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2 Chapter 1. A C++ Primer

1.1 Basic C++ Programming Elements

Building data structures and algorithms requires communicating instructions to a
computer, and an excellent way to perform such communication is using a high-
level computer language, such as C++. C++ evolved from the programming lan-
guage C, and has, over time, undergone further evolution and development from
its original definition. It has incorporated many features that were not part of C,
such as symbolic constants, in-line function substitution, reference types, paramet-
ric polymorphism through templates, and exceptions (which are discussed later).
As a result, C++ has grown to be a complex programming language. Fortunately,
we do not need to know every detail of this sophisticated language in order to use
it effectively.

In this chapter and the next, we present a quick tour of the C++ programming
language and its features. It would be impossible to present a complete presentation
of the language in this short space, however. Since we assume that the reader is
already familiar with programming with some other language, such as C or Java,
our descriptions are short. This chapter presents the language’s basic features, and
in the following chapter, we concentrate on those features that are important for
object-oriented programming.

C++ is a powerful and flexible programming language, which was designed to
build upon the constructs of the C programming language. Thus, with minor ex-
ceptions, C++ is a superset of the C programming language. C++ shares C’s ability
to deal efficiently with hardware at the level of bits, bytes, words, addresses, etc.
In addition, C++ adds several enhancements over C (which motivates the name
“C++”), with the principal enhancement being the object-oriented concept of a
class.

A class is a user-defined type that encapsulates many important mechanisms
such as guaranteed initialization, implicit type conversion, control of memory man-
agement, operator overloading, and polymorphism (which are all important topics
that are discussed later in this book). A class also has the ability to hide its un-
derlying data. This allows a class to conceal its implementation details and allows
users to conceptualize the class in terms of a well-defined interface. Classes enable
programmers to break an application up into small, manageable pieces, or objects.
The resulting programs are easier to understand and easier to maintain.

1.1.1 A Simple C++ Program

Like many programming languages, creating and running a C++ program requires
several steps. First, we create a C++ source file into which we enter the lines of our
program. After we save this file, we then run a program, called a compiler, which
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1.1. Basic C++ Programming Elements 3

creates a machine-code interpretation of this program. Another program, called
a linker (which is typically invoked automatically by the compiler), includes any
required library code functions needed and produces the final machine-executable
file. In order to run our program, the user requests that the system execute this file.

Let us consider a very simple program to illustrate some of the language’s basic
elements. Don’t worry if some elements in this example are not fully explained. We
discuss them in greater depth later in this chapter. This program inputs two integers,
which are stored in the variables x and y. It then computes their sum and stores the
result in a variable sum, and finally it outputs this sum. (The line numbers are not
part of the program; they are just for our reference.)

1 #include <cstdlib>
2 #include <iostream>
3 /* This program inputs two numbers x and y and outputs their sum */
4 int main( ) {
5 int x, y;
6 std::cout << "Please enter two numbers: ";
7 std::cin >> x >> y; // input x and y
8 int sum = x + y; // compute their sum
9 std::cout << "Their sum is " << sum << std::endl;

10 return EXIT SUCCESS; // terminate successfully
11 }

A few things about this C++ program should be fairly obvious. First, comments
are indicated with two slashes (//). Each such comment extends to the end of the
line. Longer block comments are enclosed between /* and */. Block comments
may extend over multiple lines. The quantities manipulated by this program are
stored in three integer variables, x, y, and sum. The operators “>>” and “<<” are
used for input and output, respectively.

Program Elements

Let us consider the elements of the above program in greater detail. Lines 1 and
2 input the two header files, “cstdlib” and “iostream.” Header files are used to
provide special declarations and definitions, which are of use to the program. The
first provides some standard system definitions, and the second provides definitions
needed for input and output.

The initial entry point for C++ programs is the function main. The statement
“int main( )” on line 4 declares main to be a function that takes no arguments and
returns an integer result. (In general, the main function may be called with the
command-line arguments, but we don’t discuss this.) The function body is given
within curly braces ({...}), which start on line 4 and end on line 11. The program
terminates when the return statement on line 10 is executed.
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4 Chapter 1. A C++ Primer

By convention, the function main returns the value zero to indicate success
and returns a nonzero value to indicate failure. The include file cstdlib defines the
constant EXIT SUCCESS to be 0. Thus, the return statement on line 10 returns 0,
indicating a successful termination.

The statement on line 6 prints a string using the output operator (“<<”). The
statement on line 7 inputs the values of the variables x and y using the input operator
(“>>”). These variable values could be supplied, for example, by the person running
our program. The name std::cout indicates that output is to be sent to the standard
output stream. There are two other important I/O streams in C++: standard input
is where input is typically read, and standard error is where error output is written.
These are denoted std::cin and std::cerr, respectively.

The prefix “std::” indicates that these objects are from the system’s standard
library. We should include this prefix when referring to objects from the standard
library. Nonetheless, it is possible to inform the compiler that we wish to use
objects from the standard library—and so omit this prefix—by utilizing the “using”
statement as shown below.

#include <iostream>
using namespace std; // makes std:: available
// . . .
cout << "Please enter two numbers: "; // (std:: is not needed)
cin >> x >> y;

We discuss the using statement later in Section 1.1.4. In order to keep our
examples short, we often omit the include and using statements when displaying
C++ code. We also use “ //. . .” to indicate that some code has been omitted.

Returning to our simple example C++ program, we note that the statement on
line 9 outputs the value of the variable sum, which in this case stores the computed
sum of x and y. By default, the output statement does not produce an end of line.
The special object std::endl generates a special end-of-line character. Another way
to generate an end of line is to output the newline character, ’\n’.

If run interactively, that is, with the user inputing values when requested to
do so, this program’s output would appear as shown below. The user’s input is
indicated below in blue.

Please enter two numbers: 7 35

Their sum is 42

1.1.2 Fundamental Types

We continue our exploration of C++ by discussing the language’s basic data types
and how these types are represented as constants and variables. The fundamental
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1.1. Basic C++ Programming Elements 5

types are the basic building blocks from which more complex types are constructed.
They include the following.

bool Boolean value, either true or false
char character
short short integer
int integer
long long integer
float single-precision floating-point number
double double-precision floating-point number

There is also an enumeration, or enum, type to represent a set of discrete val-
ues. Together, enumerations and the types bool, char, and int are called integral
types. Finally, there is a special type void, which explicitly indicates the absence
of any type information. We now discuss each of these types in greater detail.

Characters

A char variable holds a single character. A char in C++ is typically 8-bits, but the
exact number of bits used for a char variable is dependent on the particular imple-
mentation. By allowing different implementations to define the meaning of basic
types, such as char, C++ can tailor its generated code to each machine architecture
and so achieve maximum efficiency. This flexibility can be a source of frustration
for programmers who want to write machine-independent programs, however.

A literal is a constant value appearing in a program. Character literals are
enclosed in single quotes, as in ’a’, ’Q’, and ’+’. A backslash ( \) is used to
specify a number of special character literals as shown below.

’\n’ newline ’\t’ tab
’\b’ backspace ’\0’ null
’\’’ single quote ’\"’ double quote
’\\’ backslash

The null character, ’\0’, is sometimes used to indicate the end of a string of
characters. Every character is associated with an integer code. The function int(ch)
returns the integer value associated with a character variable ch.

Integers

An int variable holds an integer. Integers come in three sizes: short int, (plain)
int, and long int. The terms “short” and “long” are synonyms for “short int” and
“long int,” respectively. Decimal numbers such as 0, 25, 98765, and -3 are of type
int. The suffix “l” or “L” can be added to indicate a long integer, as in 123456789L.
Octal (base 8) constants are specified by prefixing the number with the zero digit,
and hexadecimal (base 16) constants can be specified by prefixing the number with
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6 Chapter 1. A C++ Primer

“0x.” For example, the literals 256, 0400, and 0x100 all represent the integer value
256 (in decimal).

When declaring a variable, we have the option of providing a definition, or
initial value. If no definition is given, the initial value is unpredictable, so it is
important that each variable be assigned a value before being used. Variable names
may consist of any combination of letters, digits, or the underscore ( ) character,
but the first character cannot be a digit. Here are some examples of declarations of
integral variables.

short n; // n’s value is undefined
int octalNumber = 0400; // 400 (base 8) = 256 (base 10)
char newline character = ’\n’;
long BIGnumber = 314159265L;
short aSTRANGE 1234 variABlE NaMe;

Although it is legal to start a variable name with an underscore, it is best to avoid
this practice, since some C++ compilers use this convention for defining their own
internal identifiers.

C++ does not specify the exact number of bits in each type, but a short is at least
16 bits, and a long is at least 32 bits. In fact, there is no requirement that long be
strictly longer than short (but it cannot be shorter!). Given a type T, the expression
sizeof(T) returns the size of type T, expressed as some number of multiples of the
size of char. For example, on typical systems, a char is 8 bits long, and an int is
32 bits long, and hence sizeof(int) is 4.

Enumerations

An enumeration is a user-defined type that can hold any of a set of discrete values.
Once defined, enumerations behave much like an integer type. A common use
of enumerations is to provide meaningful names to a set of related values. Each
element of an enumeration is associated with an integer value. By default, these
values count up from 0, but it is also possible to define explicit constant values as
shown below.

enum Day { SUN, MON, TUE, WED, THU, FRI, SAT };
enum Mood { HAPPY = 3, SAD = 1, ANXIOUS = 4, SLEEPY = 2 };

Day today = THU; // today may be any of MON . . . SAT
Mood myMood = SLEEPY; // myMood may be HAPPY, . . ., SLEEPY

Since we did not specify values, SUN would be associated with 0, MON with 1,
and so on. As a hint to the reader, we write enumeration names and other constants
with all capital letters.
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1.1. Basic C++ Programming Elements 7

Floating Point

A variable of type float holds a single-precision floating-point number, and a vari-
able of type double holds a double-precision floating-point number. As it does
with integers, C++ leaves undefined the exact number of bits in each of the floating
point types. By default, floating point literals, such as 3.14159 and -1234.567 are
of type double. Scientific or exponential notation may by specified using either
“e” or “E” to separate the mantissa from the exponent, as in 3.14E5, which means
3.14× 105. To force a literal to be a float, add the suffix “f” or “F,” as in 2.0f or
1.234e-3F.

1.1.3 Pointers, Arrays, and Structures

We next discuss how to combine fundamental types to form more complex ones.

Pointers

Each program variable is stored in the computer’s memory at some location, or
address. A pointer is a variable that holds the value of such an address. Given a
type T, the type T* denotes a pointer to a variable of type T. For example, int*
denotes a pointer to an integer.

Two essential operators are used to manipulate pointers. The first returns the
address of an object in memory, and the second returns the contents of a given
address. In C++ the first task is performed by the address-of operator, &. For
example if x is an integer variable in your program &x is the address of x in memory.
Accessing an object’s value from its address is called dereferencing. This is done
using the * operator. For example, if we were to declare q to be a pointer to an
integer (that is, int*) and then set q = &x, we could access x’s value with *q.
Assigning an integer value to *q effectively changes the value of x.

Consider, for example, the code fragment below. The variable p is declared to
be a pointer to a char, and is initialized to point to the variable ch. Thus, *p is
another way of referring to ch. Observe that when the value of ch is changed, the
value of *p changes as well.

char ch = ’Q’;
char* p = &ch; // p holds the address of ch
cout << *p; // outputs the character ’Q’
ch = ’Z’; // ch now holds ’Z’
cout << *p; // outputs the character ’Z’
*p = ’X’; // ch now holds ’X’
cout << ch; // outputs the character ’X’

We shall see that pointers are very useful when building data structures where ob-
jects are linked to one another through the use of pointers. Pointers need not point
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8 Chapter 1. A C++ Primer

only to fundamental types, such as char and int—they may also point to complex
types and even to functions. Indeed, the popularity of C++ stems in part from its
ability to handle low-level entities like pointers.

It is useful to have a pointer value that points to nothing, that is, a null pointer.
By convention, such a pointer is assigned the value zero. An attempt to dereference
a null pointer results in a run-time error. All C++ implementations define a special
symbol NULL, which is equal to zero. This definition is activated by inserting the
statement “#include <cstdlib>” in the beginning of a program file.

We mentioned earlier that the special type void is used to indicate no type
information at all. Although we cannot declare a variable to be of type void, we
can declare a pointer to be of type void*. Such a pointer can point to a variable of
any type. Since the compiler is unable to check the correctness of such references,
the use of void* pointers is strongly discouraged, except in unusual cases where
direct access to the computer’s memory is needed.

Beware when declaring two or more pointers on the same line. The * operator
Caution binds with the variable name, not with the type name. Consider the following

misleading declaration.

int* x, y, z; // same as: int* x; int y; int z;

This declares one pointer variable x, but the other two variables are plain integers.
The simplest way to avoid this confusion is to declare one variable per statement.

Arrays

An array is a collection of elements of the same type. Given any type T and a
constant N, a variable of type T[N] holds an array of N elements, each of type T.
Each element of the array is referenced by its index, that is, a number from 0 to
N− 1. The following statements declare two arrays; one holds three doubles and
the other holds 10 double pointers.

double f[5]; // array of 5 doubles: f[0], . . ., f[4]
int m[10]; // array of 10 ints: m[0], . . ., m[9]
f[4] = 2.5;
m[2] = 4;
cout << f[m[2]]; // outputs f[4], which is 2.5

Once declared, it is not possible to increase the number of elements in an array.
Also, C++ provides no built-in run-time checking for array subscripting out of
bounds. This decision is consistent with C++’s general philosophy of not intro-
ducing any feature that would slow the execution of a program. Indexing an array
outside of its declared bounds is a common programming error. Such an error of-
ten occurs “silently,” and only much later are its effects noticed. In Section 1.5.5,
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1.1. Basic C++ Programming Elements 9

we see that the vector type of the C++ Standard Template Library (STL) provides
many of the capabilities of a more complete array type, including run-time index
checking and the ability to dynamically change the array’s size.

A two-dimensional array is implemented as an “array of arrays.” For example
“int A[15][30]” declares A to be an array of 30 objects, each of which is an array
of 15 integers. An element in such an array is indexed as A[i][j], where i is in the
range 0 to 14 and j is in the range 0 to 29.

When declaring an array, we can initialize its values by enclosing the elements
in curly braces ({...}). When doing so, we do not have to specify the size of the
array, since the compiler can figure this out.

int a[ ] = {10, 11, 12, 13}; // declares and initializes a[4]
bool b[ ] = {false, true}; // declares and initializes b[2]
char c[ ] = {’c’, ’a’, ’t’}; // declares and initializes c[3]

Just as it is possible to declare an array of integers, it is possible to declare an
array of pointers to integers. For example, int* r[17] declares an array r consist-
ing of 17 pointers to objects of type int. Once initialized, we can dereference an
element of this array using the * operator, for example, *r[16] is the value of the
integer pointed to by the last element of this array.

Pointers and Arrays

There is an interesting connection between arrays and pointers, which C++ inher-
ited from the C programming language—the name of an array is equivalent to a
pointer to the array’s initial element and vice versa. In the example below, c is
an array of characters, and p and q are pointers to the first element of c. They all
behave essentially the same, however.

char c[ ] = {’c’, ’a’, ’t’};
char* p = c; // p points to c[0]
char* q = &c[0]; // q also points to c[0]
cout << c[2] << p[2] << q[2]; // outputs “ttt”

This equivalence between array names and pointers can be confusing, but it helps
Caution to explain many of C++’s apparent mysteries. For example, given two arrays c and

d, the comparison (c == d) does not test whether the contents of the two arrays are
equal. Rather it compares the addresses of their initial elements, which is probably
not what the programmer had in mind. If there is a need to perform operations
on entire arrays (such as copying one array to another) it is a good idea to use the
vector class, which is part of C++’s Standard Template Library. We discuss these
concepts in Section 1.5.5.
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10 Chapter 1. A C++ Primer

Strings

A string literal, such as "Hello World", is represented as a fixed-length array of
characters that ends with the null character. Character strings represented in this
way are called C-style strings, since they were inherited from C. Unfortunately,
this representation alone does not provide many string operations, such as concate-
nation and comparison. It also possesses all the peculiarities of C++ arrays, as
mentioned earlier.

For this reason, C++ provides a string type as part of its Standard Template
Library (STL). When we need to distinguish, we call these STL strings. In order
to use STL strings it is necessary to include the header file <string>. Since STL
strings are part of the standard namespace (see Section 1.1.4), their full name is
std::string. By adding the statement “using std::string,” we inform the compiler
that we want to access this definition directly, so we can omit the “std::” prefix.
STL strings may be concatenated using the + operator, they may be compared with
each other using lexicographic (or dictionary) order, and they may be input and
output using the >> and << operators, respectively. For example:

#include <string>
using std::string;
// . . .
string s = "to be";
string t = "not " + s; // t = “not to be”
string u = s + " or " + t; // u = “to be or not to be”
if (s > t) // true: “to be” > “not to be”

cout << u; // outputs “to be or not to be”

There are other STL string operations, as well. For example, we can append one
string to another using the += operator. Also, strings may be indexed like arrays
and the number of characters in a string s is given by s.size(). Since some library
functions require the old C-style strings, there is a conversion function s.c str(),
which returns a pointer to a C-style string. Here are some examples:

string s = "John"; // s = “John”
int i = s.size(); // i = 4
char c = s[3]; // c = ’n’
s += " Smith"; // now s = “John Smith”

The C++ STL provides many other string operators including operators for ex-
tracting, searching for, and replacing substrings. We discuss some of these in Sec-
tion 1.5.5.

C-Style Structures

A structure is useful for storing an aggregation of elements. Unlike an array, the
elements of a structure may be of different types. Each member, or field, of a
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1.1. Basic C++ Programming Elements 11

structure is referred to by a given name. For example, consider the following struc-
ture for storing information about an airline passenger. The structure includes the
passenger’s name, meal preference, and information as to whether this passenger
is in the frequent flyer program. We create an enumerated type to handle meal
preferences.

enum MealType { NO PREF, REGULAR, LOW FAT, VEGETARIAN };

struct Passenger {
string name; // passenger name
MealType mealPref; // meal preference
bool isFreqFlyer; // in the frequent flyer program?
string freqFlyerNo; // the passenger’s freq. flyer number

};

This defines a new type called Passenger. Let us declare and initialize a variable
named “pass” of this type.

Passenger pass = { "John Smith", VEGETARIAN, true, "293145" };

The individual members of the structure are accessed using the member selection
operator, which has the form struct name.member. For example, we could change
some of the above fields as follows.

pass.name = "Pocahontas"; // change name
pass.mealPref = REGULAR; // change meal preference

Structures of the same type may be assigned to one another. For example, if p1 and
p2 are of type Passenger, then p2 = p1 copies the elements of p1 to p2.

What we have discussed so far might be called a C-style structure. C++ pro-
vides a much more powerful and flexible construct called a class, in which both
data and functions can be combined. We discuss classes in Section 1.5.

Pointers, Dynamic Memory, and the “new” Operator

We often find it useful in data structures to create objects dynamically as the need
arises. The C++ run-time system reserves a large block of memory called the free
store, for this reason. (This memory is also sometimes called heap memory, but
this should not be confused with the heap data structure, which is discussed in
Chapter 8.) The operator new dynamically allocates the correct amount of storage
for an object of a given type from the free store and returns a pointer to this object.
That is, the value of this pointer is the address where this object resides in memory.
Indeed, C++ allows for pointer variables to any data type, even to other pointers or
to individual cells in an array.
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12 Chapter 1. A C++ Primer

For example, suppose that in our airline system we encounter a new passenger.
We would like to dynamically create a new instance using the new operator. Let
p be a pointer to a Passenger structure. This implies that *p refers to the actual
structure; hence, we could access one of its members, say the mealPref field, using
the expression (*p).mealPref. Because complex objects like structures are often
allocated dynamically, C++ provides a shorter way to access members using the
“->” operator.

pointer name->member is equivalent to (*pointer name).member

For example, we could allocate a new passenger object and initialize its members
as follows.

Passenger *p;
// . . .
p = new Passenger; // p points to the new Passenger
p−>name = "Pocahontas"; // set the structure members
p−>mealPref = REGULAR;
p−>isFreqFlyer = false;
p−>freqFlyerNo = "NONE";

It would be natural to wonder whether we can initialize the members using the curly
brace ({...}) notation used above. The answer is no, but we will see another more
convenient way of initializing members when we discuss classes and constructors
in Section 1.5.2.

This new passenger object continues to exist in the free store until it is explicitly
deleted—a process that is done using the delete operator, which destroys the object
and returns its space to the free store.

delete p; // destroy the object p points to

The delete operator should only be applied to objects that have been allocated
through new. Since the object at p’s address was allocated using the new operator,
the C++ run-time system knows how much memory to deallocate for this delete
statement. Unlike some programming languages such as Java, C++ does not pro-
vide automatic garbage collection. This means that C++ programmers have the
responsibility of explicitly deleting all dynamically allocated objects.

Arrays can also be allocated with new. When this is done, the system allocator
returns a pointer to the first element of the array. Thus, a dynamically allocated
array with elements of type T would be declared being of type *T. Arrays allocated
in this manner cannot be deallocated using the standard delete operator. Instead,
the operator delete[ ] is used. Here is an example that allocates a character buffer
of 500 elements, and then later deallocates it.

char* buffer = new char[500]; // allocate a buffer of 500 chars
buffer[3] = ’a’; // elements are still accessed using [ ]
delete [ ] buffer; // delete the buffer
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1.1. Basic C++ Programming Elements 13

Memory Leaks

Failure to delete dynamically allocated objects can cause problems. If we were
to change the (address) value of p without first deleting the structure to which it
points, there would be no way for us to access this object. It would continue to
exist for the lifetime of the program, using up space that could otherwise be used
for other allocated objects. Having such inaccessible objects in dynamic memory
is called a memory leak. We should strongly avoid memory leaks, especially in
programs that do a great deal of memory allocation and deallocation. A program
with memory leaks can run out of usable memory even when there is a sufficient
amount of memory present. An important rule for a disciplined C++ programmer
is the following:

Remember
If an object is allocated with new, it should eventually be deallocated with
delete.

References

Pointers provide one way to refer indirectly to an object. Another way is through
references. A reference is simply an alternative name for an object. Given a type
T, the notation T& indicates a reference to an object of type T. Unlike pointers,
which can be NULL, a reference in C++ must refer to an actual variable. When a
reference is declared, its value must be initialized. Afterwards, any access to the
reference is treated exactly as if it is an access to the underlying object.

string author = "Samuel Clemens";
string& penName = author; // penName is an alias for author
penName = "Mark Twain"; // now author = “Mark Twain”
cout << author; // outputs “Mark Twain”

References are most often used for passing function arguments and are also often
used for returning results from functions. These uses are discussed later.

1.1.4 Named Constants, Scope, and Namespaces

We can easily name variables without concern for naming conflicts in small prob-
lems. It is much harder for us to avoid conflicts in large software systems, which
may consist of hundreds of files written by many different programmers. C++ has
a number of mechanisms that aid in providing names and limiting their scope.
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Constants and Typedef

Good programmers commonly like to associate names with constant quantities.
By adding the keyword const to a declaration, we indicate that the value of the
associated object cannot be changed. Constants may be used virtually anywhere
that literals can be used, for example, in an array declaration. As a hint to the
reader, we will use all capital letters when naming constants.

const double PI = 3.14159265;
const int CUT OFF[ ] = {90, 80, 70, 60};
const int N DAYS = 7;
const int N HOURS = 24*N DAYS; // using a constant expression
int counter[N HOURS]; // an array of 168 ints

Note that enumerations (see Section 1.1.2) provide another convenient way to de-
fine integer-valued constants, especially within structures and classes.

In addition to associating names with constants, it is often useful to associate a
name with a type. This association can be done with a typedef declaration. Rather
than declaring a variable, a typedef defines a new type name.

typedef char* BufferPtr; // type BufferPtr is a pointer to char
typedef double Coordinate; // type Coordinate is a double

BufferPtr p; // p is a pointer to char
Coordinate x, y; // x and y are of type double

By using typedef we can provide shorter or more meaningful synonyms for
various types. The type name Coordinate provides more of a hint to the reader
of the meaning of variables x and y than does double. Also, if later we decide
to change our coordinate representation to int, we need only change the typedef
statement. We will follow the convention of indicating user-defined types by capi-
talizing the first character of their names.

Local and Global Scopes

When a group of C++ statements are enclosed in curly braces ({...}), they define
a block. Variables and types that are declared within a block are only accessible
from within the block. They are said to be local to the block. Blocks can be nested
within other blocks. In C++, a variable may be declared outside of any block.
Such a variable is global, in the sense that it is accessible from everywhere in the
program. The portions of a program from which a given name is accessible are
called its scope.

Two variables of the same name may be defined within nested blocks. When
this happens, the variable of the inner block becomes active until leaving the block.
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Thus a local variable “hides” any global variables of the same name as shown in
the following example.

const int Cat = 1; // global Cat

int main() {
const int Cat = 2; // this Cat is local to main
cout << Cat; // outputs 2 (local Cat)
return EXIT SUCCESS;
}

int dog = Cat; // dog = 1 (from the global Cat)

Namespaces

Global variables present many problems in large software systems because they
can be accessed and possibly modified anywhere in the program. They also can
lead to programming errors, since an important global variable may be hidden by a
local variable of the same name. As a result, it is best to avoid global variables. We
may not be able to avoid globals entirely, however. For example, when we perform
output, we actually use the system’s global standard output stream object, cout. If
we were to define a variable with the same name, then the system’s cout stream
would be inaccessible.

A namespace is a mechanism that allows a group of related names to be defined
in one place. This helps organize global objects into natural groups and minimizes
the problems of globals. For example, the following declares a namespace myglob-
als containing two variables, cat and dog.

namespace myglobals {
int cat;
string dog = "bow wow";
}

Namespaces may generally contain definitions of more complex objects, including
types, classes, and functions. We can access an object x in namespace group, us-
ing the notation group::x, which is called its fully qualified name. For example,
myglobals::cat refers to the copy of variable cat in the myglobals namespace.

We have already seen an example of a namespace. Many standard system ob-
jects, such as the standard input and output streams cin and cout, are defined in a
system namespace called std. Their fully qualified names are std::cin and std::cout,
respectively.
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16 Chapter 1. A C++ Primer

The Using Statement

If we are repeatedly using variables from the same namespace, it is possible to
avoid entering namespace specifiers by telling the system that we want to “use” a
particular specifier. We communicate this desire by utilizing the using statement,
which makes some or all of the names from the namespace accessible, without
explicitly providing the specifier. This statement has two forms that allow us to
list individual names or to make every name in the namespace accessible as shown
below.

using std::string; // makes just std::string accessible
using std::cout; // makes just std::cout accessible

using namespace myglobals; // makes all of myglobals accessible

1.2 Expressions

An expression combines variables and literals with operators to create new values.
In the following discussion, we group operators according to the types of objects
they may be applied to. Throughout, we use var to denote a variable or anything
to which a value may be assigned. (In official C++ jargon, this is called an lvalue.)
We use exp to denote an expression and type to denote a type.

Member Selection and Indexing

Some operators access a member of a structure, class, or array. We let class name
denote the name of a structure or class; pointer denotes a pointer to a structure or
class and array denotes an array or a pointer to the first element of an array.

class name . member class/structure member selection
pointer −> member class/structure member selection

array [ exp ] array subscripting

Arithmetic Operators

The following are the binary arithmetic operators:
exp + exp addition
exp − exp subtraction
exp * exp multiplication
exp / exp division
exp % exp modulo (remainder)

There are also unary minus (–x) and unary plus (+x) operations. Division be-
tween two integer operands results in an integer result by truncation, even if the
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result is being assigned to a floating point variable. The modulo operator n%m
yields the remainder that would result from the integer division n/m.

Increment and Decrement Operators

The post-increment operator returns a variable’s value and then increments it by
1. The post-decrement operator is analogous but decreases the value by 1. The
pre-increment operator first increments the variables and then returns the value.

var ++ post increment
var −− post decrement
++ var pre increment
−− var pre decrement

The following code fragment illustrates the increment and decrement operators.

int a[ ] = {0, 1, 2, 3};
int i = 2;
int j = i++; // j = 2 and now i = 3
int k = −−i; // now i = 2 and k = 2
cout << a[k++]; // a[2] (= 2) is output; now k = 3

Relational and Logical Operators

C++ provides the usual comparison operators.

exp < exp less than
exp > exp greater than

exp <= exp less than or equal
exp >= exp greater than or equal
exp == exp equal to
exp != exp not equal to

These return a Boolean result—either true or false. Comparisons can be made
between numbers, characters, and STL strings (but not C-style strings). Pointers
can be compared as well, but it is usually only meaningful to test whether pointers
are equal or not equal (since their values are memory addresses).

The following logical operators are also provided.

! exp logical not
exp && exp logical and
exp | | exp logical or

The operators && and | | evaluate sequentially from left to right. If the left
operand of && is false, the entire result is false, and the right operand is not eval-
uated. The | | operator is analogous, but evaluation stops if the left operand is true.

This “short circuiting” is quite useful in evaluating a chain of conditional ex-
pressions where the left condition guards against an error committed by the right
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18 Chapter 1. A C++ Primer

condition. For example, the following code first tests that a Passenger pointer p is
non-null before accessing it. It would result in an error if the execution were not
stopped if the first condition is not satisfied.

if ((p != NULL) && p−>isFreqFlyer) . . .

Bitwise Operators

The following operators act on the representations of numbers as binary bit strings.
They can be applied to any integer type, and the result is an integer type.

˜ exp bitwise complement
exp & exp bitwise and
exp ^ exp bitwise exclusive-or
exp | exp bitwise or

exp1 << exp2 shift exp1 left by exp2 bits
exp1 >> exp2 shift exp1 right by exp2 bits

The left shift operator always fills with zeros. How the right shift fills depends
on a variable’s type. In C++ integer variables are “signed” quantities by default,
but they may be declared as being “unsigned,” as in “unsigned int x.” If the left
operand of a right shift is unsigned, the shift fills with zeros and otherwise the right
shift fills with the number’s sign bit (0 for positive numbers and 1 for negative
numbers). Note that the input (>>) and output (<<) operators are not in this group.
They are discussed later.

Assignment Operators

In addition to the familiar assignment operator (=), C++ includes a special form
for each of the arithmetic binary operators (+, −, *, /, %) and each of the bit-
wise binary operators (&, |, ^, <<, >>), that combines a binary operation with
assignment. For example, the statement “n += 2” means “n = n + 2.” Some
examples are shown below.

int i = 10;
int j = 5;
string s = "yes";
i −= 4; // i = i - 4 = 6
j *= −2; // j = j * (-2) = -10
s += " or no"; // s = s + “ or no” = “yes or no”

These assignment operators not only provide notational convenience, but they
can be more efficient to execute as well. For example, in the string concatenation
example above, the new text can just be appended to s without the need to generate
a temporary string to hold the intermediate result.
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Take care when performing assignments between aggregate objects (arrays,
strings, and structures). Typically the programmer intends such an assignment to
copy the contents of one object to the other. This works for STL strings and C-
style structures (provided they have the same type). However, as discussed earlier,
C-style strings and arrays cannot be copied merely through a single assignment
statement.

Other Operators

Here are some other useful operators.

class name :: member class scope resolution
namespace name :: member namespace resolution

bool exp ? true exp : false exp conditional expression

We have seen the namespace resolution operator in Section 1.1.4. The condi-
tional expression is a variant of “if-then-else” for expressions. If bool exp evaluates
to true, the value of true exp is returned, and otherwise the value of false exp is re-
turned.

The following example shows how to use this to return the minimum of two
numbers, x and y.

smaller = (x < y ? x : y); // smaller = min(x,y)

We also have the following operations on input/output streams.

stream >> var stream input
stream << exp stream output

Although they look like the bitwise shift operators, the input (>>) and output
(<<) stream operators are quite different. They are examples of C++’s powerful ca-
pability, called operator overloading, which are discussed in Section 1.4.2. These
operators are not an intrinsic part of C++, but are provided by including the file
<iostream>. We refer the reader to the references given in the chapter notes for
more information on input and output in C++.

The above discussion provides a somewhat incomplete list of all the C++ oper-
ators, but it nevertheless covers the most common ones. Later we introduce others,
including casting operators.

Operator Precedence

Operators in C++ are assigned a precedence that determines the order in which
operations are performed in the absence of parentheses. In Table 1.1, we show the
precedence of some of the more common C++ operators, with the highest listed
first. Unless parentheses are used, operators are evaluated in order from highest
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to lowest. For example, the expression 0 < 4 + x * 3 would be evaluated as if it
were parenthesized as 0 < (4 + (x * 3)). If p is an array of pointers, then *p[2] is
equivalent to *(p[2]). Except for && and | |, which guarantee left-to-right evalua-
tion, the order of evaluation of subexpressions is dependent on the implementation.
Since these rules are complex, it is a good idea to add parentheses to complex
expressions to make your intent clear to someone reading your program.

Operator Precedences

Type Operators
scope resolution namespace name :: member
selection/subscripting class name.member pointer−>member array[exp]
function call function(args)
postfix operators var++ var−−
prefix operators ++var −−var +exp −exp ˜exp !exp
dereference/address *pointer &var
multiplication/division * / %
addition/subtraction + −
shift << >>
comparison < <= > >=
equality == !=
bitwise and &
bitwise exclusive-or ^

bitwise or |
logical and &&
logical or | |
conditional bool exp ? true exp : false exp
assignment = += −= *= /= %= >>= <<= &= ^= |=

Table 1.1: The C++ precedence rules. The notation “exp” denotes any expression.

1.2.1 Changing Types through Casting

Casting is an operation that allows us to change the type of a variable. In essence,
we can take a variable of one type and cast it into an equivalent variable of another
type. Casting is useful in many situations. There are two fundamental types of
casting that can be done in C++. We can either cast with respect to the fundamental
types or we can cast with respect to class objects and pointers. We discuss casting
with fundamental types here, and we consider casting with objects in Section 2.2.4.
We begin by introducing the traditional way of casting in C++, and later we present
C++’s newer casting operators.
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Traditional C-Style Casting

Let exp be some expression, and let T be a type. To cast the value of the expression
to type T we can use the notation “(T)exp.” We call this a C-style cast. If the
desired type is a type name (as opposed to a type expression), there is an alternate
functional-style cast. This has the form “T(exp).” Some examples are shown
below. In both cases, the integer value 14 is cast to a double value 14.0.

int cat = 14;
double dog = (double) cat; // traditional C-style cast
double pig = double(cat); // C++ functional cast

Both forms of casting are legal, but some authors prefer the functional-style cast.
Casting to a type of higher precision or size is often needed in forming expres-

sions. The results of certain binary operators depend on the variable types involved.
For example, division between integers always produces an integer result by trun-
cating the fractional part. If a floating-point result is desired, we must cast the
operands before performing the operation as shown below.

int i1 = 18;
int i2 = 16;
double dv1 = i1 / i2; // dv1 has value 1.0
double dv2 = double(i1) / double(i2); // dv2 has value 1.125
double dv3 = double( i1 / i2 ); // dv3 has value 1.0

When i1 and i2 are cast to doubles, double-precision division is performed.
When i1 and i2 are not cast, truncated integer division is performed. In the case of
dv3, the cast is performed after the integer division, so precision is still lost.

Explicit Cast Operators

Casting operations can vary from harmless to dangerous, depending on how similar
the two types are and whether information is lost. For example, casting a short to
an int is harmless, since no information is lost. Casting from a double to an int is
more dangerous because the fractional part of the number is lost. Casting from a
double* to char* is dangerous because the meaning of converting such a pointer
will likely vary from machine to machine. One important element of good software
design is that programs be portable, meaning that they behave the same on different
machines.

For this reason, C++ provides a number of casting operators that make the
safety of the cast much more explicit. These are called the static cast, dynamic cast,
const cast, and reinterpret cast. We discuss only the static cast here and con-
sider the others as the need arises.
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Static Casting

Static casting is used when a conversion is made between two related types, for
example numbers to numbers or pointers to pointers. Its syntax is given below.

static cast < desired type > ( expression )

The most common use is for conversions between numeric types. Some of these
conversions may involve the loss of information, for example a conversion from
a double to an int. This conversion is done by truncating the fractional part (not
rounding). For example, consider the following:

double d1 = 3.2;
double d2 = 3.9999;
int i1 = static cast<int>(d1); // i1 has value 3
int i2 = static cast<int>(d2); // i2 has value 3

This type of casting is more verbose than the C-style and functional-style casts
shown earlier. But this form is appropriate, because it serves as a visible warning to
the programmer that a potentially unsafe operation is taking place. In our examples
in this book, we use the functional style for safe casts (such as integer to double)
and these newer cast operators for all other casts. Some older C++ compilers may
not support the newer cast operators, but then the traditional C-style and functional-
style casts can be used instead.

Implicit Casting

There are many instances where the programmer has not requested an explicit cast,
but a change of types is required. In many of these cases, C++ performs an implicit
cast. That is, the compiler automatically inserts a cast into the machine-generated
code. For example, when numbers of different types are involved in an operation,
the compiler automatically casts to the stronger type. C++ allows an assignment
that implicitly loses information, but the compiler usually issues a warning mes-
sage.

int i = 3;
double d = 4.8;
double d3 = i / d; // d3 = 0.625 = double(i)/d
int i3 = d3; // i3 = 0 = int(d3)

// Warning! Assignment may lose information

A general rule with casting is to “play it safe.” If a compiler’s behavior regarding
the implicit casting of a value is uncertain, then we are safest in using an explicit
cast. Doing so makes our intentions clear.
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1.3 Control Flow

Control flow in C++ is similar to that of other high-level languages. We review the
basic structure and syntax of control flow in C++ in this section, including method
returns, if statements, switch statements, loops, and restricted forms of “jumps”
(the break and continue statements).

If Statement

Every programming language includes a way of making choices, and C++ is no
exception. The most common method of making choices in a C++ program is
through the use of an if statement. The syntax of an if statement in C++ is shown
below, together with a small example.

if ( condition )
true statement

else if ( condition )
else if statement

else
else statement

Each of the conditions should return a Boolean result. Each statement can either
be a single statement or a block of statements enclosed in braces ({...}). The “else
if” and “else” parts are optional, and any number of else-if parts may be given.
The conditions are tested one by one, and the statement associated with the first
true condition is executed. All the other statements are skipped. Here is a simple
example.

if ( snowLevel < 2 ) {
goToClass(); // do this if snow level is less than 2
comeHome();

}
else if ( snowLevel < 5 )

haveSnowballFight(); // if level is at least 2 but less than 5
else if ( snowLevel < 10 )

goSkiing(); // if level is at least 5 but less than 10
else

stayAtHome(); // if snow level is 10 or more

Switch Statement

A switch statement provides an efficient way to distinguish between many different
options according to the value of an integral type. In the following example, a
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single character is input, and based on the character’s value, an appropriate editing
function is called. The comments explain the equivalent if-then-else structure, but
the compiler is free to select the most efficient way to execute the statement.

char command;
cin >> command; // input command character
switch (command) { // switch based on command value

case ’I’ : // if (command == ’I’)
editInsert();
break;

case ’D’ : // else if (command == ’D’)
editDelete();
break;

case ’R’ : // else if (command == ’R’)
editReplace();
break;

default : // else
cout << "Unrecognized command\n";
break;

}

The argument of the switch can be any integral type or enumeration. The
“default” case is executed if none of the cases equals the switch argument.

Each case in a switch statement should be terminated with a break statement,
which, when executed, exits the switch statement. Otherwise, the flow of control
“falls through” to the next case.

While and Do-While Loops

C++ has two kinds of conditional loops for iterating over a set of statements as
long as some specified condition holds. These two loops are the standard while
loop and the do-while loop. One loop tests a Boolean condition before performing
an iteration of the loop body and the other tests a condition after. Let us consider
the while loop first.

while ( condition )
loop body statement

At the beginning of each iteration, the loop tests the Boolean expression and then
executes the loop body only if this expression evaluates to true. The loop body
statement can also be a block of statements.

Consider the following example. It computes the sum of the elements of an
array, until encountering the first negative value. Note the use of the += operator to
increment the value of sum and the ++ operator which increments i after accessing
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the current array element.

int a[100];
// . . .
int i = 0;
int sum = 0;
while (i < 100 && a[i] >= 0) {

sum += a[i++];
}

The do-while loop is similar to the while loop in that the condition is tested at
the end of the loop execution rather than before. It has the following syntax.

do
loop body statement

while ( condition )

For Loop

Many loops involve three common elements: an initialization, a condition under
which to continue execution, and an increment to be performed after each execution
of the loop’s body. A for loop conveniently encapsulates these three elements.

for ( initialization ; condition ; increment )
loop body statement

The initialization indicates what is to be done before starting the loop. Typ-
ically, this involves declaring and initializing a loop-control variable or counter.
Next, the condition gives a Boolean expression to be tested in order for the loop to
continue execution. It is evaluated before executing the loop body. When the con-
dition evaluates to false, execution jumps to the next statement after the for loop.
Finally, the increment specifies what changes are to be made at the end of each
execution of the loop body. Typically, this involves incrementing or decrementing
the value of the loop-control variable.

Here is a simple example, which prints the positive elements of an array, one
per line. Recall that ’\n’ generates a newline character.

const int NUM ELEMENTS = 100;
double b[NUM ELEMENTS];
// . . .
for (int i = 0; i < NUM ELEMENTS; i++) {

if (b[i] > 0)
cout << b[i] << ’\n’;

}

In this example, the loop variable i was declared as int i = 0. Before each iteration,
the loop tests the condition “i < NUM ELEMENTS” and executes the loop body



i

i

“main” — 2011/1/13 — 9:10 — page 26 — #48
i

i

i

i

i

i

26 Chapter 1. A C++ Primer

only if this is true. Finally, at the end of each iteration the loop uses the statement
i++ to increment the loop variable i before testing the condition again. Although
the loop variable is declared outside the curly braces of the for loop, the compiler
treats it as if it were a local variable within the loop. This implies that its value is
not accessible outside the loop.

Break and Continue Statements

C++ provides statements to change control flow, including the break, continue,
and return statements. We discuss the first two here, and leave the return state-
ment for later. A break statement is used to “break” out of a loop or switch state-
ment. When it is executed, it causes the flow of control to immediately exit the
innermost switch statement or loop (for loop, while loop, or do-while loop). The
break statement is useful when the condition for terminating the loop is determined
inside the loop. For example, in an input loop, termination often depends on a
specific value that has been input. The following example provides a different
implementation of an earlier example, which sums the elements of an array until
finding the first negative value.

int a[100];
// . . .
int sum = 0;
for (int i = 0; i < 100; i++) {

if (a[i] < 0) break;
sum += a[i];
}

The other statement that is often useful for altering loop behavior is the con-
tinue statement. The continue statement can only be used inside loops (for, while,
and do-while). The continue statement causes the execution to skip to the end of
the loop, ready to start a new iteration.

1.4 Functions

A function is a chunk of code that can be called to perform some well-defined task,
such as calculating the area of a rectangle, computing the weekly withholding tax
for a company employee, or sorting a list of names in ascending order. In order to
define a function, we need to provide the following information to the compiler:

Return type. This specifies the type of value or object that is returned by the func-
tion. For example, a function that computes the area of a rectangle might re-
turn a value of type double. A function is not required to return a value. For
example, it may simply produce some output or modify some data structure.
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If so, the return type is void. A function that returns no value is sometimes
called a procedure.

Function name. This indicates the name that is given to the function. Ideally, the
function’s name should provide a hint to the reader as to what the function
does.

Argument list. This serves as a list of placeholders for the values that will be
passed into the function. The actual values will be provided when the func-
tion is invoked. For example, a function that computes the area of a polygon
might take four double arguments; the x- and y-coordinates of the rectan-
gle’s lower left corner and the x- and y-coordinates of the rectangle’s upper
right corner. The argument list is given as a comma-separated list enclosed
in parentheses, where each entry consists of the name of the argument and its
type. A function may have any number of arguments, and the argument list
may even be empty.

Function body. This is a collection of C++ statements that define the actual com-
putations to be performed by the function. This is enclosed within curly
braces. If the function returns a value, the body will typically end with a
return statement, which specifies the final function value.

Function specifications in C++ typically involve two steps, declaration and def-
inition. A function is declared, by specifying three things: the function’s return
type, its name, and its argument list. The declaration makes the compiler aware
of the function’s existence, and allows the compiler to verify that the function is
being used correctly. This three-part combination of return type, function name,
and argument types is called the function’s signature or prototype.

For example, suppose that we wanted to create a function, called evenSum, that
is given two arguments, an integer array a and its length n. It determines whether
the sum of array values is even, and if so it returns the value true. Otherwise,
it returns false. Thus, it has a return value of type bool. The function could be
declared as follows:

bool evenSum(int a[ ], int n); // function declaration

Second, the function is defined. The definition consists both of the function’s
signature and the function body. The reason for distinguishing between the decla-
ration and definition involves the manner in which large C++ programs are written.
They are typically spread over many different files. The function declaration must
appear in every file that invokes the function, but the definition must appear only
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once. Here is how our evenSum function might be defined.

bool evenSum(int a[ ], int n) { // function definition
int sum = 0;
for (int i = 0; i < n; i++) // sum the array elements

sum += a[i];
return (sum % 2) == 0; // returns true if sum is even
}

The expression in the return statement may take a minute to understand. We use
the mod operator (%) to compute the remainder when sum is divided by 2. If the
sum is even, the remainder is 0, and hence the expression “(sum % 2) == 0”
evaluates to true. Otherwise, it evaluates to false, which is exactly what we want.

To complete the example, let us provide a simple main program, which first
declares the function, and then invokes it on an actual array.

bool evenSum(int a[ ], int n); // function declaration

int main() {
int list[ ] = {4, 2, 7, 8, 5, 1};
bool result = evenSum(list, 6); // invoke the function
if (result) cout << "the sum is even\n";
else cout << "the sum is odd\n";
return EXIT SUCCESS;
}

Let us consider this example in greater detail. The names “a” and “n” in the
function definition are called formal arguments since they serve merely as place-
holders. The variable “list” and literal “6” in the function call in the main program
are the actual arguments. Thus, each reference to “a” in the function body is trans-
lated into a reference to the actual array “list.” Similarly, each reference to “n” can
be thought of as taking on the actual value 6 in the function body. The types of the
actual arguments must agree with the corresponding formal arguments. Exact type
agreement is not always necessary, however, for the compiler may perform implicit
type conversions in some cases, such as casting a short actual argument to match
an int formal argument.

When we refer to function names throughout this book, we often include a pair
of parentheses following the name. This makes it easier to distinguish function
names from variable names. For example, we would refer to the above function as
evenSum.

1.4.1 Argument Passing

By default, arguments in C++ programs are passed by value. When arguments
are passed by value, the system makes a copy of the variable to be passed to the
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function. In the above example, the formal argument “n” is initialized to the actual
value 6 when the function is called. This implies that modifications made to a
formal argument in the function do not alter the actual argument.

Sometimes it is useful for the function to modify one of its arguments. To do
so, we can explicitly define a formal argument to be a reference type (as introduced
in Section 1.1.3). When we do this, any modifications made to an argument in the
function modifies the corresponding actual argument. This is called passing the
argument by reference. An example is shown below, where one argument is passed
by value and the other is passed by reference.

void f(int value, int& ref) { // one value and one reference
value++; // no effect on the actual argument
ref++; // modifies the actual argument
cout << value << endl; // outputs 2
cout << ref << endl; // outputs 6
}

int main() {
int cat = 1;
int dog = 5;
f(cat, dog); // pass cat by value, dog by ref
cout << cat << endl; // outputs 1
cout << dog << endl; // outputs 6
return EXIT SUCCESS;
}

Observe that altering the value argument had no effect on the actual argument,
whereas modifying the reference argument did.

Modifying function arguments is felt to be a rather sneaky way of passing in-
formation back from a function, especially if the function returns a nonvoid value.
Another way to modify an argument is to pass the address of the argument, rather
than the argument itself. Even though a pointer is passed by value (and, hence, the
address of where it is pointing cannot be changed), we can access the pointer and
modify the variables to which it points. Reference arguments achieve essentially
the same result with less notational burden.

Constant References as Arguments

There is a good reason for choosing to pass structure and class arguments by ref-
erence. In particular, passing a large structure or class by value results in a copy
being made of the entire structure. All this copying may be quite inefficient for
large structures and classes. Passing such an argument by reference is much more
efficient, since only the address of the structure need be passed.

Since most function arguments are not modified, an even better practice is to
pass an argument as a “constant reference.” Such a declaration informs the compiler
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that, even though the argument is being passed by reference, the function cannot
alter its value. Furthermore, the function is not allowed to pass the argument to
another function that might modify its value. Here is an example using the Passen-
ger structure, which we defined earlier in Section 1.1.3. The attempt to modify the
argument would result in a compiler error message.

void someFunction(const Passenger& pass) {
pass.name = "new name"; // ILLEGAL! pass is declared const
}

When writing small programs, we can easily avoid modifying the arguments
that are passed by reference for the sake of efficiency. But in large programs, which
may be distributed over many files, enforcing this rule is much harder. Fortunately,
passing class and structure arguments as a constant reference allows the compiler
to do the checking for us. Henceforth, when we pass a class or structure as an
argument, we typically pass it as a reference, usually a constant reference.

Array Arguments

We have discussed passing large structures and classes by reference, but what about
large arrays? Would passing an array by value result in making a copy of the entire
array? The answer is no. When an array is passed to a function, it is converted to a
pointer to its initial element. That is, an object of type T[ ] is converted to type T*.
Thus, an assignment to an element of an array within a function does modify the
actual array contents. In short, arrays are not passed by value.

By the same token, it is not meaningful to pass an array back as the result of
a function call. Essentially, an attempt to do so will only pass a pointer to the
array’s initial element. If returning an array is our goal, then we should either
explicitly return a pointer or consider returning an object of type vector from the
C++ Standard Template Library.

1.4.2 Overloading and Inlining

Overloading means defining two or more functions or operators that have the same
name, but whose effect depends on the types of their actual arguments.

Function Overloading

Function overloading occurs when two or more functions are defined with the
same name but with different argument lists. Such definitions are useful in situa-
tions where we desire two functions that achieve essentially the same purpose, but
do it with different types of arguments.
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One convenient application of function overloading is in writing procedures
that print their arguments. In particular, a function that prints an integer would be
different from a function that prints a Passenger structure from Section 1.1.3, but
both could use the same name, print, as shown in the following example.

void print(int x) // print an integer
{ cout << x; }

void print(const Passenger& pass) { // print a Passenger
cout << pass.name << " " << pass.mealPref;
if (pass.isFreqFlyer)

cout << " " << pass.freqFlyerNo;
}

When the print function is used, the compiler considers the types of the actual ar-
gument and invokes the appropriate function, that is, the one with signature closest
to the actual arguments.

Operator Overloading

C++ also allows overloading of operators, such as +, *, +=, and <<. Not
surprisingly, such a definition is called operator overloading. Suppose we would
like to write an equality test for two Passenger objects. We can denote this in a
natural way by overloading the == operator as shown below.

bool operator==(const Passenger& x, const Passenger& y) {
return x.name == y.name

&& x.mealPref == y.mealPref
&& x.isFreqFlyer == y.isFreqFlyer
&& x.freqFlyerNo == y.freqFlyerNo;

}

This definition is similar to a function definition, but in place of a function name we
use “operator==.” In general, the == is replaced by whatever operator is being
defined. For binary operators we have two arguments, and for unary operators we
have just one.

There are several useful applications of function and operator overloading. For
example, overloading the == operator allows us to naturally test for the equality of
two objects, p1 and p2, with the expression “p1==p2.” Another useful application
of operator overloading is for defining input and output operators for classes and
structures. Here is how to define an output operator for our Passenger structure.
The type ostream is the system’s output stream type. The standard output, cout is
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of this type.

ostream& operator<<(ostream& out, const Passenger& pass) {
out << pass.name << " " << pass.mealPref;
if (pass.isFreqFlyer) {

out << " " << pass.freqFlyerNo;
}
return out;
}

The output in this case is not very pretty, but we could easily modify our output
operator to produce nicer formatting.

There is much more that could be said about function and operator overload-
ing, and indeed C++ functions in general. We refer the reader to a more complete
reference on C++ for this information.

Operator overloading is a powerful mechanism, but it is easily abused. It can be
very confusing for someone reading your program to find that familiar operations
such as “+” and “/” have been assigned new and possibly confusing meanings.
Good programmers usually restrict operator overloading to certain general purpose
operators such as “ <<” (output), “=” (assignment), “==” (equality), “[ ]” (index-
ing, for sequences).

In-line Functions

Very short functions may be defined to be “inline.” This is a hint to the compiler
it should simply expand the function code in place, rather than using the system’s
call-return mechanism. As a rule of thumb, in-line functions should be very short
(at most a few lines) and should not involve any loops or conditionals. Here is an
example, which returns the minimum of two integers.

inline int min(int x, int y) { return (x < y ? x : y); }

1.5 Classes

The concept of a class is fundamental to C++, since it provides a way to define new
user-defined types, complete with associated functions and operators. By restrict-
ing access to certain class members, it is possible to separate out the properties that
are essential to a class’s correct use from the details needed for its implementation.
Classes are fundamental to programming that uses an object-oriented approach,
which is a programming paradigm we discuss in the next chapter.
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1.5.1 Class Structure

A class consists of members. Members that are variables or constants are data
members (also called member variables) and members that are functions are called
member functions (also called methods). Data members may be of any type, and
may even be classes themselves, or pointers or references to classes. Member func-
tions typically act on the member variables, and so define the behavior of the class.

We begin with a simple example, called Counter. It implements a simple
counter stored in the member variable count. It provides three member functions.
The first member function, called Counter, initializes the counter. The second,
called getCount, returns the counter’s current value. The third, called increaseBy,
increases the counter’s value.

class Counter { // a simple counter
public:

Counter(); // initialization
int getCount(); // get the current count
void increaseBy(int x); // add x to the count

private:
int count; // the counter’s value
};

Let’s explore this class definition in a bit more detail. Observe that the class
definition is separated into two parts by the keywords public and private. The
public section defines the class’s public interface. These are the entities that users
of the class are allowed to access. In this case, the public interface has the three
member functions (Counter, getCount, and increaseBy). In contrast, the private
section declares entities that cannot be accessed by users of the class. We say more
about these two parts below.

So far, we have only declared the member functions of class Counter. Next,
we present the definitions of these member functions. In order to make clear to
the compiler that we are defining member functions of Counter (as opposed to
member functions of some other class), we precede each function name with the
scoping specifier “Counter::”.

Counter::Counter() // constructor
{ count = 0; }

int Counter::getCount() // get current count
{ return count; }

void Counter::increaseBy(int x) // add x to the count
{ count += x; }

The first of these functions has the same name as the class itself. This is a special
member function called a constructor. A constructor’s job is to initialize the values
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of the class’s member variables. The function getCount is commonly referred to
as a “getter” function. Such functions provide access to the private members of the
class.

Here is an example how we might use our simple class. We declare a new object
of type Counter, called ctr. This implicitly invokes the class’s constructor, and thus
initializes the counter’s value to 0. To invoke one of the member functions, we use
the notation ctr.function name().

Counter ctr; // an instance of Counter
cout << ctr.getCount() << endl; // prints the initial value (0)
ctr.increaseBy(3); // increase by 3
cout << ctr.getCount() << endl; // prints 3
ctr.increaseBy(5); // increase by 5
cout << ctr.getCount() << endl; // prints 8

Access Control

One important feature of classes is the notion of access control. Members may
be declared to be public, which means that they are accessible from outside the
class, or private, which means that they are accessible only from within the class.
(We discuss two exceptions to this later: protected access and friend functions.) In
the previous example, we could not directly access the private member count from
outside the class definition.

Counter ctr; // ctr is an instance of Counter
// . . .
cout << ctr.count << endl; // ILLEGAL - count is private

Why bother declaring members to be private? We discuss the reasons in detail
in Chapter 2 when we discuss object-oriented programming. For now, suffice it to
say that it stems from the desire to present users with a clean (public) interface from
which to use the class, without bothering them with the internal (private) details of
its implementation. All external access to class objects takes place through the
public members, or the public interface as it is called. The syntax for a class is as
follows.

class 〈 class name 〉 {
public:

public members
private:

private members
};

Note that if no access specifier is given, the default is private for classes and
public for structures. (There is a third specifier, called protected, which is dis-
cussed later in the book.) There is no required order between the private and public
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sections, and in fact, it is possible to switch back and forth between them. Most
C++ style manuals recommend that public members be presented first, since these
are the elements of the class that are relevant to a programmer who wishes to use
the class. We sometimes violate this convention in this book, particularly when we
want to emphasize the private members.

Member Functions

Let us return to the Passenger structure, which was introduced earlier in Sec-
tion 1.1.3, but this time we define it using a class structure. We provide the same
member variables as earlier, but they are now private members. To this we add
a few member functions. For this short example, we provide just a few of many
possible member functions. The first member function is a constructor. Its job is
to guarantee that each instance of the class is properly initialized. Notice that the
constructor does not have a return type. The member function isFrequentFlyer tests
whether the passenger is a frequent flyer, and the member function makeFrequent-
Flyer makes a passenger a frequent flyer and assigns a frequent flyer number. This
is only a partial definition, and a number of member functions have been omitted.
As usual we use “ //. . .” to indicate omitted code.

class Passenger { // Passenger (as a class)
public:

Passenger(); // constructor
bool isFrequentFlyer() const; // is this a frequent flyer?

// make this a frequent flyer
void makeFrequentFlyer(const string& newFreqFlyerNo);
// . . . other member functions

private:
string name; // passenger name
MealType mealPref; // meal preference
bool isFreqFlyer; // is a frequent flyer?
string freqFlyerNo; // frequent flyer number
};

Class member functions can be placed in two major categories: accessor func-
tions, which only read class data, and update functions, which may alter class
data. The keyword “const” indicates that the member function isFrequentFlyer is
an accessor. This informs the user of the class that this function will not change
the object contents. It also allows the compiler to catch a potential error should we
inadvertently attempt to modify any class member variables.

We have declared two member functions, but we still need to define them.
Member functions may either be defined inside or outside the class body. Most
C++ style manuals recommend defining all member functions outside the class, in
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order to present a clean public interface in the class’s definition. As we saw above
in the Counter example, when a member function is defined outside the class body,
it is necessary to specify which class it belongs to, which is done by preceding the
function name with the scoping specifier class name::member name.

bool Passenger::isFrequentFlyer() const {
return isFreqFlyer;
}
void Passenger::makeFrequentFlyer(const string& newFreqFlyerNo) {

isFreqFlyer = true;
freqFlyerNo = newFreqFlyerNo;
}

Notice that when we are within the body of a member function, the member vari-
ables (such as isFreqFlyer and freqFlyerNo) are given without reference to a par-
ticular object. These functions will be invoked on a particular Passenger object.
For example, let pass be a variable of type Passenger. We may invoke these public
member functions on pass using the same member selection operator we introduced
with structures as shown below. Only public members may be accessed in this way.

Passenger pass; // pass is a Passenger
// . . .
if ( !pass.isFrequentFlyer() ) { // not already a frequent flyer?

pass.makeFrequentFlyer("392953"); // set pass’s freq flyer number
}
pass.name = "Joe Blow"; // ILLEGAL! name is private

In-Class Function Definitions

In the above examples, we have shown member functions being defined outside of
the class body. We can also define members within the class body. When a member
function is defined within a class it is compiled in line (recall Section 1.4.2). As
with in-line functions, in-class function definitions should be reserved for short
functions that do not involve loops or conditionals. Here is an example of how the
isFrequentFlyer member function would be defined from within the class.

class Passenger {
public:

// . . .
bool isFrequentFlyer() const { return isFreqFlyer; }
// . . .
};
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1.5.2 Constructors and Destructors

The above declaration of the class variable pass suffers from the shortcoming that
we have not initialized any of its classes members. An important aspect of classes
is the capability to initialize a class’s member data. A constructor is a special
member function whose task is to perform such an initialization. It is invoked
when a new class object comes into existence. There is an analogous destructor
member function that is called when a class object goes out of existence.

Constructors

A constructor member function’s name is the same as the class, and it has no return
type. Because objects may be initialized in different ways, it is natural to define
different constructors and rely on function overloading to determine which one is
to be called.

Returning to our Passenger class, let us define three constructors. The first con-
structor has no arguments. Such a constructor is called a default constructor, since
it is used in the absence of any initialization information. The second constructor
is given the values of the member variables to initialize. The third constructor is
given a Passenger reference from which to copy information. This is called a copy
constructor.

class Passenger {
private:

// . . .
public:

Passenger(); // default constructor
Passenger(const string& nm, MealType mp, const string& ffn = "NONE");
Passenger(const Passenger& pass); // copy constructor
// . . .
};

Look carefully at the second constructor. The notation ffn="NONE" indicates that
the argument for ffn is a default argument. That is, an actual argument need not
be given, and if so, the value "NONE" is used instead. If a newly created passenger
is not a frequent flyer, we simply omit this argument. The constructor tests for this
special value and sets things up accordingly. Default arguments can be assigned
any legal value and can be used for more than one argument. It is often useful
to define default values for all the arguments of a constructor. Such a constructor
is the default constructor because it is called if no arguments are given. Default
arguments can be used with any function (not just constructors). The associated
constructor definitions are shown below. Note that the default argument is given in
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the declaration, but not in the definition.

Passenger::Passenger() { // default constructor
name = "--NO NAME--";
mealPref = NO PREF;
isFreqFlyer = false;
freqFlyerNo = "NONE";
}

// constructor given member values
Passenger::Passenger(const string& nm, MealType mp, const string& ffn) {

name = nm;
mealPref = mp;
isFreqFlyer = (ffn != "NONE"); // true only if ffn given
freqFlyerNo = ffn;
}

// copy constructor
Passenger::Passenger(const Passenger& pass) {

name = pass.name;
mealPref = pass.mealPref;
isFreqFlyer = pass.isFreqFlyer;
freqFlyerNo = pass.freqFlyerNo;
}

Here are some examples of how the constructors above can be invoked to de-
fine Passenger objects. Note that in the cases of p3 and pp2 we have omitted the
frequent flyer number.

Passenger p1; // default constructor
Passenger p2("John Smith", VEGETARIAN, 293145); // 2nd constructor
Passenger p3("Pocahontas", REGULAR); // not a frequent flyer
Passenger p4(p3); // copied from p3
Passenger p5 = p2; // copied from p2
Passenger* pp1 = new Passenger; // default constructor
Passenger* pp2 = new Passenger("Joe Blow", NO PREF); // 2nd constr.
Passenger pa[20]; // uses the default constructor

Although they look different, the declarations for p4 and p5 both call the copy
constructor. These declarations take advantage of a bit of notational magic, which
C++ provides to make copy constructors look more like the type definitions we
have seen so far. The declarations for pp1 and pp2 create new passenger objects
from the free store, and return a pointer to each. The declaration of pa declares
an array of Passenger. The individual members of the array are always initialized
from the default constructor.
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Initializing Class Members with Initializer Lists

There is a subtlety that we glossed over in our presentations of the constructors.
Recall that a string is a class in the standard template library. Our initialization
using “name=nm” above relied on the fact that the string class has an assignment
operator defined for it. If the type of name is a class without an assignment opera-
tor, this type of initialization might not be possible. In order to deal with the issue
of initializing member variables that are themselves classes, C++ provides an alter-
nate method of initialization called an initializer list. This list is placed between
the constructor’s argument list and its body. It consists of a colon (:) followed by
a comma-separated list of the form member name(initial value). To illustrate the
feature, let us rewrite the second Passenger constructor so that its first three mem-
bers are initialized by an initializer list. The initializer list is executed before the
body of the constructor.

// constructor using an initializer list
Passenger::Passenger(const string& nm, MealType mp, string ffn)

: name(nm), mealPref(mp), isFreqFlyer(ffn != "NONE")
{ freqFlyerNo = ffn; }

Destructors

A constructor is called when a class object comes into existence. A destructor is
a member function that is automatically called when a class object ceases to exist.
If a class object comes into existence dynamically using the new operator, the
destructor will be called when this object is destroyed using the delete operator.
If a class object comes into existence because it is a local variable in a function
that has been called, the destructor will be called when the function returns. The
destructor for a class T is denoted ~T. It takes no arguments and has no return type.
Destructors are needed when classes allocate resources, such as memory, from the
system. When the object ceases to exist, it is the responsibility of the destructor to
return these resources to the system.

Let us consider a class Vect, shown in the following code fragment, which
stores a vector by dynamically allocating an array of integers. The dynamic array
is referenced by the member variable data. (Recall from Section 1.1.3 that a dy-
namically allocated array is represented by a pointer to its initial element.) The
member variable size stores the number of elements in the vector. The constructor
for this class allocates an array of the desired size. In order to return this space to
the system when a Vect object is removed, we need to provide a destructor to deal-
locate this space. (Recall that when an array is deleted we use “delete[ ],” rather
than “delete.”)
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class Vect { // a vector class
public:

Vect(int n); // constructor, given size
˜Vect(); // destructor
// . . . other public members omitted

private:
int* data; // an array holding the vector
int size; // number of array entries
};

Vect::Vect(int n) { // constructor
size = n;
data = new int[n]; // allocate array
}

Vect::˜Vect() { // destructor
delete [ ] data; // free the allocated array
}

We are not strictly required by C++ to provide our own destructor. Nonetheless,
if our class allocates memory, we should write a destructor to free this memory. If
we did not provide the destructor in the example above, the deletion of an object
of type Vect would cause a memory leak. (Recall from Section 1.1.3 that this is
an inaccessible block of memory that cannot be removed). The job of explicitly
deallocating objects that were allocated is one of the chores that C++ programmers
must endure.

1.5.3 Classes and Memory Allocation

When a class performs memory allocation using new, care must be taken to avoid
a number of common programming errors. We have shown above that failure to
deallocate storage in a class’s destructor can result in memory leaks. A somewhat
more insidious problem occurs when classes that allocate memory fail to provide a
copy constructor or an assignment operator. Consider the following example, using
our Vect class.

Vect a(100); // a is a vector of size 100
Vect b = a; // initialize b from a (DANGER!)
Vect c; // c is a vector (default size 10)
c = a; // assign a to c (DANGER!)

It would seem that we have just created three separate vectors, all of size 100,
but have we? In reality all three of these vectors share the same 100-element array.
Let us see why this has occurred.
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The declaration of object a invokes the vector constructor, which allocates an
array of 100 integers and a.data points to this array. The declaration “Vect b=a”
initializes b from a. Since we provided no copy constructor in Vect, the system
uses its default, which simply copies each member of a to b. In particular it sets
“b.data=a.data.” Notice that this does not copy the contents of the array; rather it
copies the pointer to the array’s initial element. This default action is sometimes
called a shallow copy.

The declaration of c invokes the constructor with a default argument value of
10, and hence allocates an array of 10 elements in the free store. Because we have
not provided an assignment operator, the statement “c=a,” also does a shallow copy
of a to c. Only pointers are copied, not array contents. Worse yet, we have lost the
pointer to c’s original 10-element array, thus creating a memory leak.

Now, a, b, and c all have members that point to the same array in the free store.
If the contents of the arrays of one of the three were to change, the other two would
mysteriously change as well. Worse yet, if one of the three were to be deleted
before the others (for example, if this variable was declared in a nested block), the
destructor would delete the shared array. When either of the other two attempts to
access the now deleted array, the results would be disastrous. In short, there are
many problems here.

Fortunately, there is a simple fix for all of these problems. The problems arose
because we allocated memory and we used the system’s default copy constructor
and assignment operator. If a class allocates memory, you should provide a copy
constructor and assignment operator to allocate new memory for making copies. A
copy constructor for a class T is typically declared to take a single argument, which
is a constant reference to an object of the same class, that is, T(const T& t). As
shown in the code fragment below, it copies each of the data members from one
class to the other while allocating memory for any dynamic members.

Vect::Vect(const Vect& a) { // copy constructor from a

size = a.size; // copy sizes

data = new int[size]; // allocate new array

for (int i = 0; i < size; i++) { // copy the vector contents

data[i] = a.data[i];

}
}

The assignment operator is handled by overloading the = operator as shown
in the next code fragment. The argument “a” plays the role of the object on the
right side of the assignment operator. The assignment operator deletes the existing
array storage, allocates a new array of the proper size, and copies elements into
this new array. The if statement checks against the possibility of self assignment.
(This can sometimes happen when different variables reference the same object.)
We perform this check using the keyword this. For any instance of a class object,
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“this” is defined to be the address of this instance. If this equals the address of a,
then this is a case of self assignment, and we ignore the operation. Otherwise, we
deallocate the existing array, allocate a new array, and copy the contents over.

Vect& Vect::operator=(const Vect& a) { // assignment operator from a

if (this != &a) { // avoid self-assignment

delete [ ] data; // delete old array

size = a.size; // set new size

data = new int[size]; // allocate new array

for (int i=0; i < size; i++) { // copy the vector contents

data[i] = a.data[i];

}
}
return *this;

}

Notice that in the last line of the assignment operator we return a reference to
the current object with the statement “return *this.” Such an approach is useful
for assignment operators, since it allows us to chain together assignments, as in
“a=b=c.” The assignment “b=c” invokes the assignment operator, copying vari-
able c to b and then returns a reference to b. This result is then assigned to variable
a.

The only other changes needed to complete the job would be to add the appro-
priate function declarations to the Vect class. By using the copy constructor and
assignment operator, we avoid the above memory leak and the dangerous shared
array. The lessons of the last two sections can be summarized in the following rule.

Remember

Every class that allocates its own objects using new should:
• Define a destructor to free any allocated objects.
• Define a copy constructor, which allocates its own new member stor-

age and copies the contents of member variables.
• Define an assignment operator, which deallocates old storage, allo-

cates new storage, and copies all member variables.

Some programmers recommend that these functions be included for every class,
even if memory is not allocated, but we are not so fastidious. In rare instances, we
may want to forbid users from using one or more of these operations. For example,
we may not want a huge data structure to be copied inadvertently. In this case,
we can define empty copy constructors and assignment functions and make them
private members of the class.
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1.5.4 Class Friends and Class Members

Complex data structures typically involve the interaction of many different classes.
In such cases, there are often issues coordinating the actions of these classes to
allow sharing of information. We discuss some of these issues in this section.

We said private members of a class may only be accessed from within the class,
but there is an exception to this. Specifically, we can declare a function as a friend,
which means that this function may access the class’s private data. There are a
number of reasons for defining friend functions. One is that syntax requirements
may forbid us from defining a member function. For example, consider a class
SomeClass. Suppose that we want to define an overloaded output operator for this
class, and this output operator needs access to private member data. To handle this,
the class declares that the output operator is a friend of the class as shown below.

class SomeClass {
private:

int secret;
public:

// . . . // give << operator access to secret
friend ostream& operator<<(ostream& out, const SomeClass& x);
};

ostream& operator<<(ostream& out, const SomeClass& x)
{ cout << x.secret; }

Another time when it is appropriate to use friends is when two different classes
are closely related. For example, Code Fragment 1.1 shows two cooperating classes
Vector and Matrix. The former stores a three-dimensional vector and the latter
stores a 3× 3 matrix. In this code fragment, we show just one example of the
usefulness of class friendship. The class Vector stores is coordinates in a private
array, called coord. The Matrix class defines a function that multiplies a matrix
times a vector. Because coord is a private member of Vector, members of the class
Matrix would not have access to coord. However, because Vector has declared
Matrix to be a friend, class Matrix can access all the private members of class
Vector.

The ability to declare friendship relationships between classes is useful, but the
extensive use of friends often indicates a poor class structure design. For example, a
better solution would be to have class Vector define a public subscripting operator.
Then the multiply function could use this public member to access the vector class,
rather than access private member data.

Note that “friendship” is not transitive. For example, if a new class Tensor
was made a friend of Matrix, Tensor would not be a friend of Vector, unless class
Vector were to explicitly declare it to be so.
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class Vector { // a 3-element vector
public: // . . . public members omitted
private:

double coord[3]; // storage for coordinates
friend class Matrix; // give Matrix access to coord
};

class Matrix { // a 3x3 matrix
public:

Vector multiply(const Vector& v); // multiply by vector v
// . . . other public members omitted

private:
double a[3][3]; // matrix entries
};

Vector Matrix::multiply(const Vector& v) { // multiply by vector v
Vector w;
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
w.coord[i] += a[i][j] * v.coord[j]; // access to coord allowed

return w;
}

Code Fragment 1.1: An example of class friendship.

Nesting Classes and Types within Classes

We know that classes may define member variables and member functions. Classes
may also define their own types as well. In particular, we can nest a class definition
within another class. Such a nested class is often convenient in the design of data
structures. For example, suppose that we want to design a data structure, called
Book, and we want to provide a mechanism for placing bookmarks to identify par-
ticular locations within our book. We could define a nested class, called Bookmark,
which is defined within class Book.

class Book {
public:

class Bookmark {
// . . . (Bookmark definition here)
};
// . . . (Remainder of Book definition)
}

We might define a member function that returns a bookmark within the book, say,
to the start of some chapter. Outside the class Book, we use the scope-resolution
operator, Book::Bookmark, in order to refer to this nested class. We shall see many
other examples of nested classes later in the book.
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1.5.5 The Standard Template Library

The Standard Template Library (STL) is a collection of useful classes for common
data structures. In addition to the string class, which we have seen many times, it
also provides data structures for the following standard containers. We discuss
many of these data structures later in this book, so don’t worry if their names seem
unfamiliar.

stack Container with last-in, first-out access
queue Container with first-in, first-out access
deque Double-ended queue
vector Resizeable array
list Doubly linked list
priority queue Queue ordered by value
set Set
map Associative array (dictionary)

Templates and the STL Vector Class

One of the important features of the STL is that each such object can store objects
of any one type. Contrast this with the Vect class of Section 1.5.2, which can
only hold integers. Such a class whose definition depends on a user-specified type
is called a template. We discuss templates in greater detail in Chapter 2, but we
briefly mention how they are used with container objects here.

We specify the type of the object being stored in the container in angle brackets
(<...>). For example, we could define vectors to hold 100 integers, 500 characters,
and 20 passengers as follows:

#include <vector>
using namespace std; // make std accessible

vector<int> scores(100); // 100 integer scores
vector<char> buffer(500); // buffer of 500 characters
vector<Passenger> passenList(20); // list of 20 Passengers

As usual, the include statement provides the necessary declarations for using
the vector class. Each instance of an STL vector can only hold objects of one type.

STL vectors are superior to standard C++ arrays in many respects. First, as
with arrays, individual elements can be indexed using the usual index operator ([ ]).
They can also be accessed by the at member function. The advantage of the latter
is that it performs range checking and generates an error exception if the index is
out of bounds. (We discuss exceptions in Section 2.4.) Recall that standard arrays
in C++ do not even know their size, and hence range checking is not even possible.
In contrast, a vector object’s size is given by its size member function. Unlike
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standard arrays, one vector object can be assigned to another, which results in the
contents of one vector object being copied to the other. A vector can be resized
dynamically by calling the resize member function. We show several examples of
uses of the STL vector class below.

int i = // . . .
cout << scores[i]; // index (range unchecked)
buffer.at(i) = buffer.at(2 * i); // index (range checked)
vector<int> newScores = scores; // copy scores to newScores
scores.resize(scores.size() + 10); // add room for 10 more elements

We discuss the STL further in Chapter 3.

More on STL Strings

In Section 1.1.3, we introduced the STL string class. This class provides a number
of useful utilities for manipulating character strings. Earlier, we discussed the use
of the addition operator (“ +”) for concatenating strings, the operator “ +=” for
appending a string to the end of an existing string, the function size for determining
the length of a string, and the indexing operator (“[ ]”) for accessing individual
characters of a string.

Let us present a few more string functions. In the table below, let s be an STL
string, and let p be either an STL string or a standard C++ string. Let i and m be
nonnegative integers. Throughout, we use i to denote the index of a position in a
string and we use m to denote the number of characters involved in the operation.
(A string’s first character is at index i = 0.)

s.find(p) Return the index of first occurrence of string p in s

s.find(p, i) Return the index of first occurrence of string p in s
on or after position i

s.substr(i,m) Return the substring starting at position i of s
and consisting of m characters

s.insert(i, p) Insert string p just prior to index i in s

s.erase(i, m) Remove the substring of length m starting at index i

s.replace(i, m, p) Replace the substring of length m starting at index i
with p

getline(is, s) Read a single line from the input stream is and store
the result in s

In order to indicate that a pattern string p is not found, the find function returns
the special value string::npos. Strings can also be compared lexicographically,
using the C++ comparison operators: <, <=, >, >=, ==, and !=.
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Here are some examples of the use of these functions.

string s = "a dog"; // “a dog”
s += " is a dog"; // “a dog is a dog”
cout << s.find("dog"); // 2
cout << s.find("dog", 3); // 11
if (s.find("doug") == string::npos) { } // true
cout << s.substr(7, 5); // “s a d”
s.replace(2, 3, "frog"); // “a frog is a dog”
s.erase(6, 3); // “a frog a dog”
s.insert(0, "is "); // “is a frog a dog”
if (s == "is a frog a dog") { } // true
if (s < "is a frog a toad") { } // true
if (s < "is a frog a cat") { } // false

1.6 C++ Program and File Organization

Let us now consider the broader issue of how to organize an entire C++ program.
A typical large C++ program consists of many files, with related pieces of code
residing within each file. For example, C++ programmers commonly place each
major class in its own file.

Source Files

There are two common file types, source files and header files. Source files typi-
cally contain most of the executable statements and data definitions. This includes
the bodies of functions and definitions of any global variables.

Different compilers use different file naming conventions. Source file names
typically have distinctive suffixes, such as “.cc”, “.cpp”, and “.C”. Source files may
be compiled separately by the compiler, and then these files are combined into one
program by a system program called a linker.

Each nonconstant global variable and function may be defined only once. Other
source files may share such a global variable or function provided they have a
matching declaration. To indicate that a global variable is defined in another file,
the type specifier “extern” is added. This keyword is not needed for functions.
For example, consider the declarations extracted from two files below. The file
Source1.cpp defines a global variable cat and function foo. The file Source2.cpp
can access these objects by including the appropriate matching declarations and
adding “extern” for variables.

File: Source1.cpp

int cat = 1; // definition of cat
int foo(int x) { return x+1; } // definition of foo
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File: Source2.cpp

extern int cat; // cat is defined elsewhere
int foo(int x); // foo is defined elsewhere

Header Files

Since source files using shared objects must provide identical declarations, we com-
monly store these shared declarations in a header file, which is then read into each
such source file using an #include statement. Statements beginning with # are
handled by a special program, called the preprocessor, which is invoked automati-
cally by the compiler. A header file typically contains many declarations, including
classes, structures, constants, enumerations, and typedefs. Header files generally
do not contain the definition (body) of a function. In-line functions are an excep-
tion, however, as their bodies are given in a header file.

Except for some standard library headers, the convention is that header file
names end with a “.h” suffix. Standard library header files are indicated with angle
brackets, as in <iostream>, while other local header files are indicated using quotes,
as in ”myIncludes.h”.

#include <iostream> // system include file
#include "myIncludes.h" // user-defined include file

As a general rule, we should avoid including namespace using directives in
header files, because any source file that includes such a header file has its names-
pace expanded as a result. We make one exception to this in our examples, however.
Some of our header files include a using directive for the STL string class because
it is so useful.

1.6.1 An Example Program

To make this description more concrete, let us consider an example of a simple
yet complete C++ program. Our example consists of one class, called CreditCard,
which defines a credit card object and a procedure that uses this class.

The CreditCard Class

The credit card object defined by CreditCard is a simplified version of a traditional
credit card. It has an identifying number, identifying information about the owner,
and information about the credit limit and the current balance. It does not charge
interest or late payments, but it does restrict charges that would cause a card’s
balance to go over its spending limit.

The main class structure is presented in the header file CreditCard.h and is
shown in Code Fragment 1.2.
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#ifndef CREDIT CARD H // avoid repeated expansion
#define CREDIT CARD H

#include <string> // provides string
#include <iostream> // provides ostream

class CreditCard {
public:

CreditCard(const std::string& no, // constructor
const std::string& nm, int lim, double bal=0);

// accessor functions
std::string getNumber() const { return number; }
std::string getName() const { return name; }
double getBalance() const { return balance; }
int getLimit() const { return limit; }

bool chargeIt(double price); // make a charge
void makePayment(double payment); // make a payment

private: // private member data
std::string number; // credit card number
std::string name; // card owner’s name
int limit; // credit limit
double balance; // credit card balance
};

// print card information
std::ostream& operator<<(std::ostream& out, const CreditCard& c);
#endif

Code Fragment 1.2: The header file CreditCard.h, which contains the definition of
class CreditCard.
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Before discussing the class, let us say a bit about the general file structure.
The first two lines (containing #ifndef and #define) and the last line (containing
#endif) are used to keep the same header file from being expanded twice. We
discuss this later. The next lines include the header files for strings and standard
input and output.

This class has four private data members. We provide a simple constructor to
initialize these members. There are four accessor functions, which provide access
to read the current values of these member variables. Of course, we could have
alternately defined the member variables as being public and saved the work of
providing these accessor functions. However, this would allow users to modify any
of these member variables directly. We usually prefer to restrict the modification of
member variables to special update functions. We include two such update func-
tions, chargeIt and makePayment. We have also defined a stream output operator
for the class.

The accessor functions and makePayment are short, so we define them within
the class body. The other member functions and the output operator are defined
outside the class in the file CreditCard.cpp, shown in Code Fragment 1.3. This
approach of defining a header file with the class definition and an associated source
file with the longer member function definitions is common in C++.

The Main Test Program

Our main program is in the file TestCard.cpp. It consists of a main function, but this
function does little more than call the function testCard, which does all the work.
We include CreditCard.h to provide the CreditCard declaration. We do not need to
include iostream and string, since CreditCard.h does this for us, but it would not
have hurt to do so.

The testCard function declares an array of pointers to CreditCard. We allocate
three such objects and initialize them. We then perform a number of payments and
print the associated information. We show the complete code for the Test class in
Code Fragment 1.4.

The output of the Test class is sent to the standard output stream. We show this
output in Code Fragment 1.5.

Avoiding Multiple Header Expansions

A typical C++ program includes many different header files, which often include
other header files. As a result, the same header file may be expanded many times.
Such repeated header expansion is wasteful and can result in compilation errors
because of repeated definitions. To avoid this repeated expansion, most header
files use a combination of preprocessor commands. Let us explain the process,
illustrated in Code Fragment 1.2.
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#include "CreditCard.h" // provides CreditCard

using namespace std; // make std:: accessible
// standard constructor

CreditCard::CreditCard(const string& no, const string& nm, int lim, double bal) {
number = no;
name = nm;
balance = bal;
limit = lim;
}

// make a charge
bool CreditCard::chargeIt(double price) {

if (price + balance > double(limit))
return false; // over limit

balance += price;
return true; // the charge goes through
}

void CreditCard::makePayment(double payment) { // make a payment
balance −= payment;
}

// print card information
ostream& operator<<(ostream& out, const CreditCard& c) {

out << "Number = " << c.getNumber() << "\n"

<< "Name = " << c.getName() << "\n"

<< "Balance = " << c.getBalance() << "\n"

<< "Limit = " << c.getLimit() << "\n";
return out;
}

Code Fragment 1.3: The file CreditCard.cpp, which contains the definition of the
out-of-class member functions for class CreditCard.
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#include <vector> // provides STL vector
#include "CreditCard.h" // provides CreditCard, cout, string

using namespace std; // make std accessible

void testCard() { // CreditCard test function
vector<CreditCard*> wallet(10); // vector of 10 CreditCard pointers

// allocate 3 new cards
wallet[0] = new CreditCard("5391 0375 9387 5309", "John Bowman", 2500);
wallet[1] = new CreditCard("3485 0399 3395 1954", "John Bowman", 3500);
wallet[2] = new CreditCard("6011 4902 3294 2994", "John Bowman", 5000);

for (int j=1; j <= 16; j++) { // make some charges
wallet[0]−>chargeIt(double(j)); // explicitly cast to double
wallet[1]−>chargeIt(2 * j); // implicitly cast to double
wallet[2]−>chargeIt(double(3 * j));
}

cout << "Card payments:\n";
for (int i=0; i < 3; i++) { // make more charges

cout << *wallet[i];
while (wallet[i]−>getBalance() > 100.0) {

wallet[i]−>makePayment(100.0);
cout << "New balance = " << wallet[i]−>getBalance() << "\n";
}
cout << "\n";
delete wallet[i]; // deallocate storage
}
}

int main() { // main function
testCard();
return EXIT SUCCESS; // successful execution
}

Code Fragment 1.4: The file TestCard.cpp.

Let us start with the second line. The #define statement defines a preprocessor
variable CREDIT CARD H. This variable’s name is typically based on the header
file name, and by convention, it is written in all capitals. The name itself is not
important as long as different header files use different names. The entire file is
enclosed in a preprocessor “if” block starting with #ifndef on top and ending with
#endif at the bottom. The “ifndef” is read “if not defined,” meaning that the header
file contents will be expanded only if the preprocessor variable CREDIT CARD H
is not defined.

Here is how it works. The first time the header file is encountered, the variable
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Card payments:
Number = 5391 0375 9387 5309
Name = John Bowman
Balance = 136
Limit = 2500
New balance = 36

Number = 3485 0399 3395 1954
Name = John Bowman
Balance = 272
Limit = 3500
New balance = 172
New balance = 72

Number = 6011 4902 3294 2994
Name = John Bowman
Balance = 408
Limit = 5000
New balance = 308
New balance = 208
New balance = 108
New balance = 8

Code Fragment 1.5: Sample program output.

CREDIT CARD H has not yet been seen, so the header file is expanded by the
preprocessor. In the process of doing this expansion, the second line defines the
variable CREDIT CARD H. Hence, any attempt to include the header file will find
that CREDIT CARD H is defined, so the file will not be expanded.

Throughout this book we omit these preprocessor commands from our exam-
ples, but they should be included in each header file we write.

1.7 Writing a C++ Program

As with any programming language, writing a program in C++ involves three fun-
damental steps:

1. Design
2. Coding

3. Testing and Debugging.

We briefly discuss each of these steps in this section.
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1.7.1 Design

The design step is perhaps the most important in the process of writing a program.
In this step, we decide how to divide the workings of our program into classes, we
decide how these classes will interact, what data each will store, and what actions
each will perform. Indeed, one of the main challenges that beginning C++ pro-
grammers face is deciding what classes to define to do the work of their program.
While general prescriptions are hard to come by, there are some general rules of
thumb that we can apply when determining how to define our classes.

• Responsibilities: Divide the work into different actors, each with a different
responsibility. Try to describe responsibilities using action verbs. These
actors form the classes for the program.

• Independence: Define the work for each class to be as independent from
other classes as possible. Subdivide responsibilities between classes so that
each class has autonomy over some aspect of the program. Give data (as
member variables) to the class that has jurisdiction over the actions that re-
quire access to this data.

• Behaviors: Define the behaviors for each class carefully and precisely, so
that the consequences of each action performed by a class are well under-
stood by other classes with which it interacts. These behaviors define the
member functions that this class performs. The set of behaviors for a class is
sometimes referred to as a protocol, since we expect the behaviors for a class
to hold together as a cohesive unit.

Defining the classes, together with their member variables and member func-
tions, determines the design of a C++ program. A good programmer will naturally
develop greater skill in performing these tasks over time, as experience teaches him
or her to notice patterns in the requirements of a program that match patterns that
he or she has seen before.

1.7.2 Pseudo-Code

Programmers are often asked to describe algorithms in a way that is intended for
human eyes only, prior to writing actual code. Such descriptions are called pseudo-
code. Pseudo-code is not a computer program, but is more structured than usual
prose. Pseudo-code is a mixture of natural language and high-level programming
constructs that describe the main ideas behind a generic implementation of a data
structure or algorithm. There really is no precise definition of the pseudo-code lan-
guage, however, because of its reliance on natural language. At the same time, to
help achieve clarity, pseudo-code mixes natural language with standard program-
ming language constructs. The programming language constructs we choose are
those consistent with modern high-level languages such as C, C++, and Java.
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These constructs include the following:

• Expressions: We use standard mathematical symbols to express numeric
and Boolean expressions. We use the left arrow sign (←) as the assignment
operator in assignment statements (equivalent to the = operator in C++) and
we use the equal sign (=) as the equality relation in Boolean expressions
(equivalent to the “==” relation in C++).

• Function declarations: Algorithm name(arg1,arg2, . . . ) declares a new
function “name” and its arguments.

• Decision structures: if condition then true-actions [else false-actions]. We
use indentation to indicate what actions should be included in the true-actions
and false-actions.

• While-loops: while condition do actions. We use indentation to indicate
what actions should be included in the loop actions.

• Repeat-loops: repeat actions until condition. We use indentation to indicate
what actions should be included in the loop actions.

• For-loops: for variable-increment-definition do actions. We use indentation
to indicate what actions should be included among the loop actions.

• Array indexing: A[i] represents the ith cell in the array A. The cells of an
n-celled array A are indexed from A[0] to A[n−1] (consistent with C++).

• Member function calls: object.method(args) (object is optional if it is un-
derstood).

• Function returns: return value. This operation returns the value specified
to the method that called this one.

• Comments: { Comment goes here. }. We enclose comments in braces.

When we write pseudo-code, we must keep in mind that we are writing for a
human reader, not a computer. Thus, we should strive to communicate high-level
ideas, not low-level implementation details. At the same time, we should not gloss
over important steps. Like many forms of human communication, finding the right
balance is an important skill that is refined through practice.

1.7.3 Coding

As mentioned above, one of the key steps in coding up an object-oriented pro-
gram is coding up the descriptions of classes and their respective data and member
functions. In order to accelerate the development of this skill, we discuss vari-
ous design patterns for designing object-oriented programs (see Section 2.1.3) at
various points throughout this text. These patterns provide templates for defining
classes and the interactions between these classes.

Many programmers do their initial coding not on a computer, but by using CRC
cards. Class-Responsibility-Collaborator (CRC) cards are simple index cards that
subdivide the work required of a program. The main idea behind this tool is to
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have each card represent a component, which will ultimately become a class in our
program. We write the name of each component on the top of an index card. On
the left-hand side of the card, we begin writing the responsibilities for this com-
ponent. On the right-hand side, we list the collaborators for this component, that
is, the other components that this component will have to interact with to perform
its duties. The design process iterates through an action/actor cycle, where we first
identify an action (that is, a responsibility), and we then determine an actor (that
is, a component) that is best suited to perform that action. The design is complete
when we have assigned all actions to actors.

By the way, in using index cards to begin our coding, we are assuming that
each component will have a small set of responsibilities and collaborators. This
assumption is no accident, since it helps keep our programs manageable.

An alternative to CRC cards is the use of UML (Unified Modeling Language)
diagrams to express the organization of a program, and the use of pseudo-code to
describe the algorithms. UML diagrams are a standard visual notation to express
object-oriented software designs. Several computer-aided tools are available to
build UML diagrams. Describing algorithms in pseudo-code, on the other hand, is
a technique that we utilize throughout this book.

Once we have decided on the classes and their respective responsibilities for
our programs, we are ready to begin coding. We create the actual code for the
classes in our program by using either an independent text editor (such as emacs,
notepad, or vi), or the editor embedded in an integrated development environment
(IDE), such as Microsoft’s Visual Studio and Eclipse.

Once we have completed coding for a program (or file), we then compile this
file into working code by invoking a compiler. If our program contains syntax
errors, they will be identified, and we will have to go back into our editor to fix the
offending lines of code. Once we have eliminated all syntax errors and created the
appropriate compiled code, we then run our program.

Readability and Style

Programs should be made easy to read and understand. Good programmers should
therefore be mindful of their coding style and develop a style that communicates
the important aspects of a program’s design for both humans and computers. Much
has been written about good coding style. Here are some of the main principles.

• Use meaningful names for identifiers. Try to choose names that can be read
aloud and reflect the action, responsibility, or data each identifier is nam-
ing. The tradition in most C++ circles is to capitalize the first letter of each
word in an identifier, except for the first word in an identifier for a variable
or method. So, in this tradition, “Date,” “Vector,” and “DeviceManager”
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would identify classes, and “isFull,” “insertItem,” “studentName,” and “stu-
dentHeight” would respectively identify member functions and variables.

• Use named constants and enumerations instead of embedded values. Read-
ability, robustness, and modifiability are enhanced if we include a series of
definitions of named constant values in a class definition. These can then be
used within this class and others to refer to special values for this class. Our
convention is to fully capitalize such constants as shown below.

const int MIN CREDITS = 12; // min. credits in a term
const int MAX CREDITS = 24; // max. credits in a term

// enumeration for year
enum Year { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };

• Indent statement blocks. Typically programmers indent each statement block
by four spaces. (In this book, we typically use two spaces to avoid having
our code overrun the book’s margins.)

• Organize each class in a consistent order. In the examples in this book, we
usually use the following order:

1. Public types and nested classes
2. Public member functions
3. Protected member functions (internal utilities)
4. Private member data

Our class organizations do not always follow this convention. In particular,
when we wish to emphasize the implementation details of a class, we present
the private members first and the public functions afterwards.

• Use comments that add meaning to a program and explain ambiguous or
confusing constructs. In-line comments are good for quick explanations and
do not need to be sentences. Block comments are good for explaining the
purpose of a method and complex code sections.

1.7.4 Testing and Debugging

Testing is the process of verifying the correctness of a program, while debugging
is the process of tracking the execution of a program and discovering the errors
in it. Testing and debugging are often the most time-consuming activity in the
development of a program.

Testing

A careful testing plan is an essential part of writing a program. While verifying
the correctness of a program over all possible inputs is usually not feasible, we
should aim at executing the program on a representative subset of inputs. At the
very minimum, we should make sure that every method in the program is tested
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at least once (method coverage). Even better, each code statement in the program
should be executed at least once (statement coverage).

Programs often tend to fail on special cases of the input. Such cases need to
be carefully identified and tested. For example, when testing a method that sorts
an array of integers (that is, arranges them in ascending order), we should consider
the following inputs:

• The array has zero length (no elements)
• The array has one element
• All the elements of the array are the same
• The array is already sorted
• The array is reverse sorted

In addition to special inputs to the program, we should also consider special
conditions for the structures used by the program. For example, if we use an array
to store data, we should make sure that boundary cases, such as inserting/removing
at the beginning or end of the subarray holding data, are properly handled. While it
is essential to use hand-crafted test suites, it is also advantageous to run the program
on a large collection of randomly generated inputs.

There is a hierarchy among the classes and functions of a program induced by
the “caller-callee” relationship. Namely, a function A is above a function B in the
hierarchy if A calls B. There are two main testing strategies, top-down and bottom-
up, which differ in the order in which functions are tested.

Bottom-up testing proceeds from lower-level functions to higher-level func-
tions. Namely, bottom-level functions, which do not invoke other functions, are
tested first, followed by functions that call only bottom-level functions, and so on.
This strategy ensures that errors found in a method are not likely to be caused by
lower-level functions nested within it.

Top-down testing proceeds from the top to the bottom of the method hierarchy.
It is typically used in conjunction with stubbing, a boot-strapping technique that
replaces a lower-level method with a stub, a replacement for the method that simu-
lates the output of the original method. For example, if function A calls function B
to get the first line of a file, we can replace B with a stub that returns a fixed string
when testing A.

Debugging

The simplest debugging technique consists of using print statements (typically us-
ing the stream output operator, “<<”) to track the values of variables during the
execution of the program. The problem with this approach is that the print state-
ments need to be removed or commented out before the program can be executed
as part of a “production” software system.
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A better approach is to run the program within a debugger, which is a special-
ized environment for controlling and monitoring the execution of a program. The
basic functionality provided by a debugger is the insertion of breakpoints within
the code. When the program is executed within the debugger, it stops at each
breakpoint. While the program is stopped, the current value of variables can be
inspected. In addition to fixed breakpoints, advanced debuggers allow for specifi-
cation of conditional breakpoints, which are triggered only if a given expression is
satisfied.

Many IDEs, such as Microsoft Visual Studio and Eclipse provide built-in de-
buggers.
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1.8 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-1.1 Which of the following is not a valid C++ variable name? (There may be
more than one.)

a. i think i am valid

b. i may have 2 many digits 2 be valid

c. I start and end with underscores

d. I Have A Dollar $ign

e. I AM LONG AND HAVE NO LOWER CASE LETTERS

R-1.2 Write a pseudo-code description of a method for finding the smallest and
largest numbers in an array of integers and compare that to a C++ function
that would do the same thing.

R-1.3 Give a C++ definition of a struct called Pair that consists of two mem-
bers. The first is an integer called first, and the second is a double called
second.

R-1.4 What are the contents of string s after executing the following statements.

string s = "abc";
string t = "cde";
s += s + t[1] + s;

R-1.5 Consider the expression y + 2 * z ++ < 3 - w / 5. Add parentheses
to show the precise order of evaluation given the C++ rules for operator
precedence.

R-1.6 Consider the following attempt to allocate a 10-element array of pointers
to doubles and initialize the associated double values to 0.0. Rewrite the
following (incorrect) code to do this correctly. (Hint: Storage for the
doubles needs to be allocated.)

double* dp[10]
for (int i = 0; i < 10; i++) dp[i] = 0.0;

R-1.7 Write a short C++ function that takes an integer n and returns the sum of
all the integers smaller than n.

R-1.8 Write a short C++ function, isMultiple, that takes two positive long values,
n and m, and returns true if and only if n is a multiple of m, that is, n = mi
for some integer i.

www.wiley.com/college/goodrich
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R-1.9 Write a C++ function printArray(A, m, n) that prints an m× n two-
dimensional array A of integers, declared to be “int** A,” to the standard
output. Each of the m rows should appear on a separate line.

R-1.10 What (if anything) is different about the behavior of the following two
functions f and g that increment a variable and print its value?

void f(int x)
{ std::cout << ++x; }

void g(int& x)
{ std::cout << ++x; }

R-1.11 Write a C++ class, Flower, that has three member variables of type string,
int, and float, which respectively represent the name of the flower, its
number of pedals, and price. Your class must include a constructor method
that initializes each variable to an appropriate value, and your class should
include functions for setting the value of each type, and getting the value
of each type.

R-1.12 Modify the CreditCard class from Code Fragment 1.3 to check that the
price argument passed to function chargeIt and the payment argument
passed to function makePayment are positive.

R-1.13 Modify the CreditCard class from Code Fragment 1.2 to charge interest
on each payment.

R-1.14 Modify the CreditCard class from Code Fragment 1.2 to charge a late fee
for any payment that is past its due date.

R-1.15 Modify the CreditCard class from Code Fragment 1.2 to include modifier
functions that allow a user to modify internal variables in a CreditCard
class in a controlled manner.

R-1.16 Modify the declaration of the first for loop in the Test class in Code Frag-
ment 1.4 so that its charges will eventually cause exactly one of the three
credit cards to go over its credit limit. Which credit card is it?

R-1.17 Write a C++ class, AllKinds, that has three member variables of type int,
long, and float, respectively. Each class must include a constructor func-
tion that initializes each variable to a nonzero value, and each class should
include functions for setting the value of each type, getting the value of
each type, and computing and returning the sum of each possible combi-
nation of types.

R-1.18 Write a short C++ function, isMultiple, that takes two long values, n and
m, and returns true if and only if n is a multiple of m, that is, n = m · i for
some integer i.

R-1.19 Write a short C++ function, isTwoPower, that takes an int i and returns
true if and only if i is a power of 2. Do not use multiplication or division,
however.
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R-1.20 Write a short C++ function that takes an integer n and returns the sum of
all the integers smaller than n.

R-1.21 Write a short C++ function that takes an integer n and returns the sum of
all the odd integers smaller than n.

R-1.22 Write a short C++ function that takes a positive double value x and returns
the number of times we can divide x by 2 before we get a number less
than 2.

Creativity

C-1.1 Write a pseudo-code description of a method that reverses an array of n
integers, so that the numbers are listed in the opposite order than they were
before, and compare this method to an equivalent C++ method for doing
the same thing.

C-1.2 Write a short C++ function that takes an array of int values and determines
if there is a pair of numbers in the array whose product is even.

C-1.3 Write a C++ function that takes an STL vector of int values and deter-
mines if all the numbers are different from each other (that is, they are
distinct).

C-1.4 Write a C++ function that takes an STL vector of int values and prints all
the odd values in the vector.

C-1.5 Write a C++ function that takes an array containing the set of all integers
in the range 1 to 52 and shuffles it into random order. Use the built-in func-
tion rand, which returns a pseudo-random integer each time it is called.
Your function should output each possible order with equal probability.

C-1.6 Write a short C++ program that outputs all possible strings formed by
using each of the characters ’a’, ’b’, ’c’, ’d’, ’e’, and ’f’ exactly
once.

C-1.7 Write a short C++ program that takes all the lines input to standard input
and writes them to standard output in reverse order. That is, each line is
output in the correct order, but the ordering of the lines is reversed.

C-1.8 Write a short C++ program that takes two arguments of type STL vec-
tor<double>, a and b, and returns the element-by-element product of a
and b. That is, it returns a vector c of the same length such that c[i] =
a[i] ·b[i].

C-1.9 Write a C++ class Vector2, that stores the (x,y) coordinates of a two-
dimensional vector, where x and y are of type double. Show how to
override various C++ operators in order to implement the addition of two
vectors (producing a vector result), the multiplication of a scalar times
a vector (producing a vector result), and the dot product of two vectors
(producing a double result).
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C-1.10 Write an efficient C++ function that takes any integer value i and returns
2i, as a long value. Your function should not multiply 2 by itself i times;
there are much faster ways of computing 2i.

C-1.11 The greatest common divisor, or GCD, of two positive integers n and m is
the largest number j, such that n and m are both multiples of j. Euclid pro-
posed a simple algorithm for computing GCD(n,m), where n > m, which
is based on a concept known as the Chinese Remainder Theorem. The
main idea of the algorithm is to repeatedly perform modulo computations
of consecutive pairs of the sequence that starts (n,m, . . .), until reaching
zero. The last nonzero number in this sequence is the GCD of n and m.
For example, for n = 80,844 and m = 25,320, the sequence is as follows:

80,844 mod 25,320 = 4,884

25,320 mod 4,884 = 900

4,884 mod 900 = 384

900 mod 384 = 132

384 mod 132 = 120

132 mod 120 = 12

120 mod 12 = 0

So, GCD of 80,844 and 25,320 is 12. Write a short C++ function to
compute GCD(n,m) for two integers n and m.

Projects

P-1.1 A common punishment for school children is to write out the same sen-
tence multiple times. Write a C++ stand-alone program that will write
out the following sentence one hundred times: “I will always use object-
oriented design.” Your program should number each of the sentences and
it should “accidentally” make eight different random-looking typos at var-
ious points in the listing, so that it looks like a human typed it all by hand.

P-1.2 Write a C++ program that, when given a starting day (Sunday through
Saturday) as a string, and a four-digit year, prints a calendar for that year.
Each month should contain the name of the month, centered over the dates
for that month and a line containing the names of the days of the week,
running from Sunday to Saturday. Each week should be printed on a sep-
arate line. Be careful to check for a leap year.

P-1.3 The birthday paradox says that the probability that two people in a room
will have the same birthday is more than half as long as the number of
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people in the room (n), is more than 23. This property is not really a para-
dox, but many people find it surprising. Design a C++ program that can
test this paradox by a series of experiments on randomly generated birth-
days, which test this paradox for n = 5,10,15,20, . . . ,100. You should run
at least 10 experiments for each value of n and it should output, for each
n, the number of experiments for that n, such that two people in that test
have the same birthday.

Chapter Notes

For more detailed information about the C++ programming language and the Standard
Template Library, we refer the reader to books by Stroustrup [91], Lippmann and La-
joie [67], Musser and Saini [81], and Horstmann [47]. Lippmann also wrote a short in-
troduction to C++ [66]. For more advanced information of how to use C++’s features in
the most effective manner, consult the books by Meyers [77, 76]. For an introduction to
C++ assuming a background of C see the book by Pohl [84]. For an explanation of the
differences between C++ and Java see the book by Budd [17].
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