}
}

Code Fragment 3.35: A function that reverses the contents of a doubly linked list L.
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3.5 Recursion

We have seen that repetition can be achieved by writing loops, such as for loops
and while loops. Another way to achieve repetition is through recursion, which
occurs when a function refers to itself in its own definition. We have seen examples
of functions calling other functions, so it should come as no surprise that most
modern programming languages, including C++, allow a function to call itself. In
this section, we see why this capability provides an elegant and powerful alternative
for performing repetitive tasks.

The Factorial Function

To illustrate recursion, let us begin with a simple example of computing the value of
the factorial function. The factorial of a positive integer n, denoted n!, is defined
as the product of the integers from 1 to n. If n = 0, then n! is defined as 1 by
convention. More formally, for any integer n≥ 0,

n! =

{
1 if n = 0
n · (n−1) · (n−2) · · ·3 ·2 ·1 if n≥ 1.

For example, 5! = 5 · 4 · 3 · 2 · 1 = 120. To make the connection with functions
clearer, we use the notation factorial(n) to denote n!.

The factorial function can be defined in a manner that suggests a recursive
formulation. To see this, observe that

factorial(5) = 5 · (4 ·3 ·2 ·1) = 5 · factorial(4).

Thus, we can define factorial(5) in terms of factorial(4). In general, for a positive
integer n, we can define factorial(n) to be n · factorial(n− 1). This leads to the
following recursive definition

factorial(n) =

{
1 if n = 0
n · factorial(n−1) if n≥ 1.

This definition is typical of many recursive definitions. First, it contains one
or more base cases, which are defined nonrecursively in terms of fixed quantities.
In this case, n = 0 is the base case. It also contains one or more recursive cases,
which are defined by appealing to the definition of the function being defined. Ob-
serve that there is no circularity in this definition because each time the function is
invoked, its argument is smaller by one.
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A Recursive Implementation of the Factorial Function

Let us consider a C++ implementation of the factorial function shown in Code Frag-
ment 3.36 under the name recursiveFactorial. Notice that no looping was needed
here. The repeated recursive invocations of the function take the place of looping.

int recursiveFactorial(int n) { // recursive factorial function
if (n == 0) return 1; // basis case
else return n * recursiveFactorial(n−1); // recursive case
}

Code Fragment 3.36: A recursive implementation of the factorial function.

We can illustrate the execution of a recursive function definition by means of a
recursion trace. Each entry of the trace corresponds to a recursive call. Each new
recursive function call is indicated by an arrow to the newly called function. When
the function returns, an arrow showing this return is drawn, and the return value
may be indicated with this arrow. An example of a trace is shown in Figure 3.16.

What is the advantage of using recursion? Although the recursive implementa-
tion of the factorial function is somewhat simpler than the iterative version, in this
case there is no compelling reason for preferring recursion over iteration. For some
problems, however, a recursive implementation can be significantly simpler and
easier to understand than an iterative implementation. Such an example follows.

Figure 3.16: A recursion trace for the call recursiveFactorial(4).
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Drawing an English Ruler

As a more complex example of the use of recursion, consider how to draw the
markings of a typical English ruler. Such a ruler is broken into intervals, and each
interval consists of a set of ticks, placed at intervals of 1/2 inch, 1/4 inch, and so
on. As the size of the interval decreases by half, the tick length decreases by one.
(See Figure 3.17.)

---- 0 ----- 0 --- 0

- - -

-- -- --

- - -

--- --- --- 1

- - -

-- -- --

- - -

---- 1 ---- --- 2

- - -

-- -- --

- - -

--- --- --- 3

- -

-- --

- -

---- 2 ----- 1

(a) (b) (c)

Figure 3.17: Three sample outputs of an English ruler drawing: (a) a 2-inch ruler
with major tick length 4; (b) a 1-inch ruler with major tick length 5; (c) a 3-inch
ruler with major tick length 3.

Each fraction of an inch also has a numeric label. The longest tick length is
called the major tick length. We won’t worry about actual distances, however, and
just print one tick per line.

A Recursive Approach to Ruler Drawing

Our approach to drawing such a ruler consists of three functions. The main function
drawRuler draws the entire ruler. Its arguments are the total number of inches in
the ruler, nInches, and the major tick length, majorLength. The utility function dra-
wOneTick draws a single tick of the given length. It can also be given an optional
integer label, which is printed if it is nonnegative.
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The interesting work is done by the recursive function drawTicks, which draws
the sequence of ticks within some interval. Its only argument is the tick length
associated with the interval’s central tick. Consider the English ruler with major
tick length 5 shown in Figure 3.17(b). Ignoring the lines containing 0 and 1, let us
consider how to draw the sequence of ticks lying between these lines. The central
tick (at 1/2 inch) has length 4. Observe that the two patterns of ticks above and
below this central tick are identical, and each has a central tick of length 3. In
general, an interval with a central tick length L≥ 1 is composed of the following:

• An interval with a central tick length L−1

• A single tick of length L

• An interval with a central tick length L−1

With each recursive call, the length decreases by one. When the length drops to
zero, we simply return. As a result, this recursive process always terminates. This
suggests a recursive process in which the first and last steps are performed by call-
ing the drawTicks(L− 1) recursively. The middle step is performed by calling
the function drawOneTick(L). This recursive formulation is shown in Code Frag-
ment 3.37. As in the factorial example, the code has a base case (when L = 0). In
this instance we make two recursive calls to the function.

// one tick with optional label
void drawOneTick(int tickLength, int tickLabel = −1) {

for (int i = 0; i < tickLength; i++)
cout << "-";

if (tickLabel >= 0) cout << " " << tickLabel;
cout << "\n";
}
void drawTicks(int tickLength) { // draw ticks of given length

if (tickLength > 0) { // stop when length drops to 0
drawTicks(tickLength−1); // recursively draw left ticks
drawOneTick(tickLength); // draw center tick
drawTicks(tickLength−1); // recursively draw right ticks
}
}
void drawRuler(int nInches, int majorLength) {// draw the entire ruler

drawOneTick(majorLength, 0); // draw tick 0 and its label
for (int i = 1; i <= nInches; i++) {

drawTicks(majorLength−1); // draw ticks for this inch
drawOneTick(majorLength, i); // draw tick i and its label
}
}

Code Fragment 3.37: A recursive implementation of a function that draws a ruler.
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Illustrating Ruler Drawing using a Recursion Trace

The recursive execution of the recursive drawTicks function, defined above, can be
visualized using a recursion trace.

The trace for drawTicks is more complicated than in the factorial example,
however, because each instance makes two recursive calls. To illustrate this, we
show the recursion trace in a form that is reminiscent of an outline for a document.
See Figure 3.18.

Figure 3.18: A partial recursion trace for the call drawTicks(3). The second pattern
of calls for drawTicks(2) is not shown, but it is identical to the first.

Throughout this book, we see many other examples of how recursion can be
used in the design of data structures and algorithms.
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Further Illustrations of Recursion

As we discussed above, recursion is the concept of defining a function that makes
a call to itself. When a function calls itself, we refer to this as a recursive call. We
also consider a function M to be recursive if it calls another function that ultimately
leads to a call back to M.

The main benefit of a recursive approach to algorithm design is that it allows us
to take advantage of the repetitive structure present in many problems. By making
our algorithm description exploit this repetitive structure in a recursive way, we can
often avoid complex case analyses and nested loops. This approach can lead to
more readable algorithm descriptions, while still being quite efficient.

In addition, recursion is a useful way for defining objects that have a repeated
similar structural form, such as in the following examples.

Example 3.1: Modern operating systems define file-system directories (which are
also sometimes called “folders”) in a recursive way. Namely, a file system consists
of a top-level directory, and the contents of this directory consists of files and other
directories, which in turn can contain files and other directories, and so on. The
base directories in the file system contain only files, but by using this recursive
definition, the operating system allows for directories to be nested arbitrarily deep
(as long as there is enough space in memory).

Example 3.2: Much of the syntax in modern programming languages is defined
in a recursive way. For example, we can define an argument list in C++ using the
following notation:

argument-list:
argument
argument-list , argument

In other words, an argument list consists of either (i) an argument or (ii) an argu-
ment list followed by a comma and an argument. That is, an argument list consists
of a comma-separated list of arguments. Similarly, arithmetic expressions can be
defined recursively in terms of primitives (like variables and constants) and arith-
metic expressions.

Example 3.3: There are many examples of recursion in art and nature. One of the
most classic examples of recursion used in art is in the Russian Matryoshka dolls.
Each doll is made of solid wood or is hollow and contains another Matryoshka doll
inside it.
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3.5.1 Linear Recursion

The simplest form of recursion is linear recursion, where a function is defined
so that it makes at most one recursive call each time it is invoked. This type of
recursion is useful when we view an algorithmic problem in terms of a first or last
element plus a remaining set that has the same structure as the original set.

Summing the Elements of an Array Recursively

Suppose, for example, we are given an array, A, of n integers that we want to sum
together. We can solve this summation problem using linear recursion by observing
that the sum of all n integers in A is equal to A[0], if n = 1, or the sum of the first n−
1 integers in A plus the last element in A. In particular, we can solve this summation
problem using the recursive algorithm described in Code Fragment 3.38.

Algorithm LinearSum(A,n):
Input: A integer array A and an integer n≥ 1, such that A has at least n elements
Output: The sum of the first n integers in A

if n = 1 then
return A[0]

else
return LinearSum(A,n−1)+ A[n−1]

Code Fragment 3.38: Summing the elements in an array using linear recursion.

This example also illustrates an important property that a recursive function
should always possess—the function terminates. We ensure this by writing a non-
recursive statement for the case n = 1. In addition, we always perform the recursive
call on a smaller value of the parameter (n−1) than that which we are given (n), so
that, at some point (at the “bottom” of the recursion), we will perform the nonre-
cursive part of the computation (returning A[0]). In general, an algorithm that uses
linear recursion typically has the following form:

• Test for base cases. We begin by testing for a set of base cases (there should
be at least one). These base cases should be defined so that every possible
chain of recursive calls eventually reaches a base case, and the handling of
each base case should not use recursion.

• Recur. After testing for base cases, we then perform a single recursive call.
This recursive step may involve a test that decides which of several possible
recursive calls to make, but it should ultimately choose to make just one of
these calls each time we perform this step. Moreover, we should define each
possible recursive call so that it makes progress towards a base case.
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Analyzing Recursive Algorithms using Recursion Traces

We can analyze a recursive algorithm by using a visual tool known as a recursion
trace. We used recursion traces, for example, to analyze and visualize the recur-
sive factorial function of Section 3.5, and we similarly use recursion traces for the
recursive sorting algorithms of Sections 11.1 and 11.2.

To draw a recursion trace, we create a box for each instance of the function
and label it with the parameters of the function. Also, we visualize a recursive call
by drawing an arrow from the box of the calling function to the box of the called
function. For example, we illustrate the recursion trace of the LinearSum algorithm
of Code Fragment 3.38 in Figure 3.19. We label each box in this trace with the
parameters used to make this call. Each time we make a recursive call, we draw
a line to the box representing the recursive call. We can also use this diagram to
visualize stepping through the algorithm, since it proceeds by going from the call
for n to the call for n−1, to the call for n−2, and so on, all the way down to the call
for 1. When the final call finishes, it returns its value back to the call for 2, which
adds in its value, and returns this partial sum to the call for 3, and so on, until the
call for n−1 returns its partial sum to the call for n.

Figure 3.19: Recursion trace for an execution of LinearSum(A,n) with input param-
eters A = {4,3,6,2,5} and n = 5.

From Figure 3.19, it should be clear that for an input array of size n, Algorithm
LinearSum makes n calls. Hence, it takes an amount of time that is roughly propor-
tional to n, since it spends a constant amount of time performing the nonrecursive
part of each call. Moreover, we can also see that the memory space used by the
algorithm (in addition to the array A) is also roughly proportional to n, since we
need a constant amount of memory space for each of the n boxes in the trace at the
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time we make the final recursive call (for n = 1).

Reversing an Array by Recursion

Next, let us consider the problem of reversing the n elements of an array, A, so that
the first element becomes the last, the second element becomes second to the last,
and so on. We can solve this problem using linear recursion, by observing that the
reversal of an array can be achieved by swapping the first and last elements and
then recursively reversing the remaining elements in the array. We describe the
details of this algorithm in Code Fragment 3.39, using the convention that the first
time we call this algorithm we do so as ReverseArray(A,0,n−1).

Algorithm ReverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at j

if i < j then
Swap A[i] and A[ j]
ReverseArray(A, i+ 1, j−1)

return
Code Fragment 3.39: Reversing the elements of an array using linear recursion.

Note that, in this algorithm, we actually have two base cases, namely, when
i = j and when i > j. Moreover, in either case, we simply terminate the algorithm,
since a sequence with zero elements or one element is trivially equal to its reversal.
Furthermore, note that in the recursive step we are guaranteed to make progress
towards one of these two base cases. If n is odd, we eventually reach the i = j case,
and if n is even, we eventually reach the i > j case. The above argument immedi-
ately implies that the recursive algorithm of Code Fragment 3.39 is guaranteed to
terminate.

Defining Problems in Ways that Facilitate Recursion

To design a recursive algorithm for a given problem, it is useful to think of the dif-
ferent ways we can subdivide this problem to define problems that have the same
general structure as the original problem. This process sometimes means we need
to redefine the original problem to facilitate similar-looking subproblems. For ex-
ample, with the ReverseArray algorithm, we added the parameters i and j so that a
recursive call to reverse the inner part of the array A would have the same structure
(and same syntax) as the call to reverse all of A. Then, rather than initially calling
the algorithm as ReverseArray(A), we call it initially as ReverseArray(A,0,n−1).
In general, if one has difficulty finding the repetitive structure needed to design a re-
cursive algorithm, it is sometimes useful to work out the problem on a few concrete
examples to see how the subproblems should be defined.
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Tail Recursion

Using recursion can often be a useful tool for designing algorithms that have ele-
gant, short definitions. But this usefulness does come at a modest cost. When we
use a recursive algorithm to solve a problem, we have to use some of the memory
locations in our computer to keep track of the state of each active recursive call.
When computer memory is at a premium, then it is useful in some cases to be able
to derive nonrecursive algorithms from recursive ones.

We can use the stack data structure, discussed in Section 5.1, to convert a recur-
sive algorithm into a nonrecursive algorithm, but there are some instances when we
can do this conversion more easily and efficiently. Specifically, we can easily con-
vert algorithms that use tail recursion. An algorithm uses tail recursion if it uses
linear recursion and the algorithm makes a recursive call as its very last operation.
For example, the algorithm of Code Fragment 3.39 uses tail recursion to reverse
the elements of an array.

It is not enough that the last statement in the function definition includes a
recursive call, however. In order for a function to use tail recursion, the recursive
call must be absolutely the last thing the function does (unless we are in a base case,
of course). For example, the algorithm of Code Fragment 3.38 does not use tail
recursion, even though its last statement includes a recursive call. This recursive
call is not actually the last thing the function does. After it receives the value
returned from the recursive call, it adds this value to A[n−1] and returns this sum.
That is, the last thing this algorithm does is an add, not a recursive call.

When an algorithm uses tail recursion, we can convert the recursive algorithm
into a nonrecursive one, by iterating through the recursive calls rather than call-
ing them explicitly. We illustrate this type of conversion by revisiting the prob-
lem of reversing the elements of an array. In Code Fragment 3.40, we give a
nonrecursive algorithm that performs this task by iterating through the recursive
calls of the algorithm of Code Fragment 3.39. We initially call this algorithm as
IterativeReverseArray(A,0,n−1).

Algorithm IterativeReverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at j

while i < j do
Swap A[i] and A[ j]
i← i+ 1
j← j−1

return
Code Fragment 3.40: Reversing the elements of an array using iteration.
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3.5.2 Binary Recursion

When an algorithm makes two recursive calls, we say that it uses binary recursion.
These calls can, for example, be used to solve two similar halves of some problem,
as we did in Section 3.5 for drawing an English ruler. As another application of
binary recursion, let us revisit the problem of summing the n elements of an integer
array A. In this case, we can sum the elements in A by: (i) recursively summing the
elements in the first half of A; (ii) recursively summing the elements in the second
half of A; and (iii) adding these two values together. We give the details in the
algorithm of Code Fragment 3.41, which we initially call as BinarySum(A,0,n).

Algorithm BinarySum(A, i,n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]

return BinarySum(A, i,⌈n/2⌉) + BinarySum(A, i+ ⌈n/2⌉,⌊n/2⌋)
Code Fragment 3.41: Summing the elements in an array using binary recursion.

To analyze Algorithm BinarySum, we consider, for simplicity, the case where
n is a power of two. The general case of arbitrary n is considered in Exercise R-4.5.
Figure 3.20 shows the recursion trace of an execution of function BinarySum(0,8).
We label each box with the values of parameters i and n, which represent the start-
ing index and length of the sequence of elements to be summed, respectively. No-
tice that the arrows in the trace go from a box labeled (i,n) to another box labeled
(i,n/2) or (i+ n/2,n/2). That is, the value of parameter n is halved at each recur-
sive call. Thus, the depth of the recursion, that is, the maximum number of function
instances that are active at the same time, is 1 + log2 n. Thus, Algorithm Binary-
Sum uses an amount of additional space roughly proportional to this value. This is
a big improvement over the space needed by the LinearSum function of Code Frag-
ment 3.38. The running time of Algorithm BinarySum is still roughly proportional
to n, however, since each box is visited in constant time when stepping through our
algorithm and there are 2n−1 boxes.

Figure 3.20: Recursion trace for the execution of BinarySum(0,8).
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Computing Fibonacci Numbers via Binary Recursion

Let us consider the problem of computing the kth Fibonacci number. Recall from
Section 2.2.3, that the Fibonacci numbers are recursively defined as follows:

F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2 for i > 1

By directly applying this definition, Algorithm BinaryFib, shown in Code Frag-
ment 3.42, computes the sequence of Fibonacci numbers using binary recursion.

Algorithm BinaryFib(k):
Input: Nonnegative integer k
Output: The kth Fibonacci number Fk

if k ≤ 1 then
return k

else
return BinaryFib(k−1) + BinaryFib(k−2)

Code Fragment 3.42: Computing the kth Fibonacci number using binary recursion.

Unfortunately, in spite of the Fibonacci definition looking like a binary recur-
sion, using this technique is inefficient in this case. In fact, it takes an exponential
number of calls to compute the kth Fibonacci number in this way. Specifically, let
nk denote the number of calls performed in the execution of BinaryFib(k). Then,
we have the following values for the nk’s:

n0 = 1

n1 = 1

n2 = n1 + n0 + 1 = 1+ 1+ 1 = 3

n3 = n2 + n1 + 1 = 3+ 1+ 1 = 5

n4 = n3 + n2 + 1 = 5+ 3+ 1 = 9

n5 = n4 + n3 + 1 = 9+ 5+ 1 = 15

n6 = n5 + n4 + 1 = 15+ 9+ 1 = 25

n7 = n6 + n5 + 1 = 25+ 15+ 1 = 41

n8 = n7 + n6 + 1 = 41+ 25+ 1 = 67

If we follow the pattern forward, we see that the number of calls more than doubles
for each two consecutive indices. That is, n4 is more than twice n2, n5 is more than
twice n3, n6 is more than twice n4, and so on. Thus, nk > 2k/2, which means that
BinaryFib(k) makes a number of calls that are exponential in k. In other words,
using binary recursion to compute Fibonacci numbers is very inefficient.
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Computing Fibonacci Numbers via Linear Recursion

The main problem with the approach above, based on binary recursion, is that the
computation of Fibonacci numbers is really a linearly recursive problem. It is not
a good candidate for using binary recursion. We simply got tempted into using
binary recursion because of the way the kth Fibonacci number, Fk, depends on the
two previous values, Fk−1 and Fk−2. But we can compute Fk much more efficiently
using linear recursion.

In order to use linear recursion, however, we need to slightly redefine the prob-
lem. One way to accomplish this conversion is to define a recursive function that
computes a pair of consecutive Fibonacci numbers (Fk,Fk−1) using the convention
F−1 = 0. Then we can use the linearly recursive algorithm shown in Code Frag-
ment 3.43.

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (Fk,Fk−1)

if k ≤ 1 then
return (k,0)

else
(i, j)← LinearFibonacci(k−1)
return (i+ j, i)

Code Fragment 3.43: Computing the kth Fibonacci number using linear recursion.

The algorithm given in Code Fragment 3.43 shows that using linear recursion
to compute Fibonacci numbers is much more efficient than using binary recursion.
Since each recursive call to LinearFibonacci decreases the argument k by 1, the
original call LinearFibonacci(k) results in a series of k− 1 additional calls. That
is, computing the kth Fibonacci number via linear recursion requires k function
calls. This performance is significantly faster than the exponential time needed by
the algorithm based on binary recursion, which was given in Code Fragment 3.42.
Therefore, when using binary recursion, we should first try to fully partition the
problem in two (as we did for summing the elements of an array) or we should be
sure that overlapping recursive calls are really necessary.

Usually, we can eliminate overlapping recursive calls by using more memory to
keep track of previous values. In fact, this approach is a central part of a technique
called dynamic programming, which is related to recursion and is discussed in
Section 12.2.
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3.5.3 Multiple Recursion

Generalizing from binary recursion, we use multiple recursion when a function
may make multiple recursive calls, with that number potentially being more than
two. One of the most common applications of this type of recursion is used when
we want to enumerate various configurations in order to solve a combinatorial puz-
zle. For example, the following are all instances of summation puzzles.

pot + pan = bib

dog + cat = pig

boy+ girl = baby

To solve such a puzzle, we need to assign a unique digit (that is, 0,1, . . . ,9) to each
letter in the equation, in order to make the equation true. Typically, we solve such
a puzzle by using our human observations of the particular puzzle we are trying
to solve to eliminate configurations (that is, possible partial assignments of digits
to letters) until we can work though the feasible configurations left, testing for the
correctness of each one.

If the number of possible configurations is not too large, however, we can use
a computer to simply enumerate all the possibilities and test each one, without
employing any human observations. In addition, such an algorithm can use multiple
recursion to work through the configurations in a systematic way. We show pseudo-
code for such an algorithm in Code Fragment 3.44. To keep the description general
enough to be used with other puzzles, the algorithm enumerates and tests all k-
length sequences without repetitions of the elements of a given set U . We build the
sequences of k elements by the following steps:

1. Recursively generating the sequences of k−1 elements

2. Appending to each such sequence an element not already contained in it.

Throughout the execution of the algorithm, we use the set U to keep track of the
elements not contained in the current sequence, so that an element e has not been
used yet if and only if e is in U .

Another way to look at the algorithm of Code Fragment 3.44 is that it enumer-
ates every possible size-k ordered subset of U , and tests each subset for being a
possible solution to our puzzle.

For summation puzzles, U = {0,1,2,3,4,5,6,7,8,9} and each position in the
sequence corresponds to a given letter. For example, the first position could stand
for b, the second for o, the third for y, and so on.
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Algorithm PuzzleSolve(k,S,U):

Input: An integer k, sequence S, and set U
Output: An enumeration of all k-length extensions to S using elements in U

without repetitions

for each e in U do
Remove e from U {e is now being used}
Add e to the end of S
if k = 1 then

Test whether S is a configuration that solves the puzzle
if S solves the puzzle then

return “Solution found: ” S
else

PuzzleSolve(k−1,S,U)
Add e back to U {e is now unused}
Remove e from the end of S

Code Fragment 3.44: Solving a combinatorial puzzle by enumerating and testing
all possible configurations.

In Figure 3.21, we show a recursion trace of a call to PuzzleSolve(3,S,U),
where S is empty and U = {a,b,c}. During the execution, all the permutations
of the three characters are generated and tested. Note that the initial call makes
three recursive calls, each of which in turn makes two more. If we had executed
PuzzleSolve(3,S,U) on a set U consisting of four elements, the initial call would
have made four recursive calls, each of which would have a trace looking like the
one in Figure 3.21.

Figure 3.21: Recursion trace for an execution of PuzzleSolve(3,S,U), where S is
empty and U = {a,b,c}. This execution generates and tests all permutations of a, b,
and c. We show the permutations generated directly below their respective boxes.
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3.6 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-3.1 Modify the implementation of class Scores so that at most ⌈maxEnt/2⌉ of
the scores can come from any one single player.

R-3.2 Suppose that two entries of an array A are equal to each other. After run-
ning the insertion-sort algorithm of Code Fragment 3.7, will they appear
in the same relative order in the final sorted order or in reverse order?
Explain your answer.

R-3.3 Give a C++ code fragment that, given a n× n matrix M of type float,
replaces M with its transpose. Try to do this without the use of a temporary
matrix.

R-3.4 Describe a way to use recursion to compute the sum of all the elements in
a n×n (two-dimensional) array of integers.

R-3.5 Give a recursive definition of a singly linked list.

R-3.6 Add a function size() to our C++ implementation of a singly link list. Can
you design this function so that it runs in O(1) time?

R-3.7 Give an algorithm for finding the penultimate (second to last) node in a
singly linked list where the last element is indicated by a null next link.

R-3.8 Give a fully generic implementation of the doubly linked list data structure
of Section 3.3.3 by using a templated class.

R-3.9 Give a more robust implementation of the doubly linked list data struc-
ture of Section 3.3.3, which throws an appropriate exception if an illegal
operation is attempted.

R-3.10 Describe a nonrecursive function for finding, by link hopping, the middle
node of a doubly linked list with header and trailer sentinels. (Note: This
function must only use link hopping; it cannot use a counter.) What is the
running time of this function?

R-3.11 Describe a recursive algorithm for finding the maximum element in an
array A of n elements. What is your running time and space usage?

R-3.12 Draw the recursion trace for the execution of function ReverseArray(A,0,4)
(Code Fragment 3.39) on array A = {4,3,6,2,5}.

R-3.13 Draw the recursion trace for the execution of function PuzzleSolve(3,S,U)
(Code Fragment 3.44), where S is empty and U = {a,b,c,d}.

www.wiley.com/college/goodrich
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R-3.14 Write a short C++ function that repeatedly selects and removes a ran-
dom entry from an n-element array until the array holds no more entries.
Assume that you have access to a function random(k), which returns a
random integer in the range from 0 to k.

R-3.15 Give a fully generic implementation of the circularly linked list data struc-
ture of Section 3.4.1 by using a templated class.

R-3.16 Give a more robust implementation of the circularly linked list data struc-
ture of Section 3.4.1, which throws an appropriate exception if an illegal
operation is attempted.

R-3.17 Write a short C++ function to count the number of nodes in a circularly
linked list.

Creativity

C-3.1 In the Tic-Tac-Toe example, we used 1 for player X and −1 for player O.
Explain how to modify the program’s counting trick to decide the winner
if we had used 1 for player X and 4 for player O instead. Could we use
any combination of values a and b for the two players? Explain.

C-3.2 Give C++ code for performing add(e) and remove(i) functions for game
entries stored in an array a, as in class Scores in Section 3.1.1, except this
time, don’t maintain the game entries in order. Assume that we still need
to keep n entries stored in indices 0 to n− 1. Try to implement the add
and remove functions without using any loops, so that the number of steps
they perform does not depend on n.

C-3.3 Let A be an array of size n≥ 2 containing integers from 1 to n−1, inclu-
sive, with exactly one repeated. Describe a fast algorithm for finding the
integer in A that is repeated.

C-3.4 Let B be an array of size n≥ 6 containing integers from 1 to n−5, inclu-
sive, with exactly five repeated. Describe a good algorithm for finding the
five integers in B that are repeated.

C-3.5 Suppose you are designing a multi-player game that has n≥ 1000 players,
numbered 1 to n, interacting in an enchanted forest. The winner of this
game is the first player who can meet all the other players at least once
(ties are allowed). Assuming that there is a function meet(i, j), which is
called each time a player i meets a player j (with i 6= j), describe a way to
keep track of the pairs of meeting players and who is the winner.

C-3.6 Give a recursive algorithm to compute the product of two positive integers,
m and n, using only addition and subtraction.

C-3.7 Describe a fast recursive algorithm for reversing a singly linked list L, so
that the ordering of the nodes becomes opposite of what it was before.
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C-3.8 Describe a good algorithm for concatenating two singly linked lists L and
M, with header sentinels, into a single list L′ that contains all the nodes of
L followed by all the nodes of M.

C-3.9 Give a fast algorithm for concatenating two doubly linked lists L and M,
with header and trailer sentinel nodes, into a single list L′.

C-3.10 Describe in detail how to swap two nodes x and y (and not just their con-
tents) in a singly linked list L given references only to x and y. Repeat
this exercise for the case when L is a doubly linked list. Which algorithm
takes more time?

C-3.11 Describe in detail an algorithm for reversing a singly linked list L using
only a constant amount of additional space and not using any recursion.

C-3.12 In the Towers of Hanoi puzzle, we are given a platform with three pegs, a,
b, and c, sticking out of it. On peg a is a stack of n disks, each larger than
the next, so that the smallest is on the top and the largest is on the bottom.
The puzzle is to move all the disks from peg a to peg c, moving one disk
at a time, so that we never place a larger disk on top of a smaller one.
Describe a recursive algorithm for solving the Towers of Hanoi puzzle for
arbitrary n.
(Hint: Consider first the subproblem of moving all but the nth disk from
peg a to another peg using the third as “temporary storage.”)

C-3.13 Describe a recursive function for converting a string of digits into the in-
teger it represents. For example, "13531" represents the integer 13,531.

C-3.14 Describe a recursive algorithm that counts the number of nodes in a singly
linked list.

C-3.15 Write a recursive C++ program that will output all the subsets of a set of
n elements (without repeating any subsets).

C-3.16 Write a short recursive C++ function that finds the minimum and maxi-
mum values in an array of int values without using any loops.

C-3.17 Describe a recursive algorithm that will check if an array A of integers
contains an integer A[i] that is the sum of two integers that appear earlier
in A, that is, such that A[i] = A[ j]+ A[k] for j,k < i.

C-3.18 Write a short recursive C++ function that will rearrange an array of int
values so that all the even values appear before all the odd values.

C-3.19 Write a short recursive C++ function that takes a character string s and
outputs its reverse. So for example, the reverse of "pots&pans" would
be "snap&stop".

C-3.20 Write a short recursive C++ function that determines if a string s is a
palindrome, that is, it is equal to its reverse. For example, "racecar"
and "gohangasalamiimalasagnahog" are palindromes.
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C-3.21 Use recursion to write a C++ function for determining if a string s has
more vowels than consonants.

C-3.22 Suppose you are given two circularly linked lists, L and M, that is, two
lists of nodes such that each node has a nonnull next node. Describe a fast
algorithm for telling if L and M are really the same list of nodes but with
different (cursor) starting points.

C-3.23 Given a circularly linked list L containing an even number of nodes, de-
scribe how to split L into two circularly linked lists of half the size.

Projects

P-3.1 Write a C++ function that takes two three-dimensional integer arrays and
adds them componentwise.

P-3.2 Write a C++ program for a matrix class that can add and multiply arbitrary
two-dimensional arrays of integers. Do this by overloading the addition
(“+”) and multiplication (“*”) operators.

P-3.3 Write a class that maintains the top 10 scores for a game application, im-
plementing the add and remove functions of Section 3.1.1, but use a singly
linked list instead of an array.

P-3.4 Perform the previous project but use a doubly linked list. Moreover, your
implementation of remove(i) should make the fewest number of pointer
hops to get to the game entry at index i.

P-3.5 Perform the previous project but use a linked list that is both circularly
linked and doubly linked.

P-3.6 Write a program for solving summation puzzles by enumerating and test-
ing all possible configurations. Using your program, solve the three puz-
zles given in Section 3.5.3.

P-3.7 Write a program that can perform encryption and decryption using an ar-
bitrary substitution cipher. In this case, the encryption array is a random
shuffling of the letters in the alphabet. Your program should generate
a random encryption array, its corresponding decryption array, and use
these to encode and decode a message.

P-3.8 Write a program that can solve instances of the Tower of Hanoi problem
(from Exercise C-3.12).

Chapter Notes

The fundamental data structures of arrays and linked lists, as well as recursion, discussed
in this chapter, belong to the folklore of computer science. They were first chronicled in the
computer science literature by Knuth in his seminal book on Fundamental Algorithms [59].
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