
i

i

“main” — 2011/1/13 — 9:10 — page 65 — #87
i

i

i

i

i

i

Chapter

2 Object-Oriented Design

Contents

2.1 Goals, Principles, and Patterns 66

2.1.1 Object-Oriented Design Goals 66

2.1.2 Object-Oriented Design Principles 67

2.1.3 Design Patterns . 70

2.2 Inheritance and Polymorphism 71

2.2.1 Inheritance in C++ 71

2.2.2 Polymorphism . 78

2.2.3 Examples of Inheritance in C++ 79

2.2.4 Multiple Inheritance and Class Casting 84

2.2.5 Interfaces and Abstract Classes 87

2.3 Templates . 90

2.3.1 Function Templates 90

2.3.2 Class Templates . 91

2.4 Exceptions . 93

2.4.1 Exception Objects 93

2.4.2 Throwing and Catching Exceptions 94

2.4.3 Exception Specification 96

2.5 Exercises . 98

i

i

“main” — 2011/1/13 — 9:10 — page 66 — #88
i

i

i

i

i

i

66 Chapter 2. Object-Oriented Design

2.1 Goals, Principles, and Patterns

As the name implies, the main “actors” in the object-oriented design paradigm are
called objects. An object comes from a class, which is a specification of the data
members that the object contains, as well as the member functions (also called
methods or operations) that the object can execute. Each class presents to the out-
side world a concise and consistent view of the objects that are instances of this
class, without going into too much unnecessary detail or giving others access to the
inner workings of the objects. This view of computing is intended to fulfill several
goals and incorporate several design principles, which we discuss in this chapter.

2.1.1 Object-Oriented Design Goals

Software implementations should achieve robustness, adaptability, and reusabil-
ity. (See Figure 2.1.)

Robustness Adaptability Reusability

Figure 2.1: Goals of object-oriented design.

Robustness

Every good programmer wants to develop software that is correct, which means
that a program produces the right output for all the anticipated inputs in the pro-
gram’s application. In addition, we want software to be robust, that is, capable of
handling unexpected inputs that are not explicitly defined for its application. For
example, if a program is expecting a positive integer (for example, representing the
price of an item) and instead is given a negative integer, then the program should be
able to recover gracefully from this error. More importantly, in life-critical appli-
cations, where a software error can lead to injury or loss of life, software that is not
robust could be deadly. This point was driven home in the late 1980s in accidents
involving Therac-25, a radiation-therapy machine, which severely overdosed six
patients between 1985 and 1987, some of whom died from complications resulting
from their radiation overdose. All six accidents were traced to software errors.

i

i

“main” — 2011/1/13 — 9:10 — page 67 — #89
i

i

i

i

i

i

2.1. Goals, Principles, and Patterns 67

Adaptability

Modern software applications, such as Web browsers and Internet search engines,
typically involve large programs that are used for many years. Software therefore
needs to be able to evolve over time in response to changing conditions in its envi-
ronment. Thus, another important goal of quality software is that it achieves adapt-
ability (also called evolvability). Related to this concept is portability, which is the
ability of software to run with minimal change on different hardware and operat-
ing system platforms. An advantage of writing software in C++ is the portability
provided by the language itself.

Reusability

Going hand in hand with adaptability is the desire that software be reusable, that
is, the same code should be usable as a component of different systems in various
applications. Developing quality software can be an expensive enterprise, and its
cost can be offset somewhat if the software is designed in a way that makes it easily
reusable in future applications. Such reuse should be done with care, however, for
one of the major sources of software errors in the Therac-25 came from inappropri-
ate reuse of Therac-20 software (which was not object-oriented and not designed
for the hardware platform used with the Therac-25).

2.1.2 Object-Oriented Design Principles

Chief among the principles of the object-oriented approach, which are intended to
facilitate the goals outlined above, are the following (see Figure 2.2):

• Abstraction
• Encapsulation
• Modularity.

Abstraction Encapsulation Modularity

Figure 2.2: Principles of object-oriented design.

i

i

“main” — 2011/1/13 — 9:10 — page 68 — #90
i

i

i

i

i

i

68 Chapter 2. Object-Oriented Design

Abstraction

The notion of abstraction is to distill a complicated system down to its most fun-
damental parts and describe these parts in a simple, precise language. Typically,
describing the parts of a system involves naming them and explaining their func-
tionality. Applying the abstraction paradigm to the design of data structures gives
rise to abstract data types (ADTs). An ADT is a mathematical model of a data
structure that specifies the type of the data stored, the operations supported on them,
and the types of the parameters of the operations. An ADT specifies what each op-
eration does, but not how it does it. In C++, the functionality of a data structure
is expressed through the public interface of the associated class or classes that de-
fine the data structure. By public interface, we mean the signatures (names, return
types, and argument types) of a class’s public member functions. This is the only
part of the class that can be accessed by a user of the class.

An ADT is realized by a concrete data structure, which is modeled in C++
by a class. A class defines the data being stored and the operations supported by
the objects that are instances of the class. Also, unlike interfaces, classes specify
how the operations are performed in the body of each function. A C++ class is
said to implement an interface if its functions include all the functions declared
in the interface, thus providing a body for them. However, a class can have more
functions than those of the interface.

Encapsulation

Another important principle of object-oriented design is the concept of encapsula-
tion, which states that different components of a software system should not reveal
the internal details of their respective implementations. One of the main advantages
of encapsulation is that it gives the programmer freedom in implementing the de-
tails of a system. The only constraint on the programmer is to maintain the abstract
interface that outsiders see.

Modularity

In addition to abstraction and encapsulation, a fundamental principle of object-
oriented design is modularity. Modern software systems typically consist of sev-
eral different components that must interact correctly in order for the entire system
to work properly. Keeping these interactions straight requires that these different
components be well organized. In object-oriented design, this code structuring
approach centers around the concept of modularity. Modularity refers to an orga-
nizing principle for code in which different components of a software system are
divided into separate functional units.

i

i

“main” — 2011/1/13 — 9:10 — page 69 — #91
i

i

i

i

i

i

2.1. Goals, Principles, and Patterns 69

Hierarchical Organization

The structure imposed by modularity helps to enable software reusability. If soft-
ware modules are written in an abstract way to solve general problems, then mod-
ules can be reused when instances of these same general problems arise in other
contexts.

For example, the structural definition of a wall is the same from house to house,
typically being defined in terms of vertical studs, spaced at fixed-distance intervals,
etc. Thus, an organized architect can reuse his or her wall definitions from one
house to another. In reusing such a definition, some parts may require redefinition,
for example, a wall in a commercial building may be similar to that of a house, but
the electrical system and stud material might be different.

A natural way to organize various structural components of a software package
is in a hierarchical fashion, which groups similar abstract definitions together in
a level-by-level manner that goes from specific to more general as one traverses
up the hierarchy. A common use of such hierarchies is in an organizational chart
where each link going up can be read as “is a,” as in “a ranch is a house is a
building.” This kind of hierarchy is useful in software design, for it groups together
common functionality at the most general level, and views specialized behavior as
an extension of the general one.

Building

Apartment Commercial
Building

High-rise
Apartment

Low-rise
Apartment

Two-story
House

Ranch Skyscraper

House

Figure 2.3: An example of an “is a” hierarchy involving architectural buildings.

i

i

“main” — 2011/1/13 — 9:10 — page 70 — #92
i

i

i

i

i

i

70 Chapter 2. Object-Oriented Design

2.1.3 Design Patterns

One of the advantages of object-oriented design is that it facilitates reusable, ro-
bust, and adaptable software. Designing good code takes more than simply under-
standing object-oriented methodologies, however. It requires the effective use of
object-oriented design techniques.

Computing researchers and practitioners have developed a variety of organiza-
tional concepts and methodologies for designing quality object-oriented software
that is concise, correct, and reusable. Of special relevance to this book is the con-
cept of a design pattern, which describes a solution to a “typical” software design
problem. A pattern provides a general template for a solution that can be applied in
many different situations. It describes the main elements of a solution in an abstract
way that can be specialized for a specific problem at hand. It consists of a name,
which identifies the pattern, a context, which describes the scenarios for which this
pattern can be applied, a template, which describes how the pattern is applied, and
a result, which describes and analyzes what the pattern produces.

We present several design patterns in this book, and we show how they can be
consistently applied to implementations of data structures and algorithms. These
design patterns fall into two groups—patterns for solving algorithm design prob-
lems and patterns for solving software engineering problems. Some of the algo-
rithm design patterns we discuss include the following:

• Recursion (Section 3.5)
• Amortization (Section 6.1.3)
• Divide-and-conquer (Section 11.1.1)
• Prune-and-search, also known as decrease-and-conquer (Section 11.5.1)
• Brute force (Section 12.3.1)
• The greedy method (Section 12.4.2)
• Dynamic programming (Section 12.2)

Likewise, some of the software engineering design patterns we discuss include:

• Position (Section 6.2.1)
• Adapter (Section 5.3.4)
• Iterator (Section 6.2.1)
• Template method (Sections 7.3.7, 11.4, and 13.3.3)
• Composition (Section 8.1.2)
• Comparator (Section 8.1.2)
• Decorator (Section 13.3.1)

Rather than explain each of these concepts here, however, we introduce them
throughout the text as noted above. For each pattern, be it for algorithm engineering
or software engineering, we explain its general use and we illustrate it with at least
one concrete example.

i

i

“main” — 2011/1/13 — 9:10 — page 71 — #93
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 71

2.2 Inheritance and Polymorphism

To take advantage of hierarchical relationships, which are common in software
projects, the object-oriented design approach provides ways of reusing code.

2.2.1 Inheritance in C++

The object-oriented paradigm provides a modular and hierarchical organizing struc-
ture for reusing code through a technique called inheritance. This technique allows
the design of generic classes that can be specialized to more particular classes, with
the specialized classes reusing the code from the generic class. For example, sup-
pose that we are designing a set of classes to represent people at a university. We
might have a generic class Person, which defines elements common to all people.
We could then define specialized classes such as Student, Administrator, and In-
structor, each of which provides specific information about a particular type of
person.

A generic class is also known as a base class, parent class, or superclass.
It defines “generic” members that apply in a multitude of situations. Any class
that specializes or extends a base class need not give new implementations for the
general functions, for it inherits them. It should only define those functions that
are specialized for this particular class. Such a class is called a derived class, child
class, or subclass.

Let us consider an example to illustrate these concepts. Suppose that we are
writing a program to deal with people at a university. Below we show a partial
implementation of a generic class for a person. We use “// ...” to indicate code
that is irrelevant to the example and so has been omitted.

class Person { // Person (base class)
private:

string name; // name
string idNum; // university ID number

public:
// . . .
void print(); // print information
string getName(); // retrieve name
};

Suppose we next wish to define a student object. We can derive our class Stu-

i

i

“main” — 2011/1/13 — 9:10 — page 72 — #94
i

i

i

i

i

i

72 Chapter 2. Object-Oriented Design

dent from class Person as shown below.

class Student : public Person { // Student (derived from Person)
private:

string major; // major subject
int gradYear; // graduation year

public:
// . . .
void print(); // print information
void changeMajor(const string& newMajor); // change major
};

The “public Person” phrase indicates that the Student is derived from the Per-
son class. (The keyword “public” specifies public inheritance. We discuss other
types of inheritance later.) When we derive classes in this way, there is an implied
“is a” relationship between them. In this case, a Student “is a” Person. In partic-
ular, a Student object inherits all the member data and member functions of class
Person in addition to providing its own members. The relationship between these
two classes is shown graphically in a class inheritance diagram in Figure 2.4.

+print() : void
+getName() : string

-name : string
-ssn : string

Person

+print() : void
+changeMajor(in newMajor : string) : void

-major : string
-gradYear : int

Student

Figure 2.4: A class inheritance diagram, showing a base class Person and derived
class Student. Entries tagged with “–” are private and entries tagged with “+” are
public. Each block of the diagram consists of three parts: the class name, the class
member variables, and the class member functions. The type (or return type) of
each member is indicated after the colon (“:”). The arrow indicates that Student is
derived from Person.

i

i

“main” — 2011/1/13 — 9:10 — page 73 — #95
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 73

Member Functions

An object of type Person can access the public members of Person. An object of
type Student can access the public members of both classes. If a Student object
invokes the shared print function, it will use its own version by default. We use
the class scope operator (::) to specify which class’s function is used, as in Per-
son::print and Student::print. Note that an object of type Person cannot access
members of the base type, and thus it is not possible for a Person object to invoke
the changeMajor function of class Student.

Person person("Mary", "12-345"); // declare a Person
Student student("Bob", "98-764", "Math", 2012); // declare a Student

cout << student.getName() << endl; // invokes Person::getName()
person.print(); // invokes Person::print()
student.print(); // invokes Student::print()
person.changeMajor("Physics"); // ERROR!
student.changeMajor("English"); // okay

C++ programmers often find it useful for a derived class to explicitly invoke a
member function of a base class. For example, in the process of printing informa-
tion for a student, it is natural to first print the information of the Person base class,
and then print information particular to the student. Performing this task is done
using the class scope operator.

void Person::print() { // definition of Person print
cout << "Name " << name << endl;
cout << "IDnum " << idNum << endl;
}

void Student::print() { // definition of Student print
Person::print(); // first print Person information
cout << "Major " << major << endl;
cout << "Year " << gradYear << endl;
}

Without the “Person::” specifier used above, the Student::print function would
call itself recursively, which is not what we want.

Protected Members

Even though class Student is inherited from class Person, member functions of
Student do not have access to private members of Person. For example, the fol-
lowing is illegal.

void Student::printName() {
cout << name << ’\n’; // ERROR! name is private to Person
}

i

i

“main” — 2011/1/13 — 9:10 — page 74 — #96
i

i

i

i

i

i

74 Chapter 2. Object-Oriented Design

Special access privileges for derived classes can be provided by declaring mem-
bers to be “protected.” A protected member is “public” to all classes derived from
this one, but “private” to all other functions. From a syntactic perspective, the key-
word protected behaves in the same way as the keyword private and public. In
the class example above, had we declared name to be protected rather than private,
the above function printName would work fine.

Although C++ makes no requirements on the order in which the various sec-
tions of a class appear, there are two common ways of doing it. The first is to
declare public members first and private members last. This emphasizes the ele-
ments that are important to a user of the class. The other way is to present private
members first and public members last. This tends to be easier to read for an im-
plementor. Of course, clarity is a more important consideration than adherence to
any standard.

Illustrating Class Protection

Consider for example, three classes: a base class Base, a derived class Derived, and
an unrelated class Unrelated. The base class defines three integer members, one of
each access type.

class Base {
private: int priv;
protected: int prot;
public: int publ;
};

class Derived: public Base {
void someMemberFunction() {

cout << priv; // ERROR: private member
cout << prot; // okay
cout << publ; // okay
}
};

class Unrelated {
Base X;

void anotherMemberFunction() {
cout << X.priv; // ERROR: private member
cout << X.prot; // ERROR: protected member
cout << X.publ; // okay
}
};

When designing a class, we should give careful thought to the access privi-
leges we give each member variable or function. Member variables are almost

i

i

“main” — 2011/1/13 — 9:10 — page 75 — #97
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 75

always declared to be private or at least protected, since they determine the details
of the class’s implementation. A user of the class can access only the public class
members, which consist of the principal member functions for accessing and ma-
nipulating class objects. Finally, protected members are commonly used for utility
functions, which may be useful to derived classes. We will see many examples of
these three access types in the examples appearing in later chapters.

Constructors and Destructors

We saw in Section 1.5.2, that when a class object is created, the class’s constructor
is called. When a derived class is constructed, it is the responsibility of this class’s
constructor to take care that the appropriate constructor is called for its base class.
Class hierarchies in C++ are constructed bottom-up: base class first, then its mem-
bers, then the derived class itself. For this reason, the constructor for a base class
needs to be called in the initializer list (see Section 1.5.2) of the derived class. The
example below shows how constructors might be implemented for the Person and
Student classes.

Person::Person(const string& nm, const string& id)
: name(nm), // initialize name

idNum(id) { } // initialize ID number

Student::Student(const string& nm, const string& id,
const string& maj, int year)

: Person(nm, id), // initialize Person members
major(maj), // initialize major
gradYear(year) { } // initialize graduation year

Only the Person(nm, id) call has to be in the initializer list. The other initializations
could be placed in the constructor function body ({...}), but putting class initializa-
tions in the initialization list is generally more efficient. Suppose that we create a
new student object.

Student* s = new Student("Carol", "34-927", "Physics", 2014);

Note that the constructor for the Student class first makes a function call to Per-
son(”Carol”, ”34-927”) to initialize the Person base class, and then it initializes
the major to ”Physics” and the year to 2014.

Classes are destroyed in the reverse order from their construction, with derived
classes destroyed before base classes. For example, suppose that we declared de-
structors for these two classes. (Note that destructors are not really needed in this
case, because neither class allocates storage or other resources.)

Person::˜Person() { . . . } // Person destructor
Student::˜Student() { . . . } // Student destructor

i

i

“main” — 2011/1/13 — 9:10 — page 76 — #98
i

i

i

i

i

i

76 Chapter 2. Object-Oriented Design

If we were to destroy our student object, the Student destructor would be called
first, followed by the Person destructor. Unlike constructors, the Student destructor
does not need to (and is not allowed to) call the Person destructor. This happens
automatically.

delete s; // calls ˜Student() then ˜Person()

Static Binding

When a class is derived from a base class, as with Student and Person, the derived
class becomes a subtype of the base class, which means that we can use the derived
class wherever the base class is acceptable. For example, suppose that we create an
array of pointers to university people.

Person* pp[100]; // array of 100 Person pointers
pp[0] = new Person(. . .); // add a Person (details omitted)
pp[1] = new Student(. . .); // add a Student (details omitted)

Since getName is common to both classes, it can be invoked on either elements
of the array. A more interesting issue arises if we attempt to invoke print. Since
pp[1] holds the address of a Student object, we might think that the function Stu-
dent::print would be called. Surprisingly, the function Person::print is called in
both cases, in spite of the apparent difference in the two objects. Furthermore, pp[i]
is not even allowed to access Student member functions.

cout << pp[1]−>getName() << ’\n’; // okay
pp[0]−>print(); // calls Person::print()
pp[1]−>print(); // also calls Person::print() (!)
pp[1]−>changeMajor("English"); // ERROR!

The reason for this apparently anomalous behavior is called static binding—when
determining which member function to call, C++’s default action is to consider an
object’s declared type, not its actual type. Since pp[1] is declared to be a pointer to
a Person, the members for that class are used. Nonetheless, C++ provides a way to
achieve the desired dynamic effect using the technique we describe next.

Dynamic Binding and Virtual Functions

As we saw above, C++ uses static binding by default to determine which member
function to call for a derived class. Alternatively, in dynamic binding, an object’s
contents determine which member function is called. To specify that a member
function should use dynamic binding, the keyword “virtual” is added to the func-
tion’s declaration. Let us redefine our Person and Student, but this time we will

i

i

“main” — 2011/1/13 — 9:10 — page 77 — #99
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 77

declare the print function to be virtual.

class Person { // Person (base class)
virtual void print() { . . . } // print (details omitted)
// . . .
};
class Student : public Person { // Student (derived from Person)

virtual void print() { . . . } // print (details omitted)
// . . .
};

Let us consider the effect of this change on our array example, thereby illus-
trating the usefulness of dynamic binding.

Person* pp[100]; // array of 100 Person pointers
pp[0] = new Person(. . .); // add a Person (details omitted)
pp[1] = new Student(. . .); // add a Student (details omitted)
pp[0]−>print(); // calls Person::print()
pp[1]−>print(); // calls Student::print()

In this case, pp[1] contains a pointer to an object of type Student, and by the
power of dynamic binding with virtual functions, the function Student::print will
be called. The decision as to which function to call is made at run-time, hence the
name dynamic binding.

Virtual Destructors

There is no such thing as a virtual constructor. Such a concept does not make any
sense. Virtual destructors, however, are very important. In our array example, since
we store objects of both types Person and Student in the array, it is important that
the appropriate destructor be called for each object. However, if the destructor is
nonvirtual, then only the Person destructor will be called in each case. In our ex-
ample, this choice is not a problem. But if the Student class had allocated memory
dynamically, the fact that the wrong destructor is called would result in a memory
leak (see Section 1.5.3).

When writing a base class, we cannot know, in general, whether a derived class
may need to implement a destructor. So, to be safe, when defining any virtual
functions, it is recommended that a virtual destructor be defined as well. This
destructor may do nothing at all, and that is fine. It is provided just in case a
derived class needs to define its own destructor. This principle is encapsulated in
the following rule of thumb.

Remember If a base class defines any virtual functions, it should define a virtual de-
structor, even if it is empty.

i

i

“main” — 2011/1/13 — 9:10 — page 78 — #100
i

i

i

i

i

i

78 Chapter 2. Object-Oriented Design

Dynamic binding is a powerful technique, since it allows us to create an object,
such as the array pp above, whose behavior varies depending on its contents. This
technique is fundamental to the concept of polymorphism, which we discuss in the
next section.

2.2.2 Polymorphism

Literally, “polymorphism” means “many forms.” In the context of object-oriented
design, it refers to the ability of a variable to take different types. Polymorphism is
typically applied in C++ using pointer variables. In particular, a variable p declared
to be a pointer to some class S implies that p can point to any object belonging to
any derived class T of S.

Now consider what happens if both of these classes define a virtual member
function a, and let us consider which of these functions is called when we invoke
p->a(). Since dynamic binding is used, if p points to an object of type T, then
it invokes the function T::a. In this case, T is said to override function a from S.
Alternatively, if p points to an object of type S, it will invoke S::a.

Polymorphism such as this is useful because the caller of p->a() does not have
to know whether the pointer p refers to an instance of T or S in order to get the a
function to execute correctly. A pointer variable p that points to a class object that
has at least one virtual function is said to be polymorphic. That is, p can take many
forms, depending on the specific class of the object it is referring to. This kind of
functionality allows a specialized class T to extend a class S, inherit the “generic”
functions from class S, and redefine other functions from class S to account for
specific properties of objects of class T.

Inheritance, polymorphism, and function overloading support reusable soft-
ware. We can define classes that inherit generic member variables and functions
and can then define new, more specific variables and functions that deal with spe-
cial aspects of objects of the new class. For example, suppose that we defined a
generic class Person and then derived three classes Student, Administrator, and
Instructor. We could store pointers to all these objects in a list of type Person*.
When we invoke a virtual member function, such as print, to any element of the
list, it will call the function appropriate to the individual element’s type.

Specialization

There are two primary ways of using inheritance, one of which is specialization.
In using specialization, we are specializing a general class to a particular derived
class. Such derived classes typically possess an “is a” relationship to their base
class. The derived classes inherit all the members of the base class. For each
inherited function, if that function operates correctly, independent of whether it
is operating for a specialization, no additional work is needed. If, on the other

i

i

“main” — 2011/1/13 — 9:10 — page 79 — #101
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 79

hand, a general function of the base class would not work correctly on the derived
class, then we should override the function to have the correct functionality for the
derived class.

For example, we could have a general class, Dog, which has a function drink
and a function sniff. Specializing this class to a Bloodhound class would probably
not require that we override the drink function, as all dogs drink pretty much the
same way. But it could require that we override the sniff function, as a Bloodhound
has a much more sensitive sense of smell than a “generic” dog. In this way, the
Bloodhound class specializes the functions of its base class, Dog.

Extension

Another way of using inheritance is extension. In using extension, we reuse the
code written for functions of the base class, but we then add new functions that are
not present in the base class, so as to extend its functionality. For example, returning
to our Dog class, we might wish to create a derived class, BorderCollie, which
inherits all the generic functions of the Dog class, but then adds a new function,
herd, since Border Collies have a herding instinct that is not present in generic
dogs, thereby extending the functionality of a generic dog.

2.2.3 Examples of Inheritance in C++

To make the concepts of inheritance and polymorphism more concrete, let us con-
sider a simple example in C++. We consider an example of several classes that print
numeric progressions. A numeric progression is a sequence of numbers, where the
value of each number depends on one or more of the previous values. For example,
an arithmetic progression determines a next number by addition of a fixed incre-
ment. A geometric progression determines a next number by multiplication by a
fixed base value. In any case, a progression requires a way of defining its first value
and it needs a way of identifying the current value as well.

Arithmetic progression (increment 1) 0,1,2,3,4,5, . . .
Arithmetic progression (increment 3) 0,3,6,9,12, . . .
Geometric progression (base 2) 1,2,4,8,16,32, . . .
Geometric progression (base 3) 1,3,9,27,81, . . .

We begin by defining a class, Progression, which is declared in the code frag-
ment below. It defines the “generic” members and functions of a numeric progres-
sion. Specifically, it defines the following two long-integer variable members:
• first: first value of the progression
• cur: current value of the progression

Because we want these variables to be accessible from derived classes, we declare
them to be protected.

i

i

“main” — 2011/1/13 — 9:10 — page 80 — #102
i

i

i

i

i

i

80 Chapter 2. Object-Oriented Design

We define a constructor, Progression, a destructor, ~Progression, and the fol-
lowing three member functions.

firstValue(): Reset the progression to the first value and return it.

nextValue(): Step the progression to the next value and return it.

printProgression(n): Reset the progression and print its first n values.

class Progression { // a generic progression
public:

Progression(long f = 0) // constructor
: first(f), cur(f) { }

virtual ˜Progression() { }; // destructor
void printProgression(int n); // print the first n values

protected:
virtual long firstValue(); // reset
virtual long nextValue(); // advance

protected:
long first; // first value
long cur; // current value
};

The member function printProgression is public and is defined below.

void Progression::printProgression(int n) { // print n values
cout << firstValue(); // print the first
for (int i = 2; i <= n; i++) // print 2 through n

cout << ’ ’ << nextValue();
cout << endl;
}

In contrast, the member functions firstValue and nextValue are intended as
utilities that will only be invoked from within this class or its derived classes. For
this reason, we declare them to be protected. They are defined below.

long Progression::firstValue() { // reset
cur = first;
return cur;
}
long Progression::nextValue() { // advance

return ++cur;
}

It is our intention that, in order to generate different progressions, derived
classes will override one or both of these functions. For this reason, we have de-
clared both to be virtual. Because there are virtual functions in our class, we have
also provided a virtual destructor in order to be safe. (Recall the discussion of vir-
tual destructors from Section 2.2.1.) At this point the destructor does nothing, but
this might be overridden by derived classes.

i

i

“main” — 2011/1/13 — 9:10 — page 81 — #103
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 81

Arithmetic Progression Class

Let us consider a class ArithProgression, shown below. We add a new member
variable inc, which provides the value to be added to each new element of the pro-
gression. We also override the member function nextValue to produce the desired
new behavior.

class ArithProgression : public Progression { // arithmetic progression
public:

ArithProgression(long i = 1); // constructor
protected:

virtual long nextValue(); // advance
protected:

long inc; // increment
};

The constructor and the new member function nextValue are defined below.
Observe that the constructor invokes the base class constructor Progression to ini-
tialize the base object in addition to initializing the value of inc.

ArithProgression::ArithProgression(long i) // constructor
: Progression(), inc(i) { }

long ArithProgression::nextValue() { // advance by adding
cur += inc;
return cur;
}

Polymorphism is at work here. When a Progression pointer is pointing to an
ArithProgression object, it will use the ArithProgression functions firstValue and
nextValue. Even though the function printProgression is not virtual, it makes use of
this polymorphism. Its calls to the firstValue and nextValue functions are implicitly
for the “current” object, which will be of the ArithProgression class.

A Geometric Progression Class

Let us next define GeomProgression that implements a geometric progression. As
with the ArithProgression class, this new class inherits the member variables first
and cur, and the member functions firstValue and printProgression from Progres-
sion. We add a new member variable base, which holds the base value to be multi-
plied to form each new element of the progression. The constructor initializes the
base class with a starting value of 1 rather than 0. The function nextValue applies

i

i

“main” — 2011/1/13 — 9:10 — page 82 — #104
i

i

i

i

i

i

82 Chapter 2. Object-Oriented Design

multiplication to obtain the next value.

class GeomProgression : public Progression { // geometric progression
public:

GeomProgression(long b = 2); // constructor
protected:

virtual long nextValue(); // advance
protected:

long base; // base value
};

GeomProgression::GeomProgression(long b) // constructor
: Progression(1), base(b) { }

long GeomProgression::nextValue() { // advance by multiplying
cur *= base;
return cur;
}

A Fibonacci Progression Class

As a further example, we define a FibonacciProgression class that represents an-
other kind of progression, the Fibonacci progression, where the next value is de-
fined as the sum of the current and previous values. We show the FibonacciPro-
gression class below. Recall that each element of a Fibonacci series is the sum of
the previous two elements.

Fibonacci progression (first = 0, second = 1): 0,1,1,2,3,5,8, . . .

In addition to the current value cur in the Progression base class, we also store
here the value of the previous element, denoted prev. The constructor is given the
first two elements of the sequence. The member variable first is inherited from the
base class. We add a new member variable second, to store this second element.
The default values for the first and second elements are 0 and 1, respectively.

class FibonacciProgression : public Progression { // Fibonacci progression
public:

FibonacciProgression(long f = 0, long s = 1); // constructor
protected:

virtual long firstValue(); // reset
virtual long nextValue(); // advance

protected:
long second; // second value
long prev; // previous value
};

The initialization process is a bit tricky because we need to create a “fictitious”
element that precedes the first element. Note that setting this element to the value

i

i

“main” — 2011/1/13 — 9:10 — page 83 — #105
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 83

second−first achieves the desired result. This change is reflected both in the con-
structor and the overridden member function firstValue. The overridden member
function nextValue copies the current value to the previous value. We need to store
the old previous value in a temporary variable.

FibonacciProgression::FibonacciProgression(long f, long s)
: Progression(f), second(s), prev(second − first) { }

long FibonacciProgression::firstValue() { // reset
cur = first;
prev = second − first; // create fictitious prev
return cur;
}

long FibonacciProgression::nextValue() { // advance
long temp = prev;
prev = cur;
cur += temp;
return cur;
}

Combining the Progression Classes

In order to visualize how the three different progression classes are derived from
the generic Progression class, we give their inheritance diagram in Figure 2.5.

Figure 2.5: Inheritance diagram for class Progression and its subclasses.

i

i

“main” — 2011/1/13 — 9:10 — page 84 — #106
i

i

i

i

i

i

84 Chapter 2. Object-Oriented Design

To complete our example, we define the main function shown in Code Frag-
ment 2.1, which performs a simple test of each of the three classes. In this class,
variable prog is a polymorphic array of pointers to class Progression. Since each of
its members points to an object of class ArithProgression, GeomProgression, or Fi-
bonacciProgression, the functions appropriate to the given progression are invoked
in each case. The output is shown in Code Fragment 2.2. Notice that this program
has a (unimportant) memory leak because we never deleted the allocated object.

The example presented in this section provides a simple illustration of inheri-
tance and polymorphism in C++. The Progression class, its derived classes, and the
tester program have a number of shortcomings, however, which might not be im-
mediately apparent. One problem is that the geometric and Fibonacci progressions
grow quickly, and there is no provision for handling the inevitable overflow of the
long integers involved. For example, since 340 > 263, a geometric progression with
base b = 3 will overflow a 64-bit long integer after 40 iterations. Likewise, the
94th Fibonacci number is greater than 263; hence, the Fibonacci progression will
overflow a 64-bit long integer after 94 iterations. Another problem is that we may
not allow arbitrary starting values for a Fibonacci progression. For example, do we
allow a Fibonacci progression starting with 0 and −1? Dealing with input errors or
error conditions that occur during the running of a C++ program requires that we
have some mechanism for handling them. We discuss this topic later in Section 2.4.

2.2.4 Multiple Inheritance and Class Casting

In the examples we have shown so far, a subclass has been derived from a single
base class and we didn’t have to deal with the problem of viewing an object of a
specific declared class as also being of an inherited type. We discuss some related,
more-advanced C++ programming issues in this section.

Multiple and Restricted Inheritance

In C++, we are allowed to derive a class from a number of base classes, that is, C++
allows multiple inheritance. Although multiple inheritance can be useful, espe-
cially in defining interfaces, it introduces a number of complexities. For example,
if both base classes provide a member variable with the same name or a member
function with the same declaration, the derived class must specify from which base
class the member should be used (which is complicated). For this reason, we use
single inheritance almost exclusively.

We have been using public inheritance in our previous examples, indicated by
the keyword public in specifying the base class. Remember that private base class
members are not accessible in a derived class. Protected and public members of the
base class become protected and public members of the derived class, respectively.

i

i

“main” — 2011/1/13 — 9:10 — page 85 — #107
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 85

/** Test program for the progression classes */
int main() {

Progression* prog;
// test ArithProgression

cout << "Arithmetic progression with default increment:\n";
prog = new ArithProgression();
prog−>printProgression(10);
cout << "Arithmetic progression with increment 5:\n";
prog = new ArithProgression(5);
prog−>printProgression(10);

// test GeomProgression
cout << "Geometric progression with default base:\n";
prog = new GeomProgression();
prog−>printProgression(10);
cout << "Geometric progression with base 3:\n";
prog = new GeomProgression(3);
prog−>printProgression(10);

// test FibonacciProgression
cout << "Fibonacci progression with default start values:\n";
prog = new FibonacciProgression();
prog−>printProgression(10);
cout << "Fibonacci progression with start values 4 and 6:\n";
prog = new FibonacciProgression(4, 6);
prog−>printProgression(10);
return EXIT SUCCESS; // successful execution
}

Code Fragment 2.1: Program for testing the progression classes.

Arithmetic progression with default increment:

0 1 2 3 4 5 6 7 8 9

Arithmetic progression with increment 5:

0 5 10 15 20 25 30 35 40 45

Geometric progression with default base:

1 2 4 8 16 32 64 128 256 512

Geometric progression with base 3:

1 3 9 27 81 243 729 2187 6561 19683

Fibonacci progression with default start values:

0 1 1 2 3 5 8 13 21 34

Fibonacci progression with start values 4 and 6:

4 6 10 16 26 42 68 110 178 288

Code Fragment 2.2: Output of TestProgression program from Code Fragment 2.1.

i

i

“main” — 2011/1/13 — 9:10 — page 86 — #108
i

i

i

i

i

i

86 Chapter 2. Object-Oriented Design

C++ supports two other types of inheritance. These different types of inheritance
diminish the access rights for base class members. In protected inheritance, fields
declared to be public in the base class become protected in the child class. In
private inheritance, fields declared to be public and protected in the base class
become private in the derived class. An example is shown below.

class Base { // base class
protected: int foo;
public: int bar;
};

class Derive1 : public Base { // public inheritance
// foo is protected and bar is public
};

class Derive2 : protected Base { // protected inheritance
// both foo and bar are protected
};

class Derive3 : private Base { // public inheritance
// both foo and bar are private
};

Protected and private inheritance are not used as often as public inheritance. We
only use public inheritance in this book.

Casting in an Inheritance Hierarchy

An object variable can be viewed as being of various types, but it can be declared
as only one type. Thus, a variable’s declared type determines how it is used, and
even determines how certain functions will act on it. Enforcing that all variables
be typed and that operations declare the types they expect is called strong typing,
which helps prevent bugs. Nonetheless, we sometimes need to explicitly change, or
cast, a variable from one type to another. We have already introduced type casting
in Section 1.2.1. We now discuss how it works for classes.

To illustrate an example where we may want to perform a cast, recall our class
hierarchy consisting of a base class Person and derived class Student. Suppose
that we are storing pointers to objects of both types in an array pp. The following
attempt to change a student’s major would be flagged as an error by the compiler.

Person* pp[100]; // array of 100 Person pointers
pp[0] = new Person(. . .); // add a Person (details omitted)
pp[1] = new Student(. . .); // add a Student (details omitted)
// . . .
pp[1]−>changeMajor("English"); // ERROR!

i

i

“main” — 2011/1/13 — 9:10 — page 87 — #109
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 87

The problem is that the base class Person does not have a function changeMajor.
Notice that this is different from the case of the function print because the print
function was provided in both classes. Nonetheless, we “know” that pp[1] points to
an object of class Student, so this operation should be legal.

To access the changeMajor function, we need to cast the pp[1] pointer from
type Person* to type Student*. Because the contents of a variable are dynamic, we
need to use the C++ run-time system to determine whether this cast is legal, which
is what a dynamic cast does. The syntax of a dynamic cast is shown below.

dynamic cast < desired type > (expression)

Dynamic casting can only be applied to polymorphic objects, that is, objects
that come from a class with at least one virtual function. Below we show how to
use dynamic casting to change the major of pp[1].

Student* sp = dynamic cast<Student*>(pp[1]); // cast pp[1] to Student*
sp−>changeMajor("Chemistry"); // now changeMajor is legal

Dynamic casting is most often applied for casting pointers within the class
hierarchy. If an illegal pointer cast is attempted, then the result is a null pointer.
For example, we would get a NULL pointer from an attempt to cast pp[0] as above,
since it points to a Person object.

To illustrate the use of dynamic cast, we access all the elements of the pp array
and, for objects of (actual) type Student, change the major to “Undecided”

for (int i = 0; i < 100; i++) {
Student *sp = dynamic cast<Student*>(pp[i]);
if (sp != NULL) // cast succeeded?

sp−>changeMajor("Undecided"); // change major
}

The casting we have discussed here could also have been done using the tradi-
tional C-style cast or through a static cast (recall Section 1.2.1). Unfortunately, no
error checking would be performed in that case. An attempt to cast a Person object
pointer to a Student pointer would succeed “silently,” but any attempt to use such
a pointer would have disastrous consequences.

2.2.5 Interfaces and Abstract Classes

For two objects to interact, they must “know” about each other’s member func-
tions. To enforce this “knowledge,” the object-oriented design paradigm asks that
classes specify the application programming interface (API), or simply interface,
that their objects present to other objects. In the ADT-based approach (see Sec-
tion 2.1.2) to data structures followed in this book, an interface defining an ADT

i

i

“main” — 2011/1/13 — 9:10 — page 88 — #110
i

i

i

i

i

i

88 Chapter 2. Object-Oriented Design

is specified as a type definition and a collection of member functions for this type,
with the arguments for each function being of specified types.

Some programming languages provide a mechanism for defining ADTs. One
example is Java’s interface. An interface is a collection of function declarations
with no data and no bodies. That is, the member functions of an interface are
always empty. When a class implements an interface, it must implement all of the
member functions declared in the interface.

C++ does not provide a direct mechanism for specifying interfaces. Nonethe-
less, throughout this book we often provide informal interfaces, even though they
are not legal C++ structures. For example, a stack data structure (see Chapter 5)
is a container that supports various operations such as inserting (or pushing) an
element onto the top of the stack, removing (or popping) an element from the top
of the stack, and testing whether the stack is empty. Below we provide an example
of a minimal interface for a stack of integers.

class Stack { // informal interface – not a class
public:

bool isEmpty() const; // is the stack empty?
void push(int x); // push x onto the stack
int pop(); // pop the stack and return result
};

Abstract Classes

The above informal interface is not a valid construct in C++; it is just a documen-
tation aid. In particular, it does not contain any data members or definitions of
member functions. Nonetheless, it is useful, since it provides important informa-
tion about a stack’s public member functions and how they are called.

An abstract class in C++ is a class that is used only as a base class for inheri-
tance; it cannot be used to create instances directly. At first the idea of creating a
class that cannot be instantiated seems to be nonsense, but it is often very important.
For example, suppose that we want to define a set of geometric shape classes, say,
Circle, Rectangle, and Triangle. It is natural to derive these related classes from a
single generic base class, say, Shape. Each of the derived classes will have a virtual
member function draw, which draws the associated object. The rules of inheritance
require that we define such a function for the base class, but it is unclear what such
a function means for a generic shape.

One way to handle this would be to define Shape::draw with an empty function
body ({ }), which would be a rather unnatural solution. What is really desired
here is some way to inform the compiler that the class Shape is abstract; it is not
possible to create objects of type Shape, only its subclasses. In C++, we define
a class as being abstract by specifying that one or more members of its functions
are abstract, or pure virtual. A function is declared pure virtual by giving “=0” in

i

i

“main” — 2011/1/13 — 9:10 — page 89 — #111
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 89

place of its body. C++ does not allow the creation of an object that has one or more
pure virtual functions. Thus, any derived class must provide concrete definitions
for all pure virtual functions of the base class.

As an example, recall our Progression class and consider the member func-
tion nextValue, which computes the next value in the progression. The meaning
of this function is clear for each of the derived classes: ArithProgression, Geom-
Progression, and FibonacciProgression. However, in the base class Progression
we invented a rather arbitrary default for the nextValue function. (Go back and
check it. What progression does it compute?) It would be more natural to leave
this function undefined. We show below how to make it a pure virtual member
function.

class Progression { // abstract base class
// . . .
virtual long nextValue() = 0; // pure virtual function
// . . .
};

As a result, the compiler will not allow the creation of objects of type Progres-
sion, since the function nextValue is “pure virtual.” However, its derived classes,
ArithProgression for example, can be defined because they provide a definition for
this member function.

Interfaces and Abstract Base Classes

We said above that C++ does not provide a direct mechanism for defining interfaces
for abstract data types. Nevertheless, we can use abstract base classes to achieve
much of the same purpose.

In particular, we may construct a class for an interface in which all the functions
are pure virtual as shown below for the example of a simple stack ADT.

class Stack { // stack interface as an abstract class
public:

virtual bool isEmpty() const = 0; // is the stack empty?
virtual void push(int x) = 0; // push x onto the stack
virtual int pop() = 0; // pop the stack and return result
};

A class that implements this stack interface can be derived from this abstract
base class, and then provide concrete definitions for all of these virtual functions as

i

i

“main” — 2011/1/13 — 9:10 — page 90 — #112
i

i

i

i

i

i

90 Chapter 2. Object-Oriented Design

shown below.

class ConcreteStack : public Stack { // implements Stack
public:

virtual bool isEmpty() { . . . } // implementation of members
virtual void push(int x) { . . . } // . . . (details omitted)
virtual int pop() { . . . }

private:
// . . . // member data for the implementation
};

There are practical limitations to this method of defining interfaces, so we only
use informal interfaces for the purpose of illustrating ADTs.

2.3 Templates

Inheritance is only one mechanism that C++ provides in support of polymorphism.
In this section, we consider another way—using templates.

2.3.1 Function Templates

Let us consider the following function, which returns the minimum of two integers.

int integerMin(int a, int b) // returns the minimum of a and b
{ return (a < b ? a : b); }

Such a function is very handy, so we might like to define a similar function for
computing the minimum of two variables of other types, such as long, short, float,
and double. Each such function would require a different declaration and definition,
however, and making many copies of the same function is an error-prone solution,
especially for longer functions.

C++ provides an automatic mechanism, called the function template, to pro-
duce a generic function for an arbitrary type T. A function template provides a
well-defined pattern from which a concrete function may later be formally defined
or instantiated. The example below defines a genericMin function template.

template <typename T>
T genericMin(T a, T b) { // returns the minimum of a and b

return (a < b ? a : b);
}

The declaration takes the form of the keyword “template” followed by the notation
<typename T>, which is the parameter list for the template. In this case, there is

i

i

“main” — 2011/1/13 — 9:10 — page 91 — #113
i

i

i

i

i

i

2.3. Templates 91

just one parameter T. The keyword “typename” indicates that T is the name of
some type. (Older versions of C++ do not support this keyword and instead the
keyword “class” must be used.) We can have other types of template parameters,
integers for example, but type names are the most common. Observe that the type
parameter T takes the place of “int” in the original definition of the genericMin
function.

We can now invoke our templated function to compute the minimum of objects
of many different types. The compiler looks at the argument types and determines
which form of the function to instantiate.

cout << genericMin(3, 4) << ’ ’ // = genericMin<int>(3,4)
<< genericMin(1.1, 3.1) << ’ ’ // = genericMin<double>(1.1, 3.1)
<< genericMin(’t’, ’g’) << endl; // = genericMin<char>(’t’,’g’)

The template type does not need to be a fundamental type. We could use any
type in this example, provided that the less than operator (<) is defined for this type.

2.3.2 Class Templates

In addition to function templates, C++ allows classes to be templated, which is a
powerful mechanism because it allows us to provide one data structure declaration
that can be applied to many different types. In fact, the Standard Template Library
uses class templates extensively.

Let us consider an example of a template for a restricted class BasicVector that
stores a vector of elements, which is a simplified version of a structure discussed in
greater detail in Chapter 6. This class has a constructor that is given the size of the
array to allocate. In order to access elements of the array, we overload the indexing
operator “[].”

We present a partial implementation of a class template for class BasicVector
below. We have omitted many of the other member functions, such as the copy
constructor, assignment operator, and destructor. The template parameter T takes
the place of the actual type that will be stored in the array.

template <typename T>
class BasicVector { // a simple vector class
public:

BasicVector(int capac = 10); // constructor
T& operator[](int i) // access element at index i
{ return a[i]; }

// . . . other public members omitted
private:

T* a; // array storing the elements
int capacity; // length of array a
};

i

i

“main” — 2011/1/13 — 9:10 — page 92 — #114
i

i

i

i

i

i

92 Chapter 2. Object-Oriented Design

We have defined one member function (the indexing operator) within the class
body, and below we show how the other member function (the constructor) can
be defined outside the class body. The constructor initializes the capacity value and
allocates the array storage.

template <typename T> // constructor
BasicVector<T>::BasicVector(int capac) {

capacity = capac;
a = new T[capacity]; // allocate array storage
}

To instantiate a concrete instance of the class BasicVector, we provide the class
name followed by the actual type parameter enclosed in angled brackets (<...>). The
code fragment below shows how we would define three vectors, one of type int,
one of type double, and one of type string.

BasicVector<int> iv(5); // vector of 5 integers
BasicVector<double> dv(20); // vector of 20 doubles
BasicVector<string> sv(10); // vector of 10 strings

Since we have overloaded the indexing operator, we can access elements of each
array in the same manner as we would for any C++ array.

iv[3] = 8;
dv[14] = 2.5;
sv[7] = "hello";

Templated Arguments

The actual argument in the instantiation of a class template can itself be a templated
type. For example, we could create a BasicVector whose individual elements are
themselves of type BasicVector<int>.

BasicVector<BasicVector<int> > xv(5); // a vector of vectors
// . . .
xv[2][8] = 15;

In this case, because no capacity argument could be provided to the constructor,
each element of the vector is constructed using the default capacity of 10. Thus the
above definition declares a BasicVector consisting of five elements, each of which
is a BasicVector consisting of 10 integers. Such a structure therefore behaves much
like a two-dimensional array of integers.

Note that in the declaration of xv above, we intentionally left a space after
“<int>.” The reason is that without the space, the character combination “>>”
would be interpreted as a bitwise right-shift operator by the compiler (see Sec-
tion 1.2).

i

i

“main” — 2011/1/13 — 9:10 — page 93 — #115
i

i

i

i

i

i

2.4. Exceptions 93

2.4 Exceptions

Exceptions are unexpected events that occur during the execution of a program. An
exception can be the result of an error condition or simply an unanticipated input.
In C++, exceptions can be thought of as being objects themselves.

2.4.1 Exception Objects

In C++, an exception is “thrown” by code that encounters some unexpected condi-
tion. Exceptions can also be thrown by the C++ run-time environment should it en-
counter an unexpected condition like running out of memory. A thrown exception
is “caught” by other code that “handles” the exception somehow, or the program is
terminated unexpectedly. (We say more about catching exceptions shortly.)

Exceptions are a relatively recent addition to C++. Prior to having exceptions,
errors were typically handled by having the program abort at the source of the
error or by having the involved function return some special value. Exceptions
provide a much cleaner mechanism for handling errors. Nevertheless, for historical
reasons, many of the functions in the C++ standard library do not throw exceptions.
Typically they return some sort of special error status, or set an error flag, which
can be tested.

Exceptions are thrown when a piece of code finds some sort of problem dur-
ing execution. Since there are many types of possible errors, when an exception is
thrown, it is identified by a type. Typically this type is a class whose members pro-
vide information as to the exact nature of the error, for example a string containing
a descriptive error message.

Exception types often form hierarchies. For example, let’s imagine a hypothet-
ical mathematics library, which may generate many different types of errors. The
library might begin by defining one generic exception, MathException, represent-
ing all types of mathematical errors, and then derive more specific exceptions for
particular error conditions. The errMsg member holds a message string with an
informative message. Here is a possible definition of this generic class.

class MathException { // generic math exception
public:

MathException(const string& err) // constructor
: errMsg(err) { }

string getError() { return errMsg; } // access error message
private:

string errMsg; // error message
};

i

i

“main” — 2011/1/13 — 9:10 — page 94 — #116
i

i

i

i

i

i

94 Chapter 2. Object-Oriented Design

Using Inheritance to Define New Exception Types

The above MathException class would likely have other member functions, for
example, for accessing the error message. We may then add more specific excep-
tions, such as ZeroDivide, to handle division by zero, and NegativeRoot, to handle
attempts to compute the square root of a negative number. We could use class
inheritance to represent this hierarchical relationship, as follows.

class ZeroDivide : public MathException {
public:

ZeroDivide(const string& err) // divide by zero
: MathException(err) { }
};

class NegativeRoot : public MathException {
public:

NegativeRoot(const string& err) // negative square root
: MathException(err) { }
};

2.4.2 Throwing and Catching Exceptions

Exceptions are typically processed in the context of “try” and “catch” blocks. A
try block is a block of statements proceeded by the keyword try. After a try block,
there are one or more catch blocks. Each catch block specifies the type of exception
that it catches. Execution begins with the statements of the try block. If all goes
smoothly, then execution leaves the try block and skips over its associated catch
blocks. If an exception is thrown, then the control immediately jumps into the
appropriate catch block for this exception.

For example, suppose that we were to use our mathematical library as part of
the implementation of a numerical application. We would enclose the computations
of the application within a try block. After the try block, we would catch and deal
with any exceptions that arose in the computation.

try {
// . . . application computations
if (divisor == 0) // attempt to divide by 0?

throw ZeroDivide("Divide by zero in Module X");
}
catch (ZeroDivide& zde) {

// handle division by zero
}
catch (MathException& me) {

// handle any math exception other than division by zero
}

i

i

“main” — 2011/1/13 — 9:10 — page 95 — #117
i

i

i

i

i

i

2.4. Exceptions 95

Processing the above try block is done as follows. The computations of the try
block are executed. When an attempt is discovered to divide by zero, ZeroDivide is
thrown, and execution jumps immediately to the associated catch statement where
corrective recovery and clean up should be performed.

Let us study the entire process in somewhat greater detail. The throw statement
is typically written as follows:

throw exception name(arg1,arg2, . . .)

where the arguments are passed to the exception’s constructor.
Exceptions may also be thrown by the C++ run-time system itself. For example,

if an attempt to allocate space in the free store using the new operator fails due to
lack of space, then a bad alloc exception is thrown by the system.

When an exception is thrown, it must be caught or the program will abort. In
any particular function, an exception in that function can be passed through to the
calling function or it can be caught in that function. When an exception is caught,
it can be analyzed and dealt with. The general syntax for a try-catch block in C++
is as follows:

try
try statements

catch (exception type 1 identifier 1)
catch statements 1

. . .
catch (exception type n identifier n)

catch statements n

Execution begins in the “try statements.” If this execution generates no excep-
tions, then the flow of control continues with the first statement after the last line of
the entire try-catch block. If, on the other hand, an exception is generated, execu-
tion in the try block terminates at that point and execution jumps to the first catch
block matching the exception thrown. Thus, an exception thrown for a derived
class will be caught by its base class. For example, if we had thrown NegativeRoot
in the example above, it would be caught by catch block for MathException. Note
that because the system executes the first matching catch block, exceptions should
be listed in order of most specific to least specific. The special form “catch(...)”
catches all exceptions.

The “identifier” for the catch statement identifies the exception object itself.
As we said before, this object usually contains additional information about the
exception, and this information may be accessed from within the catch block. As is
common in passing class arguments, the exception is typically passed as a reference
or a constant reference. Once execution of the catch block completes, control flow
continues with the first statement after the last catch block.

The recovery action taken in a catch block depends very much on the particular
application. It may be as simple as printing an error message and terminating the

i

i

“main” — 2011/1/13 — 9:10 — page 96 — #118
i

i

i

i

i

i

96 Chapter 2. Object-Oriented Design

program. It may require complex clean-up operations, such as deallocating dynam-
ically allocated storage and restoring the program’s internal state. There are also
some interesting cases in which the best way to handle an exception is to ignore it
(which can be specified by having an empty catch block). Ignoring an exception
is usually done, for example, when the programmer does not care whether there
was an exception or not. Another legitimate way of handling exceptions is to throw
another exception, possibly one that specifies the exceptional condition more pre-
cisely.

2.4.3 Exception Specification

When we declare a function, we should also specify the exceptions it might throw.
This convention has both a functional and courteous purpose. For one, it lets users
know what to expect. It also lets the compiler know which exceptions to prepare
for. The following is an example of such a function definition.

void calculator() throw(ZeroDivide, NegativeRoot) {
// function body . . .

}

This definition indicates that the function calculator (and any other functions it
calls) can throw these two exceptions or exceptions derived from these types, but
no others.

By specifying all the exceptions that might be thrown by a function, we prepare
others to be able to handle all of the exceptional cases that might arise from using
this function. Another benefit of declaring exceptions is that we do not need to
catch those exceptions in our function, which is appropriate, for example, in the
case where other code is responsible for causing the circumstances leading up to
the exception.

The following illustrates an exception that is “passed through.”

void getReadyForClass() throw(ShoppingListTooSmallException,
OutOfMoneyException) {

goShopping(); // I don’t have to try or catch the exceptions
// which goShopping() might throw because
// getReadyForClass() will just pass these along.

makeCookiesForTA();
}

A function can declare that it throws as many exceptions as it likes. Such a
listing can be simplified somewhat if all exceptions that can be thrown are derived
classes of the same exception. In this case, we only have to declare that a function
throws the appropriate base class.

i

i

“main” — 2011/1/13 — 9:10 — page 97 — #119
i

i

i

i

i

i

2.4. Exceptions 97

Suppose that a function does not contain a throw specification. It would be
natural to assume that such a function does not throw any exceptions. In fact, it has
quite a different meaning. If a function does not provide a throw specification, then
it may throw any exception. Although this is confusing, it is necessary to maintain
compatibility with older versions of C++. To indicate that a function throws no
exceptions, provide the throw specifier with an empty list of exceptions.

void func1(); // can throw any exception
void func2() throw(); // can throw no exceptions

Generic Exception Class

We declare many different exceptions in this book. In order to structure these ex-
ceptions hierarchically, we need to have one generic exception class that serves as
the “mother of all exceptions.” C++ does not provide such a generic exception, so
we created one of our own. This class, called RuntimeException, is shown below.
It has an error message as its only member. It provides a constructor that is given
an informative error message as its argument. It also provides a member function
getMessage that allows us to access this message.

class RuntimeException { // generic run-time exception
private:

string errorMsg;
public:

RuntimeException(const string& err) { errorMsg = err; }
string getMessage() const { return errorMsg; }
};

By deriving all of our exceptions from this base class, for any exception e, we
can output e’s error message by invoking the inherited getMessage function.

i

i

“main” — 2011/1/13 — 9:10 — page 98 — #120
i

i

i

i

i

i

98 Chapter 2. Object-Oriented Design

2.5 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-2.1 What are some potential efficiency disadvantages of having very deep in-
heritance trees, that is, a large set of classes, A, B, C, and so on, such that
B extends A, C extends B, D extends C, etc.?

R-2.2 What are some potential efficiency disadvantages of having very shallow
inheritance trees, that is, a large set of classes, A, B, C, and so on, such
that all of these classes extend a single class, Z?

R-2.3 Give three examples of life-critical software applications.

R-2.4 Give an example of a software application where adaptability can mean
the difference between a prolonged sales lifetime and bankruptcy.

R-2.5 Describe a component from a text-editor GUI (other than an “edit” menu)
and the member functions that it encapsulates.

R-2.6 Draw a class inheritance diagram for the following set of classes.

• Class Goat extends Object and adds a member variable tail and
functions milk and jump.

• Class Pig extends Object and adds a member variable nose and func-
tions eat and wallow.

• Class Horse extends Object and adds member variables height and
color, and functions run and jump.

• Class Racer extends Horse and adds a function race.

• Class Equestrian extends Horse and adds a member variable weight
and functions trot and isTrained.

R-2.7 A derived class’s constructor explicitly invokes its base class’s constructor,
but a derived class’s destructor cannot invoke its base class’s destructor.
Why does this apparent asymmetry make sense?

R-2.8 Give a short fragment of C++ code that uses the progression classes from
Section 2.2.3 to find the 7th value of a Fibonacci progression that starts
with 3 and 4 as its first two values.

R-2.9 If we choose inc = 128, how many calls to the nextValue function from
the ArithProgression class of Section 2.2.3 can we make before we cause
a long-integer overflow, assuming a 64-bit long integer?

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 99 — #121
i

i

i

i

i

i

2.5. Exercises 99

R-2.10 Suppose we have a variable p that is declared to be a pointer to an object
of type Progression using the classes of Section 2.2.3. Suppose further
that p actually points to an instance of the class GeomProgression that
was created with the default constructor. If we cast p to a pointer of type
Progression and call p->firstValue(), what will be returned? Why?

R-2.11 Consider the inheritance of classes from Exercise R-2.6, and let d be an
object variable of type Horse. If d refers to an actual object of type Eques-
trian, can it be cast to the class Racer? Why or why not?

R-2.12 Generalize the Person-Student class hierarchy to include classes Faculty,
UndergraduateStudent, GraduateStudent, Professor, Instructor. Explain
the inheritance structure of these classes, and derive some appropriate
member variables for each class.

R-2.13 Give an example of a C++ code fragment that performs an array reference
that is possibly out of bounds, and if it is out of bounds, the program
catches that exception and prints an appropriate error message.

R-2.14 Consider the following code fragment:

class Object
{ public: virtual void printMe() = 0; };

class Place : public Object
{ public: virtual void printMe() { cout << "Buy it.\n"; } };

class Region : public Place
{ public: virtual void printMe() { cout << "Box it.\n"; } };

class State : public Region
{ public: virtual void printMe() { cout << "Ship it.\n"; } };

class Maryland : public State
{ public: virtual void printMe() { cout << "Read it.\n"; } };

int main() {
Region* mid = new State;
State* md = new Maryland;
Object* obj = new Place;
Place* usa = new Region;
md−>printMe();
mid−>printMe();
(dynamic cast<Place*>(obj))−>printMe();
obj = md;
(dynamic cast<Maryland*>(obj))−>printMe();
obj = usa;
(dynamic cast<Place*>(obj))−>printMe();
usa = md;
(dynamic cast<Place*>(usa))−>printMe();
return EXIT SUCCESS;
}

What is the output from calling the main function of the Maryland class?

i

i

“main” — 2011/1/13 — 9:10 — page 100 — #122
i

i

i

i

i

i

100 Chapter 2. Object-Oriented Design

R-2.15 Write a short C++ function that counts the number of vowels in a given
character string.

R-2.16 Write a short C++ function that removes all the punctuation from a string s
storing a sentence. For example, this operation would transform the string
"Let’s try, Mike." to "Lets try Mike".

R-2.17 Write a short program that takes as input three integers, a, b, and c, and
determines if they can be used in a correct arithmetic formula (in the given
order), like “a+ b = c,” “a = b− c,” or “a∗b = c.”

R-2.18 Write a short C++ program that creates a Pair class that can store two
objects declared as generic types. Demonstrate this program by creating
and printing Pair objects that contain five different kinds of pairs, such as
<int,string> and <float,long>.

Creativity

C-2.1 Give an example of a C++ program that outputs its source code when it is
run. Such a program is called a quine.

C-2.2 Suppose you are on the design team for a new e-book reader. What are the
primary classes and functions that the C++ software for your reader will
need? You should include an inheritance diagram for this code, but you
don’t need to write any actual code. Your software architecture should
at least include ways for customers to buy new books, view their list of
purchased book, and read their purchased books.

C-2.3 Most modern C++ compilers have optimizers that can detect simple cases
when it is logically impossible for certain statements in a program to ever
be executed. In such cases, the compiler warns the programmer about the
useless code. Write a short C++ function that contains code for which it
is provably impossible for that code to ever be executed, but your favorite
C++ compiler does not detect this fact.

C-2.4 Design a class Line that implements a line, which is represented by the for-
mula y = ax+b. Your class should store a and b as double member vari-
ables. Write a member function intersect(ℓ) that returns the x coordinate
at which this line intersects line ℓ. If the two lines are parallel, then your
function should throw an exception Parallel. Write a C++ program that
creates a number of Line objects and tests each pair for intersection. Your
program should print an appropriate error message for parallel lines.

C-2.5 Write a C++ class that is derived from the Progression class to produce a
progression where each value is the absolute value of the difference be-
tween the previous two values. You should include a default constructor
that starts with 2 and 200 as the first two values and a parametric construc-
tor that starts with a specified pair of numbers as the first two values.

i

i

“main” — 2011/1/13 — 9:10 — page 101 — #123
i

i

i

i

i

i

2.5. Exercises 101

C-2.6 Write a C++ class that is derived from the Progression class to produce
a progression where each value is the square root of the previous value.
(Note that you can no longer represent each value with an integer.) You
should include a default constructor that starts with 65,536 as the first
value and a parametric constructor that starts with a specified (double)
number as the first value.

C-2.7 Write a program that consists of three classes, A, B, and C, such that B is a
subclass of A and C is a subclass of B. Each class should define a member
variable named “x” (that is, each has its own variable named x). Describe
a way for a member function in C to access and set A’s version of x to a
given value, without changing B or C’s version.

C-2.8 Write a set of C++ classes that can simulate an Internet application, where
one party, Alice, is periodically creating a set of packets that she wants to
send to Bob. The Internet process is continually checking if Alice has any
packets to send, and if so, it delivers them to Bob’s computer, and Bob is
periodically checking if his computer has a packet from Alice, and, if so,
he reads and deletes it.

C-2.9 Write a C++ program that can input any polynomial in standard algebraic
notation and outputs the first derivative of that polynomial.

Projects

P-2.1 Write a C++ program that can take a positive integer greater than 2 as
input and write out the number of times one must repeatedly divide this
number by 2 before getting a value less than 2.

P-2.2 Write a C++ program that “makes change.” Your program should input
two numbers, one that is a monetary amount charged and the other that is
a monetary amount given. It should return the number of each kind of bill
and coin to give back as change for the difference between the amounts
given and charged. The values assigned to the bills and coins can be based
on the monetary system of any government. Try to design your program
so that it returns the fewest number of bills and coins as possible.

P-2.3 Implement a templated C++ class Vector that manipulates a numeric vec-
tor. Your class should be templated with any numerical scalar type T ,
which supports the operations + (addition), − (subtraction), and * (mul-
tiplication). In addition, type T should have constructors T (0), which
produces the additive identity element (typically 0) and T (1), which pro-
duces the multiplicative identity (typically 1). Your class should provide a
constructor, which is given the size of the vector as an argument. It should
provide member functions (or operators) for vector addition, vector sub-
traction, multiplication of a scalar and a vector, and vector dot product.

i

i

“main” — 2011/1/13 — 9:10 — page 102 — #124
i

i

i

i

i

i

102 Chapter 2. Object-Oriented Design

Write a class Complex that implements a complex number by overload-
ing the operators for addition, subtraction, and multiplication. Implement
three concrete instances of your class Vector with the scalar types int,
double, and Complex, respectively.

P-2.4 Write a simulator as in the previous project, but add a Boolean gender
field and a floating-point strength field to each Animal object. Now, if
two animals of the same type try to collide, then they only create a new
instance of that type of animal if they are of different genders. Otherwise,
if two animals of the same type and gender try to collide, then only the
one of larger strength survives.

P-2.5 Write a C++ program that has a Polygon interface that has abstract func-
tions, area(), and perimeter(). Implement classes for Triangle, Quadri-
lateral, Pentagon, Hexagon, and Octagon, which implement this inter-
face, with the obvious meanings for the area() and perimeter() functions.
Also implement classes, IsoscelesTriangle, EquilateralTriangle, Rectan-
gle, and Square, which have the appropriate inheritance relationships. Fi-
nally, write a simple user interface that allows users to create polygons of
the various types, input their geometric dimensions, and then output their
area and perimeter. For extra effort, allow users to input polygons by spec-
ifying their vertex coordinates and be able to test if two such polygons are
similar.

P-2.6 Write a C++ program that inputs a document and then outputs a bar-chart
plot of the frequencies of each alphabet character that appears in that doc-
ument.

P-2.7 Write a C++ program that inputs a list of words separated by whitespace,
and outputs how many times each word appears in the list. You need not
worry about efficiency at this point, however, as this topic is something
that will be addressed later in this book.

Chapter Notes

For a broad overview of developments in computer science and engineering, we refer the
reader to The Computer Science and Engineering Handbook [96]. For more information
about the Therac-25 incident, please see the paper by Leveson and Turner [63].

The reader interested in studying object-oriented programming further, is referred to
the books by Booch [13], Budd [16], and Liskov and Guttag [68]. Liskov and Guttag [68]
also provide a nice discussion of abstract data types, as does the survey paper by Cardelli
and Wegner [19] and the book chapter by Demurjian [27] in the The Computer Science
and Engineering Handbook [96]. Design patterns are described in the book by Gamma et
al. [35]. The class inheritance diagram notation we use is derived from the Gamma et al.

	2 Object-Oriented Design
	2.1 Goals, Principles, and Patterns
	2.1.1 Object-Oriented Design Goals
	2.1.2 Object-Oriented Design Principles
	2.1.3 Design Patterns

	2.2 Inheritance and Polymorphism
	2.2.1 Inheritance in C++
	2.2.2 Polymorphism
	2.2.3 Examples of Inheritance in C++
	2.2.4 Multiple Inheritance and Class Casting
	2.2.5 Interfaces and Abstract Classes

	2.3 Templates
	2.3.1 Function Templates
	2.3.2 Class Templates

	2.4 Exceptions
	2.4.1 Exception Objects
	2.4.2 Throwing and Catching Exceptions
	2.4.3 Exception Specification

	2.5 Exercises

