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11.1 Merge-Sort

In this section, we present a sorting technique, called merge-sort, which can be
described in a simple and compact way using recursion.

11.1.1 Divide-and-Conquer

Merge-sort is based on an algorithmic design pattern called divide-and-conquer.
The divide-and-conquer pattern consists of the following three steps:

1. Divide: If the input size is smaller than a certain threshold (say, one or two
elements), solve the problem directly using a straightforward method and
return the solution obtained. Otherwise, divide the input data into two or
more disjoint subsets.

2. Recur: Recursively solve the subproblems associated with the subsets.

3. Conquer: Take the solutions to the subproblems and “merge” them into a
solution to the original problem.

Using Divide-and-Conquer for Sorting

Recall that in a sorting problem we are given a sequence of n objects, stored in a
linked list or an array, together with some comparator defining a total order on these
objects, and we are asked to produce an ordered representation of these objects. To
allow for sorting of either representation, we describe our sorting algorithm at a
high level for sequences and explain the details needed to implement it for linked
lists and arrays. To sort a sequence S with n elements using the three divide-and-
conquer steps, the merge-sort algorithm proceeds as follows:

1. Divide: If S has zero or one element, return S immediately; it is already
sorted. Otherwise (S has at least two elements), remove all the elements
from S and put them into two sequences, S1 and S2, each containing about
half of the elements of S; that is, S1 contains the first ⌈n/2⌉ elements of S,
and S2 contains the remaining ⌊n/2⌋ elements.

2. Recur: Recursively sort sequences S1 and S2.

3. Conquer: Put back the elements into S by merging the sorted sequences S1

and S2 into a sorted sequence.

In reference to the divide step, we recall that the notation ⌈x⌉ indicates the ceiling
of x, that is, the smallest integer m, such that x ≤ m. Similarly, the notation ⌊x⌋
indicates the floor of x, that is, the largest integer k, such that k ≤ x.
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11.1. Merge-Sort 501

We can visualize an execution of the merge-sort algorithm by means of a binary
tree T , called the merge-sort tree. Each node of T represents a recursive invocation
(or call) of the merge-sort algorithm. We associate the sequence S that is processed
by the invocation associated with v, with each node v of T . The children of node v
are associated with the recursive calls that process the subsequences S1 and S2 of S.
The external nodes of T are associated with individual elements of S, corresponding
to instances of the algorithm that make no recursive calls.

Figure 11.1 summarizes an execution of the merge-sort algorithm by showing
the input and output sequences processed at each node of the merge-sort tree. The
step-by-step evolution of the merge-sort tree is shown in Figures 11.2 through 11.4.

This algorithm visualization in terms of the merge-sort tree helps us analyze
the running time of the merge-sort algorithm. In particular, since the size of the
input sequence roughly halves at each recursive call of merge-sort, the height of
the merge-sort tree is about logn (recall that the base of log is 2 if omitted).

(a)

(b)

Figure 11.1: Merge-sort tree T for an execution of the merge-sort algorithm on a
sequence with eight elements: (a) input sequences processed at each node of T ;
(b) output sequences generated at each node of T .
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(a) (b)

(c) (d)

(e) (f)

Figure 11.2: Visualization of an execution of merge-sort. Each node of the tree
represents a recursive call of merge-sort. The nodes drawn with dashed lines repre-
sent calls that have not been made yet. The node drawn with thick lines represents
the current call. The empty nodes drawn with thin lines represent completed calls.
The remaining nodes (drawn with thin lines and not empty) represent calls that are
waiting for a child invocation to return. (Continues in Figure 11.3.)
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11.1. Merge-Sort 503

(g) (h)

(i) (j)

(k) (l)

Figure 11.3: Visualization of an execution of merge-sort. (Continues in Fig-
ure 11.4.)
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(m) (n)

(o) (p)

Figure 11.4: Visualization of an execution of merge-sort. Several invocations are
omitted between (l) and (m) and between (m) and (n). Note the conquer step per-
formed in step (p). (Continued from Figure 11.3.)

Proposition 11.1: The merge-sort tree associated with an execution of merge-
sort on a sequence of size n has height ⌈log n⌉.

We leave the justification of Proposition 11.1 as a simple exercise (R-11.4). We
use this proposition to analyze the running time of the merge-sort algorithm.

Having given an overview of merge-sort and an illustration of how it works,
let us consider each of the steps of this divide-and-conquer algorithm in more de-
tail. The divide and recur steps of the merge-sort algorithm are simple; dividing a
sequence of size n involves separating it at the element with index ⌈n/2⌉, and the
recursive calls simply involve passing these smaller sequences as parameters. The
difficult step is the conquer step, which merges two sorted sequences into a single
sorted sequence. Thus, before we present our analysis of merge-sort, we need to
say more about how this is done.
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11.1.2 Merging Arrays and Lists

To merge two sorted sequences, it is helpful to know if they are implemented as
arrays or lists. We begin with the array implementation, which we show in Code
Fragment 11.1. We illustrate a step in the merge of two sorted arrays in Figure 11.5.

Algorithm merge(S1,S2,S):
Input: Sorted sequences S1 and S2 and an empty sequence S, all of which are

implemented as arrays
Output: Sorted sequence S containing the elements from S1 and S2

i← j← 0
while i < S1.size() and j < S2.size() do

if S1[i]≤ S2[ j] then
S.insertBack(S1[i]) {copy ith element of S1 to end of S}
i← i+ 1

else
S.insertBack(S2[ j]) {copy jth element of S2 to end of S}
j← j + 1

while i < S1.size() do {copy the remaining elements of S1 to S}
S.insertBack(S1[i])
i← i+ 1

while j < S2.size() do {copy the remaining elements of S2 to S}
S.insertBack(S2[ j])
j← j + 1

Code Fragment 11.1: Algorithm for merging two sorted array-based sequences.

(a) (b)

Figure 11.5: A step in the merge of two sorted arrays: (a) before the copy step; (b)
after the copy step.
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Merging Two Sorted Lists

In Code Fragment 11.2, we give a list-based version of algorithm merge, for merg-
ing two sorted sequences, S1 and S2, implemented as linked lists. The main idea is
to iteratively remove the smallest element from the front of one of the two lists and
add it to the end of the output sequence, S, until one of the two input lists is empty,
at which point we copy the remainder of the other list to S. We show an example
execution of this version of algorithm merge in Figure 11.6.

Algorithm merge(S1,S2,S):
Input: Sorted sequences S1 and S2 and an empty sequence S, implemented as

linked lists
Output: Sorted sequence S containing the elements from S1 and S2

while S1 is not empty and S2 is not empty do
if S1.front().element()≤ S2.front().element() then
{move the first element of S1 at the end of S}
S.insertBack(S1.eraseFront())

else
{move the first element of S2 at the end of S}
S.insertBack(S2.eraseFront())

{move the remaining elements of S1 to S}
while S1 is not empty do

S.insertBack(S1.eraseFront())
{move the remaining elements of S2 to S}
while S2 is not empty do

S.insertBack(S2.eraseFront())

Code Fragment 11.2: Algorithm merge for merging two sorted sequences imple-
mented as linked lists.

The Running Time for Merging

We analyze the running time of the merge algorithm by making some simple ob-
servations. Let n1 and n2 be the number of elements of S1 and S2, respectively.
Algorithm merge has three while loops. Independent of whether we are analyzing
the array-based version or the list-based version, the operations performed inside
each loop take O(1) time each. The key observation is that during each iteration
of one of the loops, one element is copied or moved from either S1 or S2 into S
(and that element is no longer considered). Since no insertions are performed into
S1 or S2, this observation implies that the overall number of iterations of the three
loops is n1 + n2. Thus, the running time of algorithm merge is O(n1 + n2).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i)

Figure 11.6: An execution of the algorithm merge shown in Code Fragment 11.2.
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11.1.3 The Running Time of Merge-Sort

Now that we have given the details of the merge-sort algorithm in both its array-
based and list-based versions, and we have analyzed the running time of the crucial
merge algorithm used in the conquer step, let us analyze the running time of the
entire merge-sort algorithm, assuming it is given an input sequence of n elements.
For simplicity, we restrict our attention to the case where n is a power of 2. We
leave it as an exercise (Exercise R-11.7) to show that the result of our analysis also
holds when n is not a power of 2.

As we did in the analysis of the merge algorithm, we assume that the input
sequence S and the auxiliary sequences S1 and S2, created by each recursive call of
merge-sort, are implemented by either arrays or linked lists (the same as S), so that
merging two sorted sequences can be done in linear time.

As we mentioned earlier, we analyze the merge-sort algorithm by referring to
the merge-sort tree T . (Recall Figures 11.2 through 11.4.) We call the time spent
at a node v of T the running time of the recursive call associated with v, excluding
the time taken waiting for the recursive calls associated with the children of v to
terminate. In other words, the time spent at node v includes the running times of the
divide and conquer steps, but excludes the running time of the recur step. We have
already observed that the details of the divide step are straightforward; this step
runs in time proportional to the size of the sequence for v. In addition, as discussed
above, the conquer step, which consists of merging two sorted subsequences, also
takes linear time, independent of whether we are dealing with arrays or linked lists.
That is, letting i denote the depth of node v, the time spent at node v is O(n/2i),
since the size of the sequence handled by the recursive call associated with v is
equal to n/2i.

Looking at the tree T more globally, as shown in Figure 11.7, we see that, given
our definition of “time spent at a node,” the running time of merge-sort is equal to
the sum of the times spent at the nodes of T . Observe that T has exactly 2i nodes at
depth i. This simple observation has an important consequence, for it implies that
the overall time spent at all the nodes of T at depth i is O(2i ·n/2i), which is O(n).
By Proposition 11.1, the height of T is ⌈logn⌉. Thus, since the time spent at each
of the ⌈log n⌉+ 1 levels of T is O(n), we have the following result.

Proposition 11.2: Algorithm merge-sort sorts a sequence S of size n in O(n logn)
time, assuming two elements of S can be compared in O(1) time.

In other words, the merge-sort algorithm asymptotically matches the fast run-
ning time of the heap-sort algorithm.
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Figure 11.7: A visual time analysis of the merge-sort tree T . Each node is shown
labeled with the size of its subproblem.

11.1.4 C++ Implementations of Merge-Sort

In this subsection, we present two complete C++ implementations of the merge-
sort algorithm, one for lists and one for vectors. In both cases a comparator object
(see Section 8.1.2) is used to decide the relative order of the elements. Recall that a
comparator is a class that implements the less-than operator by overloading the “()”
operator. For example, given a comparator object less, the relational test x < y can
be implemented with less(x,y), and the test x≤ y can be implemented as !less(y,x).

First, in Code Fragment 11.3, we present a C++ implementation of a list-based
merge-sort algorithm as the recursive function mergeSort. We represent each se-
quence as an STL list (Section 6.2.4). The merge process is loosely based on the
algorithm presented in Code Fragment 11.2. The main function mergeSort parti-
tions the input list S into two auxiliary lists, S1 and S2, of roughly equal sizes. They
are each sorted recursively, and the results are then combined by invoking the func-
tion merge. The function merge repeatedly moves the smaller element of the two
lists S1 and S2 into the output list S.

Functions from our list ADT, such as front and insertBack, have been replaced
by their STL equivalents, such as begin and push back, respectively. Access to
elements of the list is provided by list iterators. Given an iterator p, recall that *p
accesses the current element, and *p++ accesses the current element and incre-
ments the iterator to the next element of the list.
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Each list is modified by insertions and deletions only at the head and tail; hence,
each list update takes O(1) time, assuming any list implementation based on doubly
linked lists (see Table 6.2). For a list S of size n, function mergeSort(S,c) runs in
time O(n log n).

template <typename E, typename C> // merge-sort S
void mergeSort(list<E>& S, const C& less) {

typedef typename list<E>::iterator Itor; // sequence of elements
int n = S.size();
if (n <= 1) return; // already sorted
list<E> S1, S2;
Itor p = S.begin();
for (int i = 0; i < n/2; i++) S1.push back(*p++); // copy first half to S1
for (int i = n/2; i < n; i++) S2.push back(*p++); // copy second half to S2
S.clear(); // clear S’s contents
mergeSort(S1, less); // recur on first half
mergeSort(S2, less); // recur on second half
merge(S1, S2, S, less); // merge S1 and S2 into S
}

template <typename E, typename C> // merge utility
void merge(list<E>& S1, list<E>& S2, list<E>& S, const C& less) {

typedef typename list<E>::iterator Itor; // sequence of elements
Itor p1 = S1.begin();
Itor p2 = S2.begin();
while(p1 != S1.end() && p2 != S2.end()) { // until either is empty

if(less(*p1, *p2)) // append smaller to S
S.push back(*p1++);

else
S.push back(*p2++);

}
while(p1 != S1.end()) // copy rest of S1 to S

S.push back(*p1++);
while(p2 != S2.end()) // copy rest of S2 to S

S.push back(*p2++);
}

Code Fragment 11.3: Functions mergeSort and merge implementing a list-based
merge-sort algorithm.

Next, in Code Fragment 11.4, we present a nonrecursive vector-based version
of merge-sort, which also runs in O(n log n) time. It is a bit faster than recursive
list-based merge-sort in practice, as it avoids the extra overheads of recursive calls
and node creation. The main idea is to perform merge-sort bottom-up, performing
the merges level-by-level going up the merge-sort tree. The input is an STL vector
S.

We begin by merging every odd-even pair of elements into sorted runs of length
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two. In order to keep from overwriting the vector elements, we copy elements
from an input vector in to an output vector out. For example, we merge in[0] and
in[1] into the subvector out[0..1], then we merge in[2] and in[3] into the subvector
out[2..3], and so on.

We then swap the rolls of in and out, and we merge these runs of length two into
runs of length four. For example we merge in[0..1] with in[2..3] into the subvector
out[0..3], then we merge in[4..5] with in[6..7] into the subvector out[4..7]. We then
merge consecutive runs of length four into new runs of length eight, and so on, until
the array is sorted.

The variable b stores the start of the runs and m stores their length. The vari-
ables i, j, and k store the current indices in the various subvectors. When swapping
vectors, we do not copy their entire contents. Instead, we maintain pointers to the
two arrays and swap these pointers at the end of each round of subvector merges.

11.1.5 Merge-Sort and Recurrence Equations ⋆
There is another way to justify that the running time of the merge-sort algorithm is
O(n log n) (Proposition 11.2). Namely, we can deal more directly with the recursive
nature of the merge-sort algorithm. In this section, we present such an analysis of
the running time of merge-sort, and in so doing introduce the mathematical concept
of a recurrence equation (also known as recurrence relation).

Let the function t(n) denote the worst-case running time of merge-sort on an
input sequence of size n. Since merge-sort is recursive, we can characterize func-
tion t(n) by means of an equation where the function t(n) is recursively expressed
in terms of itself. In order to simplify our characterization of t(n), let us focus our
attention on the case where n is a power of 2. We leave the problem of showing
that our asymptotic characterization still holds in the general case as an exercise
(Exercise R-11.7). In this case, we can specify the definition of t(n) as

t(n) =

{
b if n≤ 1
2t(n/2)+ cn otherwise.

An expression such as the one above is called a recurrence equation, since the
function appears on both the left- and right-hand sides of the equal sign. Although
such a characterization is correct and accurate, what we really want is a big-Oh
type of characterization of t(n) that does not involve the function t(n) itself. That
is, we want a closed-form characterization of t(n).

We can obtain a closed-form solution by applying the definition of a recurrence
equation, assuming n is relatively large. For example, after one more application
of the equation above, we can write a new recurrence for t(n) as

t(n) = 2(2t(n/22)+ (cn/2))+ cn

= 22t(n/22)+ 2(cn/2)+ cn = 22t(n/22)+ 2cn.
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template <typename E, typename C> // merge-sort S
void mergeSort(vector<E>& S, const C& less) {

typedef vector<E> vect;
int n = S.size();
vect v1(S); vect* in = &v1; // initial input vector
vect v2(n); vect* out = &v2; // initial output vector
for (int m = 1; m < n; m *= 2) { // list sizes doubling

for (int b = 0; b < n; b += 2*m) { // beginning of list
merge(*in, *out, less, b, m); // merge sublists
}
std::swap(in, out); // swap input with output
}
S = *in; // copy sorted array to S
}

// merge in[b. .b+m-1] and in[b+m. .b+2*m-1]
template <typename E, typename C>
void merge(vector<E>& in, vector<E>& out, const C& less, int b, int m) {

int i = b; // index into run #1
int j = b + m; // index into run #2
int n = in.size();
int e1 = std::min(b + m, n); // end of run #1
int e2 = std::min(b + 2*m, n); // end of run #2
int k = b;
while ((i < e1) && (j < e2)) {

if(!less(in[j], in[i])) // append smaller to S
out[k++] = in[i++];

else
out[k++] = in[j++];

}
while (i < e1) // copy rest of run 1 to S

out[k++] = in[i++];
while (j < e2) // copy rest of run 2 to S

out[k++] = in[j++];
}

Code Fragment 11.4: Functions mergeSort and merge implementing a vector-based
merge-sort algorithm. We employ the STL functions swap, which swaps two val-
ues, and min, which returns the minimum of two values. Note that the call to swap
swaps only the pointers to the arrays and, hence, runs in O(1) time.
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If we apply the equation again, we get t(n) = 23t(n/23)+ 3cn. At this point, we
should see a pattern emerging, so that after applying this equation i times we get

t(n) = 2it(n/2i)+ icn.

The issue that remains, then, is to determine when to stop this process. To see when
to stop, recall that we switch to the closed form t(n) = b when n≤ 1, which occurs
when 2i = n. In other words, this occurs when i = logn. Making this substitution,
then, yields

t(n) = 2log nt(n/2log n)+ (logn)cn

= nt(1)+ cn log n

= nb+ cn log n.

That is, we get an alternative justification of the fact that t(n) is O(n log n).

11.2 Quick-Sort

The next sorting algorithm we discuss is called quick-sort. Like merge-sort, this
algorithm is also based on the divide-and-conquer paradigm, but it uses this tech-
nique in a somewhat opposite manner, as all the hard work is done before the
recursive calls.

High-Level Description of Quick-Sort

The quick-sort algorithm sorts a sequence S using a simple recursive approach.
The main idea is to apply the divide-and-conquer technique, whereby we divide
S into subsequences, recur to sort each subsequence, and then combine the sorted
subsequences by a simple concatenation. In particular, the quick-sort algorithm
consists of the following three steps (see Figure 11.8):

1. Divide: If S has at least two elements (nothing needs to be done if S has
zero or one element), select a specific element x from S, which is called the
pivot. As is common practice, choose the pivot x to be the last element in S.
Remove all the elements from S and put them into three sequences:
• L, storing the elements in S less than x
• E , storing the elements in S equal to x
• G, storing the elements in S greater than x.

Of course, if the elements of S are all distinct, then E holds just one element—
the pivot itself.

2. Recur: Recursively sort sequences L and G.
3. Conquer: Put back the elements into S in order by first inserting the elements

of L, then those of E , and finally those of G.
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E
 (= 
x
)


L
 (< 
x
)
 G
 (> 
x
)


2. Recur.


3. Concatenate.


1. Split using pivot 
x
.


2. Recur.


Figure 11.8: A visual schematic of the quick-sort algorithm.

Like merge-sort, the execution of quick-sort can be visualized by means of a bi-
nary recursion tree, called the quick-sort tree. Figure 11.9 summarizes an execution
of the quick-sort algorithm by showing the input and output sequences processed at
each node of the quick-sort tree. The step-by-step evolution of the quick-sort tree
is shown in Figures 11.10, 11.11, and 11.12.

Unlike merge-sort, however, the height of the quick-sort tree associated with
an execution of quick-sort is linear in the worst case. This happens, for example,
if the sequence consists of n distinct elements and is already sorted. Indeed, in this
case, the standard choice of the pivot as the largest element yields a subsequence
L of size n−1, while subsequence E has size 1 and subsequence G has size 0. At
each invocation of quick-sort on subsequence L, the size decreases by 1. Hence,
the height of the quick-sort tree is n−1.

Performing Quick-Sort on Arrays and Lists

In Code Fragment 11.5, we give a pseudo-code description of the quick-sort algo-
rithm that is efficient for sequences implemented as arrays or linked lists. The algo-
rithm follows the template for quick-sort given above, adding the detail of scanning
the input sequence S backwards to divide it into the lists L, E , and G of elements
that are respectively less than, equal to, and greater than the pivot. We perform this
scan backwards, since removing the last element in a sequence is a constant-time
operation independent of whether the sequence is implemented as an array or a
linked list. We then recur on the L and G lists, and copy the sorted lists L, E , and
G back to S. We perform this latter set of copies in the forward direction, since in-
serting elements at the end of a sequence is a constant-time operation independent
of whether the sequence is implemented as an array or a linked list.
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(a)

(b)

Figure 11.9: Quick-sort tree T for an execution of the quick-sort algorithm on a
sequence with eight elements: (a) input sequences processed at each node of T ;
(b) output sequences generated at each node of T . The pivot used at each level of
the recursion is shown in bold.
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(a) (b)

(c) (d)

(e) (f)
Figure 11.10: Visualization of quick-sort. Each node of the tree represents a re-
cursive call. The nodes drawn with dashed lines represent calls that have not been
made yet. The node drawn with thick lines represents the running invocation. The
empty nodes drawn with thin lines represent terminated calls. The remaining nodes
represent suspended calls (that is, active invocations that are waiting for a child in-
vocation to return). Note the divide steps performed in (b), (d), and (f). (Continues
in Figure 11.11.)
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(g) (h)

(i) (j)

(k) (l)

Figure 11.11: Visualization of an execution of quick-sort. Note the conquer step
performed in (k). (Continues in Figure 11.12.)
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(m) (n)

(o) (p)

(q) (r)

Figure 11.12: Visualization of an execution of quick-sort. Several invocations be-
tween (p) and (q) have been omitted. Note the conquer steps performed in (o)
and (r). (Continued from Figure 11.11.)
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Algorithm QuickSort(S):
Input: A sequence S implemented as an array or linked list
Output: The sequence S in sorted order

if S.size()≤ 1 then
return {S is already sorted in this case}

p← S.back().element() {the pivot}
Let L, E , and G be empty list-based sequences
while !S.empty() do {scan S backwards, dividing it into L, E , and G}

if S.back().element() < p then
L.insertBack(S.eraseBack())

else if S.back().element() = p then
E.insertBack(S.eraseBack())

else {the last element in S is greater than p}
G.insertBack(S.eraseBack())

QuickSort(L) {Recur on the elements less than p}
QuickSort(G) {Recur on the elements greater than p}
while !L.empty() do {copy back to S the sorted elements less than p}

S.insertBack(L.eraseFront())
while !E.empty() do {copy back to S the elements equal to p}

S.insertBack(E.eraseFront())
while !G.empty() do {copy back to S the sorted elements greater than p}

S.insertBack(G.eraseFront())
return {S is now in sorted order}

Code Fragment 11.5: Quick-sort for an input sequence S implemented with a linked
list or an array.
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Running Time of Quick-Sort

We can analyze the running time of quick-sort with the same technique used for
merge-sort in Section 11.1.3. Namely, we can identify the time spent at each node
of the quick-sort tree T and sum up the running times for all the nodes.

Examining Code Fragment 11.5, we see that the divide step and the conquer
step of quick-sort can be implemented in linear time. Thus, the time spent at a node
v of T is proportional to the input size s(v) of v, defined as the size of the sequence
handled by the invocation of quick-sort associated with node v. Since subsequence
E has at least one element (the pivot), the sum of the input sizes of the children of
v is at most s(v)−1.

Given a quick-sort tree T , let si denote the sum of the input sizes of the nodes
at depth i in T . Clearly, s0 = n, since the root r of T is associated with the entire
sequence. Also, s1 ≤ n− 1, since the pivot is not propagated to the children of r.
Consider next s2. If both children of r have nonzero input size, then s2 = n− 3.
Otherwise (one child of the root has zero size, the other has size n−1), s2 = n−2.
Thus, s2 ≤ n− 2. Continuing this line of reasoning, we obtain that si ≤ n− i.
As observed in Section 11.2, the height of T is n− 1 in the worst case. Thus, the
worst-case running time of quick-sort is O

(
∑n−1

i=0 si
)
, which is O

(
∑n−1

i=0 (n− i)
)
, that

is, O(∑n
i=1 i) . By Proposition 4.3, ∑n

i=1 i is O(n2). Thus, quick-sort runs in O(n2)
worst-case time.

Given its name, we would expect quick-sort to run quickly. However, the
quadratic bound above indicates that quick-sort is slow in the worst case. Paradox-
ically, this worst-case behavior occurs for problem instances when sorting should
be easy—if the sequence is already sorted.

Going back to our analysis, note that the best case for quick-sort on a sequence
of distinct elements occurs when subsequences L and G happen to have roughly the
same size. That is, in the best case, we have

s0 = n
s1 = n−1
s2 = n− (1+ 2) = n−3

...
si = n− (1+ 2+ 22 + · · ·+ 2i−1) = n− (2i−1).

Thus, in the best case, T has height O(logn) and quick-sort runs in O(n log n) time.
We leave the justification of this fact as an exercise (Exercise R-11.12).

The informal intuition behind the expected behavior of quick-sort is that at each
invocation the pivot will probably divide the input sequence about equally. Thus,
we expect the average running time quick-sort to be similar to the best-case running
time, that is, O(n log n). In the next section, we see that introducing randomization
makes quick-sort behave exactly in this way.



i

i

“main” — 2011/1/13 — 9:10 — page 521 — #543
i

i

i

i

i

i

11.2. Quick-Sort 521

11.2.1 Randomized Quick-Sort

One common method for analyzing quick-sort is to assume that the pivot always
divides the sequence almost equally. We feel such an assumption would presuppose
knowledge about the input distribution that is typically not available, however. For
example, we would have to assume that we will rarely be given “almost” sorted
sequences to sort, which are actually common in many applications. Fortunately,
this assumption is not needed in order for us to match our intuition to quick-sort’s
behavior.

In general, we desire some way of getting close to the best-case running time
for quick-sort. The way to get close to the best-case running time, of course, is for
the pivot to divide the input sequence S almost equally. If this outcome were to
occur, then it would result in a running time that is asymptotically the same as the
best-case running time. That is, having pivots close to the “middle” of the set of
elements leads to an O(n log n) running time for quick-sort.

Picking Pivots at Random

Since the goal of the partition step of the quick-sort method is to divide the se-
quence S almost equally, let us introduce randomization into the algorithm and
pick a random element of the input sequence as the pivot. That is, instead of pick-
ing the pivot as the last element of S, we pick an element of S at random as the
pivot, keeping the rest of the algorithm unchanged. This variation of quick-sort is
called randomized quick-sort. The following proposition shows that the expected
running time of randomized quick-sort on a sequence with n elements is O(n log n).
This expectation is taken over all the possible random choices the algorithm makes,
and is independent of any assumptions about the distribution of the possible input
sequences the algorithm is likely to be given.

Proposition 11.3: The expected running time of randomized quick-sort on a se-
quence S of size n is O(n log n).

Justification: We assume two elements of S can be compared in O(1) time.
Consider a single recursive call of randomized quick-sort, and let n denote the size
of the input for this call. Say that this call is “good” if the pivot chosen is such that
subsequences L and G have size at least n/4 and at most 3n/4 each; otherwise, a
call is “bad.”

Now, consider the implications of our choosing a pivot uniformly at random.
Note that there are n/2 possible good choices for the pivot for any given call of
size n of the randomized quick-sort algorithm. Thus, the probability that any call is
good is 1/2. Note further that a good call will at least partition a list of size n into
two lists of size 3n/4 and n/4, and a bad call could be as bad as producing a single
call of size n−1.
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Now consider a recursion trace for randomized quick-sort. This trace defines a
binary tree, T , such that each node in T corresponds to a different recursive call on
a subproblem of sorting a portion of the original list.

Say that a node v in T is in size group i if the size of v’s subproblem is greater
than (3/4)i+1n and at most (3/4)in. Let us analyze the expected time spent working
on all the subproblems for nodes in size group i. By the linearity of expectation
(Proposition A.19), the expected time for working on all these subproblems is the
sum of the expected times for each one. Some of these nodes correspond to good
calls and some correspond to bad calls. But note that, since a good call occurs with
probability 1/2, the expected number of consecutive calls we have to make before
getting a good call is 2. Moreover, notice that as soon as we have a good call for
a node in size group i, its children will be in size groups higher than i. Thus, for
any element x from the input list, the expected number of nodes in size group i
containing x in their subproblems is 2. In other words, the expected total size of all
the subproblems in size group i is 2n. Since the nonrecursive work we perform for
any subproblem is proportional to its size, this implies that the total expected time
spent processing subproblems for nodes in size group i is O(n).

The number of size groups is log4/3 n, since repeatedly multiplying by 3/4 is
the same as repeatedly dividing by 4/3. That is, the number of size groups is
O(logn). Therefore, the total expected running time of randomized quick-sort is
O(n log n). (See Figure 11.13.)

Figure 11.13: A visual time analysis of the quick-sort tree T . Each node is shown
labeled with the size of its subproblem.

Actually, we can show that the running time of randomized quick-sort is O(n log n)
with high probability.
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11.2.2 C++ Implementations and Optimizations

Recall from Section 8.3.5 that a sorting algorithm is in-place if it uses only a small
amount of memory in addition to that needed for the objects being sorted them-
selves. The merge-sort algorithm, as described above, does not use this optimiza-
tion technique, and making it be in-place seems to be quite difficult. In-place sort-
ing is not inherently difficult, however. For, as with heap-sort, quick-sort can be
adapted to be in-place, and this is the version of quick-sort that is used in most
deployed implementations.

Performing the quick-sort algorithm in-place requires a bit of ingenuity, how-
ever, for we must use the input sequence itself to store the subsequences for all
the recursive calls. We show algorithm inPlaceQuickSort, which performs in-place
quick-sort, in Code Fragment 11.6. Algorithm inPlaceQuickSort assumes that the
input sequence, S, is given as an array of distinct elements. The reason for this
restriction is explored in Exercise R-11.15. The extension to the general case is
discussed in Exercise C-11.9.

Algorithm inPlaceQuickSort(S,a,b):
Input: An array S of distinct elements; integers a and b
Output: Array S with elements originally from indices from a to b, inclusive,

sorted in nondecreasing order from indices a to b

if a≥ b then return {at most one element in subrange}
p← S[b] {the pivot}
l← a {will scan rightward}
r← b−1 {will scan leftward}
while l ≤ r do
{find an element larger than the pivot}
while l ≤ r and S[l]≤ p do

l← l + 1
{find an element smaller than the pivot}
while r ≥ l and S[r]≥ p do

r← r−1
if l < r then

swap the elements at S[l] and S[r]
{put the pivot into its final place}
swap the elements at S[l] and S[b]
{recursive calls}
inPlaceQuickSort(S,a, l−1)
inPlaceQuickSort(S, l + 1,b)
{we are done at this point, since the sorted subarrays are already consecutive}

Code Fragment 11.6: In-place quick-sort for an input array S.
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In-place quick-sort modifies the input sequence using element swapping and
does not explicitly create subsequences. Indeed, a subsequence of the input se-
quence is implicitly represented by a range of positions specified by a left-most
index l and a right-most index r. The divide step is performed by scanning the
array simultaneously from l forward and from r backward, swapping pairs of ele-
ments that are in reverse order as shown in Figure 11.14. When these two indices
“meet,” subvectors L and G are on opposite sides of the meeting point. The algo-
rithm completes by recurring on these two subvectors.

In-place quick-sort reduces the running time caused by the creation of new
sequences and the movement of elements between them by a constant factor. It is
so efficient that the STL’s sorting algorithm is based in part on quick-sort.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 11.14: Divide step of in-place quick-sort. Index l scans the sequence from
left to right, and index r scans the sequence from right to left. A swap is performed
when l is at an element larger than the pivot and r is at an element smaller than the
pivot. A final swap with the pivot completes the divide step.
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We show a C++ version of in-place quick-sort in Code Fragment 11.7. The
input to the sorting procedure is an STL vector of elements and a comparator object,
which provides the less-than function. Our implementation is a straightforward
adaptation of Code Fragment 11.6. The main procedure, quickSort, invokes the
recursive procedure quickSortStep to do most of the work.

template <typename E, typename C> // quick-sort S
void quickSort(std::vector<E>& S, const C& less) {

if (S.size() <= 1) return; // already sorted
quickSortStep(S, 0, S.size()−1, less); // call sort utility
}
template <typename E, typename C>
void quickSortStep(std::vector<E>& S, int a, int b, const C& less) {

if (a >= b) return; // 0 or 1 left? done
E pivot = S[b]; // select last as pivot
int l = a; // left edge
int r = b − 1; // right edge
while (l <= r) {

while (l <= r && !less(pivot, S[l])) l++; // scan right till larger
while (r >= l && !less(S[r], pivot)) r−−; // scan left till smaller
if (l < r) // both elements found

std::swap(S[l], S[r]);
} // until indices cross
std::swap(S[l], S[b]); // store pivot at l
quickSortStep(S, a, l−1, less); // recur on both sides
quickSortStep(S, l+1, b, less);
}

Code Fragment 11.7: A coding of in-place quick-sort, assuming distinct elements.

The function quickSortStep is given indices a and b, which indicate the bounds
of the subvector to be sorted. The pivot element is chosen to be the last element
of the vector. The indices l and r mark the left and right ends of the subvectors
being processed in the partitioning function. They are initialized to a and b− 1,
respectively. During each round, elements that are on the wrong side of the pivot
are swapped with each other, until these markers bump into each other.

Much of the efficiency of quick-sort depends on how the pivot is chosen. As
we have seen, quick-sort is most efficient if the pivot is near the middle of the
subvector being sorted. Our choice of setting the pivot to the last element of the
subvector relies on the assumption that the last element is reflective of the median
key valye. A better choice, if the subvector is moderately sized, is to select the
pivot as the median of three values, taken respectively from the front, middle, and
tail of the array. This is referred to as the median-of-three heuristic. It tends to
perform well in practice, and is faster than selecting a random pivot through the use
of a random-number generator.
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11.3 Studying Sorting through an Algorithmic Lens

Recapping our discussions on sorting to this point, we have described several meth-
ods with either a worst-case or expected running time of O(n logn) on an input se-
quence of size n. These methods include merge-sort and quick-sort, described in
this chapter, as well as heap-sort (Section 8.3.5). In this section, we study sorting
as an algorithmic problem, addressing general issues about sorting algorithms.

11.3.1 A Lower Bound for Sorting

A natural first question to ask is whether we can sort any faster than O(n logn)
time. Interestingly, if the computational primitive used by a sorting algorithm is the
comparison of two elements, then this is, in fact, the best we can do—comparison-
based sorting has an Ω(n log n) worst-case lower bound on its running time. (Recall
the notation Ω(·) from Section 4.2.3.) To focus on the main cost of comparison-
based sorting, let us only count comparisons, for the sake of a lower bound.

Suppose we are given a sequence S = (x0,x1, . . . ,xn−1) that we wish to sort, and
assume that all the elements of S are distinct (this is not really a restriction since
we are deriving a lower bound). We do not care if S is implemented as an array or a
linked list, for the sake of our lower bound, since we are only counting comparisons.
Each time a sorting algorithm compares two elements xi and x j, that is, it asks,
“is xi < x j?”, there are two outcomes: “yes” or “no.” Based on the result of this
comparison, the sorting algorithm may perform some internal calculations (which
we are not counting here) and eventually performs another comparison between two
other elements of S, which again has two outcomes. Therefore, we can represent
a comparison-based sorting algorithm with a decision tree T (recall Example 7.8).
That is, each internal node v in T corresponds to a comparison and the edges from
node v′ to its children correspond to the computations resulting from either a “yes”
or “no” answer. It is important to note that the hypothetical sorting algorithm in
question probably has no explicit knowledge of the tree T . T simply represents
all the possible sequences of comparisons that a sorting algorithm might make,
starting from the first comparison (associated with the root) and ending with the
last comparison (associated with the parent of an external node).

Each possible initial ordering, or permutation, of the elements in S causes our
hypothetical sorting algorithm to execute a series of comparisons, traversing a path
in T from the root to some external node. Let us associate with each external
node v in T , then, the set of permutations of S that cause our sorting algorithm to
end up in v. The most important observation in our lower-bound argument is that
each external node v in T can represent the sequence of comparisons for at most
one permutation of S. The justification for this claim is simple: if two different
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permutations P1 and P2 of S are associated with the same external node, then there
are at least two objects xi and x j, such that xi is before x j in P1 but xi is after x j

in P2. At the same time, the output associated with v must be a specific reordering
of S, with either xi or x j appearing before the other. But if P1 and P2 both cause the
sorting algorithm to output the elements of S in this order, then that implies there is
a way to trick the algorithm into outputting xi and x j in the wrong order. Since this
cannot be allowed by a correct sorting algorithm, each external node of T must be
associated with exactly one permutation of S. We use this property of the decision
tree associated with a sorting algorithm to prove the following result.

Proposition 11.4: The running time of any comparison-based algorithm for sort-
ing an n-element sequence is Ω(n log n) in the worst case.

Justification: The running time of a comparison-based sorting algorithm must
be greater than or equal to the height of the decision tree T associated with this
algorithm, as described above. (See Figure 11.15.) By the argument above, each
external node in T must be associated with one permutation of S. Moreover, each
permutation of S must result in a different external node of T . The number of
permutations of n objects is n! = n(n−1)(n−2) · · · 2 ·1. Thus, T must have at least
n! external nodes. By Proposition 7.10, the height of T is at least log(n!). This
immediately justifies the proposition, because there are at least n/2 terms that are
greater than or equal to n/2 in the product n!; hence

log(n!) ≥ log
(n

2

) n
2
=

n
2

log
n
2
,

which is Ω(n log n).

Figure 11.15: Visualizing the lower bound for comparison-based sorting.
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11.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort

In the previous section, we showed that Ω(n log n) time is necessary, in the worst
case, to sort an n-element sequence with a comparison-based sorting algorithm. A
natural question to ask, then, is whether there are other kinds of sorting algorithms
that can be designed to run asymptotically faster than O(n log n) time. Interest-
ingly, such algorithms exist, but they require special assumptions about the input
sequence to be sorted. Even so, such scenarios often arise in practice, so discussing
them is worthwhile. In this section, we consider the problem of sorting a sequence
of entries, each a key-value pair, where the keys have a restricted type.

Bucket-Sort

Consider a sequence S of n entries whose keys are integers in the range [0,N−1],
for some integer N ≥ 2, and suppose that S should be sorted according to the keys
of the entries. In this case, it is possible to sort S in O(n+ N) time. It might seem
surprising, but this implies, for example, that if N is O(n), then we can sort S in
O(n) time. Of course, the crucial point is that, because of the restrictive assumption
about the format of the elements, we can avoid using comparisons.

The main idea is to use an algorithm called bucket-sort, which is not based on
comparisons, but on using keys as indices into a bucket array B that has cells in-
dexed from 0 to N− 1. An entry with key k is placed in the “bucket” B[k], which
itself is a sequence (of entries with key k). After inserting each entry of the input
sequence S into its bucket, we can put the entries back into S in sorted order by enu-
merating the contents of the buckets B[0],B[1], . . . ,B[N− 1] in order. We describe
the bucket-sort algorithm in Code Fragment 11.8.

Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the range [0,N−1]
Output: Sequence S sorted in nondecreasing order of the keys

let B be an array of N sequences, each of which is initially empty
for each entry e in S do

k← e.key()
remove e from S and insert it at the end bucket (sequence) B[k]

for i← 0 to N−1 do
for each entry e in sequence B[i] do

remove e from B[i] and insert it at the end of S

Code Fragment 11.8: Bucket-sort.
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It is easy to see that bucket-sort runs in O(n + N) time and uses O(n + N)
space. Hence, bucket-sort is efficient when the range N of values for the keys is
small compared to the sequence size n, say N = O(n) or N = O(n logn). Still, its
performance deteriorates as N grows compared to n.

An important property of the bucket-sort algorithm is that it works correctly
even if there are many different elements with the same key. Indeed, we described
it in a way that anticipates such occurrences.

Stable Sorting

When sorting key-value pairs, an important issue is how equal keys are handled. Let
S = ((k0,x0), . . . ,(kn−1,xn−1)) be a sequence of such entries. We say that a sorting
algorithm is stable if, for any two entries (ki,xi) and (k j,x j) of S, such that ki = k j

and (ki,xi) precedes (k j,x j) in S before sorting (that is, i < j), entry (ki,xi) also
precedes entry (k j,x j) after sorting. Stability is important for a sorting algorithm
because applications may want to preserve the initial ordering of elements with the
same key.

Our informal description of bucket-sort in Code Fragment 11.8 does not guar-
antee stability. This is not inherent in the bucket-sort method itself, however, for we
can easily modify our description to make bucket-sort stable, while still preserving
its O(n + N) running time. Indeed, we can obtain a stable bucket-sort algorithm
by always removing the first element from sequence S and from the sequences B[i]
during the execution of the algorithm.

Radix-Sort

One of the reasons that stable sorting is so important is that it allows the bucket-sort
approach to be applied to more general contexts than to sort integers. Suppose, for
example, that we want to sort entries with keys that are pairs (k, l), where k and
l are integers in the range [0,N − 1], for some integer N ≥ 2. In a context such
as this, it is natural to define an ordering on these keys using the lexicographical
(dictionary) convention, where (k1, l1) < (k2, l2) if k1 < k2 or if k1 = k2 and l1 <
l2 (Section 8.1.2). This is a pair-wise version of the lexicographic comparison
function, usually applied to equal-length character strings (and it easily generalizes
to tuples of d numbers for d > 2).

The radix-sort algorithm sorts a sequence S of entries with keys that are pairs,
by applying a stable bucket-sort on the sequence twice; first using one component
of the pair as the ordering key and then using the second component. But which
order is correct? Should we first sort on the k’s (the first component) and then on
the l’s (the second component), or should it be the other way around?
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Before we answer this question, we consider the following example.

Example 11.5: Consider the following sequence S (we show only the keys):

S = ((3,3),(1,5),(2,5), (1,2), (2,3), (1,7), (3,2),(2,2)).

If we sort S stably on the first component, then we get the sequence

S1 = ((1,5),(1,2),(1,7),(2,5),(2,3),(2,2),(3,3),(3,2)).

If we then stably sort this sequence S1 using the second component, then we get the
sequence

S1,2 = ((1,2),(2,2),(3,2),(2,3),(3,3),(1,5),(2,5),(1,7)),

which is not exactly a sorted sequence. On the other hand, if we first stably sort S
using the second component, then we get the sequence

S2 = ((1,2),(3,2),(2,2),(3,3),(2,3),(1,5),(2,5),(1,7)).

If we then stably sort sequence S2 using the first component, then we get the se-
quence

S2,1 = ((1,2),(1,5),(1,7),(2,2),(2,3),(2,5),(3,2),(3,3)),

which is indeed sequence S lexicographically ordered.

So, from this example, we are led to believe that we should first sort using
the second component and then again using the first component. This intuition is
exactly right. By first stably sorting by the second component and then again by
the first component, we guarantee that if two entries are equal in the second sort
(by the first component), then their relative order in the starting sequence (which
is sorted by the second component) is preserved. Thus, the resulting sequence is
guaranteed to be sorted lexicographically every time. We leave the determination
of how this approach can be extended to triples and other d-tuples of numbers as a
simple exercise (Exercise R-11.20). We can summarize this section as follows:

Proposition 11.6: Let S be a sequence of n key-value pairs, each of which has a
key (k1,k2, . . . ,kd), where ki is an integer in the range [0,N − 1] for some integer
N ≥ 2. We can sort S lexicographically in time O(d(n+ N)) using radix-sort.

As important as it is, sorting is not the only interesting problem dealing with
a total order relation on a set of elements. There are some applications, for ex-
ample, that do not require an ordered listing of an entire set, but nevertheless call
for some amount of ordering information about the set. Before we study such a
problem (called “selection”), let us step back and briefly compare all of the sorting
algorithms we have studied so far.
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11.3.3 Comparing Sorting Algorithms

At this point, it might be useful for us to take a breath and consider all the algo-
rithms we have studied in this book to sort an n-element vector, node list, or general
sequence.

Considering Running Time and Other Factors

We have studied several methods, such as insertion-sort and selection-sort, that
have O(n2)-time behavior in the average and worst case. We have also studied sev-
eral methods with O(n log n)-time behavior, including heap-sort, merge-sort, and
quick-sort. Finally, we have studied a special class of sorting algorithms, namely,
the bucket-sort and radix-sort methods, that run in linear time for certain types of
keys. Certainly, the selection-sort algorithm is a poor choice in any application,
since it runs in O(n2) time even in the best case. But, of the remaining sorting
algorithms, which is the best?

As with many things in life, there is no clear “best” sorting algorithm from the
remaining candidates. The sorting algorithm best suited for a particular application
depends on several properties of that application. We can offer some guidance
and observations, therefore, based on the known properties of the “good” sorting
algorithms.

Insertion-Sort

If implemented well, the running time of insertion-sort is O(n + m), where m is
the number of inversions (that is, the number of pairs of elements out of order).
Thus, insertion-sort is an excellent algorithm for sorting small sequences (say, less
than 50 elements), because insertion-sort is simple to program, and small sequences
necessarily have few inversions. Also, insertion-sort is quite effective for sorting
sequences that are already “almost” sorted. By “almost,” we mean that the number
of inversions is small. But the O(n2)-time performance of insertion-sort makes it a
poor choice outside of these special contexts.

Merge-Sort

Merge-sort, on the other hand, runs in O(n logn) time in the worst case, which is
optimal for comparison-based sorting methods. Still, experimental studies have
shown that, since it is difficult to make merge-sort run in-place, the overheads
needed to implement merge-sort make it less attractive than the in-place implemen-
tations of heap-sort and quick-sort for sequences that can fit entirely in a computer’s
main memory area. Even so, merge-sort is an excellent algorithm for situations
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where the input cannot all fit into main memory, but must be stored in blocks on an
external memory device, such as a disk. In these contexts, the way that merge-sort
processes runs of data in long merge streams makes the best use of all the data
brought into main memory in a block from disk. Thus, for external memory sort-
ing, the merge-sort algorithm tends to minimize the total number of disk reads and
writes needed, which makes the merge-sort algorithm superior in such contexts.

Quick-Sort

Experimental studies have shown that if an input sequence can fit entirely in main
memory, then the in-place versions of quick-sort and heap-sort run faster than
merge-sort. The extra overhead needed for copying nodes or entries puts merge-
sort at a disadvantage to quick-sort and heap-sort in these applications. In fact,
quick-sort tends, on average, to beat heap-sort in these tests. So, quick-sort is an
excellent choice as a general-purpose, in-memory sorting algorithm. Indeed, it is
included in the qsort sorting utility provided in C language libraries. Still, its O(n2)
time worst-case performance makes quick-sort a poor choice in real-time applica-
tions where we must make guarantees on the time needed to complete a sorting
operation.

Heap-Sort

In real-time scenarios where we have a fixed amount of time to perform a sorting
operation and the input data can fit into main memory, the heap-sort algorithm is
probably the best choice. It runs in O(n log n) worst-case time and can easily be
made to execute in-place.

Bucket-Sort and Radix-Sort

Finally, if our application involves sorting entries with small integer keys or d-
tuples of small integer keys, then bucket-sort or radix-sort is an excellent choice,
because it runs in O(d(n + N)) time, where [0,N− 1] is the range of integer keys
(and d = 1 for bucket sort). Thus, if d(n + N) is significantly “below” the n log n
function, then this sorting method should run faster than even quick-sort or heap-
sort.

Thus, our study of all these different sorting algorithms provides us with a
versatile collection of sorting methods in our algorithm engineering “toolbox.”
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11.4 Sets and Union/Find Structures

In this section, we study sets, including operations that define them and operations
that can be applied to entire sets.

11.4.1 The Set ADT

A set is a collection of distinct objects. That is, there are no duplicate elements in a
set, and there is no explicit notion of keys or even an order. Even so, if the elements
in a set are comparable, then we can maintain sets to be ordered. The fundamental
functions of the set ADT for a set S are the following:

insert(e): Insert the element e into S and return an iterator referring
to its location; if the element already exists the operation
is ignored.

find(e): If S contains e, return an iterator p referring to this entry,
else return end.

erase(e): Remove the element e from S.

begin(): Return an iterator to the beginning of S.

end(): Return an iterator to an imaginary position just beyond
the end of S.

The C++ Standard Template Library provides a class set that contains all of
these functions. It actually implements an ordered set, and supports the following
additional operations as well.

lower bound(e): Return an iterator to the largest element less than or equal
to e.

upper bound(e): Return an iterator to the smallest element greater than or
equal to e.

equal range(e): Return an iterator range of elements that are equal to e.

The STL set is templated with the element type. As with the other STL classes
we have seen so far, the set is an example of a container, and hence supports access
by iterators. In order to declare an object of type set, it is necessary to first include
the definition file called “set.” The set is part of the std namespace, and hence it is
necessary either to use “std::set” or to provide an appropriate “using” statement.

The STL set is implemented by adapting the STL ordered map (which is based
on a red-black tree). Each entry has the property that the key and element are both
equal to e. That is, each entry is of the form (e,e).
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11.4.2 Mergable Sets and the Template Method Pattern

Let us explore a further extension of the ordered set ADT that allows for operations
between pairs of sets. This also serves to motivate a software engineering design
pattern known as the template method.

First, we recall the mathematical definitions of the union, intersection, and
subtraction of two sets A and B:

A∪B = {x: x is in A or x is in B},
A∩B = {x: x is in A and x is in B},
A−B = {x: x is in A and x is not in B}.

Example 11.7: Most Internet search engines store, for each word x in their dic-
tionary database, a set, W (x), of Web pages that contain x, where each Web page
is identified by a unique Internet address. When presented with a query for a word
x, such a search engine need only return the Web pages in the set W (x), sorted
according to some proprietary priority ranking of page “importance.” But when
presented with a two-word query for words x and y, such a search engine must first
compute the intersection W (x)∩W (y), and then return the Web pages in the result-
ing set sorted by priority. Several search engines use the set intersection algorithm
described in this section for this computation.

Fundamental Methods of the Mergable Set ADT

The fundamental functions of the mergable set ADT, acting on a set A, are as fol-
lows:

union(B): Replace A with the union of A and B, that is, execute
A← A∪B.

intersect(B): Replace A with the intersection of A and B, that is, exe-
cute A← A∩B.

subtract(B): Replace A with the difference of A and B, that is, execute
A← A−B.

A Simple Mergable Set Implementation

One of the simplest ways of implementing a set is to store its elements in an or-
dered sequence. This implementation is included in several software libraries for
generic data structures, for example. Therefore, let us consider implementing the
set ADT with an ordered sequence (we consider other implementations in several
exercises). Any consistent total order relation among the elements of the set can be
used, provided the same order is used for all the sets.
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We implement each of the three fundamental set operations using a generic ver-
sion of the merge algorithm that takes, as input, two sorted sequences representing
the input sets, and constructs a sequence representing the output set, be it the union,
intersection, or subtraction of the input sets. Incidentally, we have defined these op-
erations so that they modify the contents of the set A involved. Alternatively, we
could have defined these functions so that they do not modify A but return a new
set instead.

The generic merge algorithm iteratively examines and compares the current el-
ements a and b of the input sequence A and B, respectively, and finds out whether
a < b, a = b, or a > b. Then, based on the outcome of this comparison, it deter-
mines whether it should copy one of the elements a and b to the end of the output
sequence C. This determination is made based on the particular operation we are
performing, be it a union, intersection, or subtraction. For example, in a union
operation, we proceed as follows:
• If a < b, we copy a to the end of C and advance to the next element of A
• If a = b, we copy a to the end of C and advance to the next elements of A

and B
• If a > b, we copy b to the end of C and advance to the next element of B

Performance of Generic Merging

Let us analyze the running time of generic merging. At each iteration, we compare
two elements of the input sequences A and B, possibly copy one element to the
output sequence, and advance the current element of A, B, or both. Assuming
that comparing and copying elements takes O(1) time, the total running time is
O(nA + nB), where nA is the size of A and nB is the size of B; that is, generic
merging takes time proportional to the number of elements. Thus, we have the
following:

Proposition 11.8: The set ADT can be implemented with an ordered sequence
and a generic merge scheme that supports operations union, intersect, and subtract
in O(n) time, where n denotes the sum of sizes of the sets involved.

Generic Merging as a Template Method Pattern

The generic merge algorithm is based on the template method pattern (see Sec-
tion 7.3.7). The template method pattern is a software engineering design pattern
describing a generic computation mechanism that can be specialized by redefining
certain steps. In this case, we describe a method that merges two sequences into
one and can be specialized by the behavior of three abstract methods.

Code Fragments 11.9 and 11.10 show the class Merge providing a C++ im-
plementation of the generic merge algorithm. This class has no data members. It
defines a public function merge, which merges the two lists A and B, and stores the
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result in C. It provides three virtual functions, fromA, fromB, and fromBoth. These
are pure virtual functions (that is, they are not defined here), but are overridden in
subclasses of Merge, to achieve a desired effect. The function fromA specifies the
action to be taken when the next element to be selected in the merger is from A.
Similarly, fromB specifies the action when the next element to be selected is from
B. Finally, fromBoth is the action to be taken when the two elements of A and B
are equal, and hence both are to be selected.

template <typename E>
class Merge { // generic Merge
public: // global types

typedef std::list<E> List; // list type
void merge(List& A, List& B, List& C); // generic merge function

protected: // local types
typedef typename List::iterator Itor; // iterator type

// overridden functions
virtual void fromA(const E& a, List& C) = 0;
virtual void fromBoth(const E& a, const E& b, List& C) = 0;
virtual void fromB(const E& b, List& C) = 0;
};

Code Fragment 11.9: Definition of the class Merge for generic merging.

The function merge, which is presented in Code Fragment 11.10 performs the
actual merger. It is structurally similar to the list-based merge procedure given in
Code Fragment 11.3. Rather than simply taking an element from list A or list B,
it invokes one of the virtual functions to perform the appropriate specialized task.
The final result is stored in the list C.

template <typename E> // generic merge
void Merge<E>::merge(List& A, List& B, List& C) {

Itor pa = A.begin(); // A’s elements
Itor pb = B.begin(); // B’s elements
while (pa != A.end() && pb != B.end()) { // main merging loop

if (*pa < *pb)
fromA(*pa++, C); // take from A

else if (*pa == *pb)
fromBoth(*pa++, *pb++, C); // take from both

else
fromB(*pb++, C); // take from B

}
while (pa != A.end()) { fromA(*pa++, C); } // take rest from A
while (pb != B.end()) { fromB(*pb++, C); } // take rest from B
}

Code Fragment 11.10: Member function merge which implements generic merging
for class Merge.
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To convert Merge into a useful class, we provide definitions for the three auxil-
iary functions, fromA, fromBoth, and fromB. See Code 11.11.

• In class UnionMerge, merge copies every element from A and B into C, but
does not duplicate any element.

• In class IntersectMerge, merge copies every element that is in both A and B
into C, but “throws away” elements in one set but not in the other.

• In class SubtractMerge, merge copies every element that is in A and not in B
into C.

template <typename E> // set union
class UnionMerge : public Merge<E> {
protected:

typedef typename Merge<E>::List List;
virtual void fromA(const E& a, List& C)
{ C.push back(a); } // add a

virtual void fromBoth(const E& a, const E& b, List& C)
{ C.push back(a); } // add a only

virtual void fromB(const E& b, List& C)
{ C.push back(b); } // add b

};

template <typename E> // set intersection
class IntersectMerge : public Merge<E> {
protected:

typedef typename Merge<E>::List List;
virtual void fromA(const E& a, List& C)
{ } // ignore

virtual void fromBoth(const E& a, const E& b, List& C)
{ C.push back(a); } // add a only

virtual void fromB(const E& b, List& C)
{ } // ignore

};

template <typename E> // set subtraction
class SubtractMerge : public Merge<E> {
protected:

typedef typename Merge<E>::List List;
virtual void fromA(const E& a, List& C)
{ C.push back(a); } // add a

virtual void fromBoth(const E& a, const E& b, List& C)
{ } // ignore

virtual void fromB(const E& b, List& C)
{ } // ignore

};
Code Fragment 11.11: Classes extending the Merge class by specializing the auxil-
iary functions to perform set union, intersection, and subtraction, respectively.
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11.4.3 Partitions with Union-Find Operations

A partition is a collection of disjoint sets. We define the functions of the partition
ADT using position objects (Section 6.2.1), each of which stores an element x. The
partition ADT supports the following functions.

makeSet(x): Create a singleton set containing the element x and return
the position storing x in this set.

union(A,B): Return the set A∪B, destroying the old A and B.

find(p): Return the set containing the element in position p.

A simple implementation of a partition with a total of n elements is using a
collection of sequences, one for each set, where the sequence for a set A stores set
positions as its elements. Each position object stores a variable, element, which
references its associated element x and allows the execution of the element() func-
tion in O(1) time. In addition, we also store a variable, set, in each position, which
references the sequence storing p, since this sequence is representing the set con-
taining p’s element. (See Figure 11.16.) Thus, we can perform operation find(p)
in O(1) time, by following the set reference for p. Likewise, makeSet also takes
O(1) time. Operation union(A,B) requires that we join two sequences into one and
update the set references of the positions in one of the two. We choose to imple-
ment this operation by removing all the positions from the sequence with smaller
size, and inserting them in the sequence with larger size. Each time we take a
position p from the smaller set s and insert it into the larger set t, we update the
set reference for p to now point to t. Hence, the operation union(A,B) takes time
O(min(|A|, |B|)), which is O(n), because, in the worst case, |A|= |B|= n/2. Nev-
ertheless, as shown below, an amortized analysis shows this implementation to be
much better than appears from this worst-case analysis.

C

5 11 12 10 8

B

9 3 6 2

A

4 1 7

Figure 11.16: Sequence-based implementation of a partition consisting of three sets:
A = {1,4,7}, B = {2,3,6,9}, and C = {5,8,10,11,12}.
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Performance of the Sequence Implementation

The sequence implementation above is simple, but it is also efficient, as the follow-
ing theorem shows.

Proposition 11.9: Performing a series of n makeSet, union, and find operations,
using the sequence-based implementation above, starting from an initially empty
partition takes O(n log n) time.

Justification: We use the accounting method and assume that one cyber-dollar
can pay for the time to perform a find operation, a makeSet operation, or the move-
ment of a position object from one sequence to another in a union operation. In the
case of a find or makeSet operation, we charge the operation itself 1 cyber-dollar.
In the case of a union operation, however, we charge 1 cyber-dollar to each position
that we move from one set to another. Note that we charge nothing to the union
operations themselves. Clearly, the total charges to find and makeSet operations
add up to O(n).

Consider, then, the number of charges made to positions on behalf of union op-
erations. The important observation is that each time we move a position from one
set to another, the size of the new set at least doubles. Thus, each position is moved
from one set to another at most log n times; hence, each position can be charged at
most O(logn) times. Since we assume that the partition is initially empty, there are
O(n) different elements referenced in the given series of operations, which implies
that the total time for all the union operations is O(n log n).

The amortized running time of an operation in a series of makeSet, union, and
find operations, is the total time taken for the series divided by the number of oper-
ations. We conclude from the proposition above that, for a partition implemented
using sequences, the amortized running time of each operation is O(logn). Thus,
we can summarize the performance of our simple sequence-based partition imple-
mentation as follows.

Proposition 11.10: Using a sequence-based implementation of a partition, in a
series of n makeSet, union, and find operations starting from an initially empty
partition, the amortized running time of each operation is O(logn).

Note that in this sequence-based implementation of a partition, each find oper-
ation takes worst-case O(1) time. It is the running time of the union operations that
is the computational bottleneck.

In the next section, we describe a tree-based implementation of a partition that
does not guarantee constant-time find operations, but has amortized time much
better than O(logn) per union operation.
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A Tree-Based Partition Implementation ⋆

An alternative data structure uses a collection of trees to store the n elements in sets,
where each tree is associated with a different set. (See Figure 11.17.) In particular,
we implement each tree with a linked data structure whose nodes are themselves
the set position objects. We still view each position p as being a node having a
variable, element, referring to its element x, and a variable, set, referring to a set
containing x, as before. But now we also view each position p as being of the
“set” data type. Thus, the set reference of each position p can point to a position,
which could even be p itself. Moreover, we implement this approach so that all the
positions and their respective set references together define a collection of trees.

We associate each tree with a set. For any position p, if p’s set reference points
back to p, then p is the root of its tree, and the name of the set containing p is
“p” (that is, we use position names as set names in this case). Otherwise, the set
reference for p points to p’s parent in its tree. In either case, the set containing p is
the one associated with the root of the tree containing p.

Figure 11.17: Tree-based implementation of a partition consisting of three disjoint
sets: A = {1,4,7}, B = {2,3,6,9}, and C = {5,8,10,11,12}.

With this partition data structure, operation union(A,B) is called with position
arguments p and q that respectively represent the sets A and B (that is, A = p and
B = q). We perform this operation by making one of the trees a subtree of the
other (Figure 11.18b), which can be done in O(1) time by setting the set reference
of the root of one tree to point to the root of the other tree. Operation find for a
position p is performed by walking up to the root of the tree containing the position
p (Figure 11.18a), which takes O(n) time in the worst case.

At first, this implementation may seem to be no better than the sequence-based
data structure, but we add the following two simple heuristics to make it run faster.

Union-by-Size: Store, with each position node p, the size of the subtree rooted
at p. In a union operation, make the tree of the smaller set become a subtree
of the other tree, and update the size field of the root of the resulting tree.
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(a) (b)

Figure 11.18: Tree-based implementation of a partition: (a) operation union(A,B);
(b) operation find(p), where p denotes the position object for element 12.

Path Compression: In a find operation, for each node v that the find visits, reset
the parent pointer from v to point to the root. (See Figure 11.19.)
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(a) (b)

Figure 11.19: Path-compression heuristic: (a) path traversed by operation find on
element 12; (b) restructured tree.

A surprising property of this data structure, when implemented using the union-
by-size and path-compression heuristics, is that performing a series of n union and
find operations takes O(n log∗ n) time, where log∗ n is the log-star function, which
is the inverse of the tower-of-twos function. Intuitively, log∗ n is the number of
times that one can iteratively take the logarithm (base 2) of a number before getting
a number smaller than 2. Table 11.1 shows a few sample values.

Minimum n 2 22 = 4 222
= 16 2222

= 65,536 22222

= 265,536

log∗ n 1 2 3 4 5

Table 11.1: Some values of log∗ n and critical values for its inverse.
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11.5 Selection

There are a number of applications in which we are interested in identifying a sin-
gle element in terms of its rank relative to an ordering of the entire set. Examples
include identifying the minimum and maximum elements, but we may also be in-
terested in, say, identifying the median element, that is, the element such that half
of the other elements are smaller and the remaining half are larger. In general,
queries that ask for an element with a given rank are called order statistics.

Defining the Selection Problem

In this section, we discuss the general order-statistic problem of selecting the kth
smallest element from an unsorted collection of n comparable elements. This is
known as the selection problem. Of course, we can solve this problem by sorting
the collection and then indexing into the sorted sequence at index k− 1. Using
the best comparison-based sorting algorithms, this approach would take O(n logn)
time, which is obviously an overkill for the cases where k = 1 or k = n (or even
k = 2, k = 3, k = n− 1, or k = n− 5), because we can easily solve the selection
problem for these values of k in O(n) time. Thus, a natural question to ask is
whether we can achieve an O(n) running time for all values of k (including the
interesting case of finding the median, where k = ⌊n/2⌋).

11.5.1 Prune-and-Search

This may come as a small surprise, but we can indeed solve the selection problem in
O(n) time for any value of k. Moreover, the technique we use to achieve this result
involves an interesting algorithmic design pattern. This design pattern is known
as prune-and-search or decrease-and-conquer. In applying this design pattern,
we solve a given problem that is defined on a collection of n objects by pruning
away a fraction of the n objects and recursively solving the smaller problem. When
we have finally reduced the problem to one defined on a constant-sized collection
of objects, then we solve the problem using some brute-force method. Returning
back from all the recursive calls completes the construction. In some cases, we
can avoid using recursion, in which case we simply iterate the prune-and-search
reduction step until we can apply a brute-force method and stop. Incidentally, the
binary search method described in Section 9.3.1 is an example of the prune-and-
search design pattern.
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11.5.2 Randomized Quick-Select

In applying the prune-and-search pattern to the selection problem, we can design
a simple and practical method, called randomized quick-select, for finding the kth
smallest element in an unordered sequence of n elements on which a total order
relation is defined. Randomized quick-select runs in O(n) expected time, taken
over all possible random choices made by the algorithm. This expectation does not
depend whatsoever on any randomness assumptions about the input distribution.
We note though that randomized quick-select runs in O(n2) time in the worst case.
The justification of this is left as an exercise (Exercise R-11.26). We also provide
an exercise (Exercise C-11.32) for modifying randomized quick-select to get a de-
terministic selection algorithm that runs in O(n) worst-case time. The existence
of this deterministic algorithm is mostly of theoretical interest, however, since the
constant factor hidden by the big-Oh notation is relatively large in this case.

Suppose we are given an unsorted sequence S of n comparable elements to-
gether with an integer k ∈ [1,n]. At a high level, the quick-select algorithm for
finding the kth smallest element in S is similar in structure to the randomized quick-
sort algorithm described in Section 11.2.1. We pick an element x from S at random
and use this as a “pivot” to subdivide S into three subsequences L, E , and G, storing
the elements of S less than x, equal to x, and greater than x, respectively. This is
the prune step. Then, based on the value of k, we determine which of these sets to
recur on. Randomized quick-select is described in Code Fragment 11.12.

Algorithm quickSelect(S,k):
Input: Sequence S of n comparable elements, and an integer k ∈ [1,n]
Output: The kth smallest element of S

if n = 1 then
return the (first) element of S.

pick a random (pivot) element x of S and divide S into three sequences:
• L, storing the elements in S less than x
• E , storing the elements in S equal to x
• G, storing the elements in S greater than x.

if k ≤ |L| then
quickSelect(L,k)

else if k ≤ |L|+ |E| then
return x {each element in E is equal to x}

else
quickSelect(G,k−|L|− |E|) {note the new selection parameter}

Code Fragment 11.12: Randomized quick-select algorithm.
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11.5.3 Analyzing Randomized Quick-Select

Showing that randomized quick-select runs in O(n) time requires a simple prob-
abilistic argument. The argument is based on the linearity of expectation, which
states that if X and Y are random variables and c is a number, then

E(X +Y ) = E(X)+ E(Y) and E(cX) = cE(X),

where we use E(Z) to denote the expected value of the expression Z .
Let t(n) be the running time of randomized quick-select on a sequence of size n.

Since this algorithm depends on random events, its running time, t(n), is a random
variable. We want to bound E(t(n)), the expected value of t(n). Say that a recursive
invocation of our algorithm is “good” if it partitions S so that the size of L and G
is at most 3n/4. Clearly, a recursive call is good with probability 1/2. Let g(n)
denote the number of consecutive recursive calls we make, including the present
one, before we get a good one. Then we can characterize t(n) using the following
recurrence equation

t(n)≤ bn ·g(n)+ t(3n/4),

where b≥ 1 is a constant. Applying the linearity of expectation for n > 1, we get

E (t(n)) ≤ E (bn ·g(n)+ t(3n/4)) = bn ·E (g(n))+ E (t(3n/4)) .

Since a recursive call is good with probability 1/2, and whether a recursive call is
good or not is independent on its parent call being good, the expected value of g(n)
is the same as the expected number of times we must flip a fair coin before it comes
up “heads.” That is, E(g(n)) = 2. Thus, if we let T (n) be shorthand for E(t(n)),
then we can write the case for n > 1 as

T (n)≤ T (3n/4)+ 2bn.

To convert this relation into a closed form, let us iteratively apply this inequality
assuming n is large. So, for example, after two applications,

T (n)≤ T ((3/4)2n)+ 2b(3/4)n+ 2bn.

At this point, we should see that the general case is

T (n)≤ 2bn ·
⌈log4/3 n⌉

∑
i=0

(3/4)i.

In other words, the expected running time is at most 2bn times a geometric sum
whose base is a positive number less than 1. Thus, by Proposition 4.5, T (n) is O(n).

Proposition 11.11: The expected running time of randomized quick-select on a
sequence S of size n is O(n), assuming two elements of S can be compared in O(1)
time.
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11.6 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-11.1 What is the best algorithm for sorting each of the following: general
comparable objects, long character strings, double-precision floating point
numbers, 32-bit integers, and bytes? Justify your answer.

R-11.2 Suppose S is a list of n bits, that is, n 0’s and 1’s. How long will it take to
sort S with the merge-sort algorithm? What about quick-sort?

R-11.3 Suppose S is a list of n bits, that is, n 0’s and 1’s. How long will it take to
sort S stably with the bucket-sort algorithm?

R-11.4 Give a complete justification of Proposition 11.1.

R-11.5 In the merge-sort tree shown in Figures 11.2 through 11.4, some edges are
drawn as arrows. What is the meaning of a downward arrow? How about
an upward arrow?

R-11.6 Give a complete pseudo-code description of the recursive merge-sort al-
gorithm that takes an array as its input and output.

R-11.7 Show that the running time of the merge-sort algorithm on an n-element
sequence is O(n log n), even when n is not a power of 2.

R-11.8 Suppose we are given two n-element sorted sequences A and B that should
not be viewed as sets (that is, A and B may contain duplicate entries).
Describe an O(n)-time method for computing a sequence representing the
set A∪B (with no duplicates).

R-11.9 Show that (X−A)∪(X−B)= X−(A∩B), for any three sets X , A, and B.

R-11.10 Suppose we modify the deterministic version of the quick-sort algorithm
so that, instead of selecting the last element in an n-element sequence as
the pivot, we choose the element at index ⌊n/2⌋. What is the running time
of this version of quick-sort on a sequence that is already sorted?

R-11.11 Consider a modification of the deterministic version of the quick-sort al-
gorithm where we choose the element at index ⌊n/2⌋ as our pivot. De-
scribe the kind of sequence that would cause this version of quick-sort to
run in Ω(n2) time.

R-11.12 Show that the best-case running time of quick-sort on a sequence of size
n with distinct elements is O(n log n).

R-11.13 Describe a randomized version of in-place quick-sort in pseudo-code.

www.wiley.com/college/goodrich
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R-11.14 Show that the probability that any given input element x belongs to more
than 2log n subproblems in size group i, for randomized quick-sort, is at
most 1/n2.

R-11.15 Suppose algorithm inPlaceQuickSort (Code Fragment 11.6) is executed
on a sequence with duplicate elements. Show that the algorithm still cor-
rectly sorts the input sequence, but the result of the divide step may differ
from the high-level description given in Section 11.2, and may result in
inefficiencies. In particular, what happens in the partition step when there
are elements equal to the pivot? Is the sequence E (storing the elements
equal to the pivot) actually computed? Does the algorithm recur on the
subsequences L and G, or on some other subsequences? What is the run-
ning time of the algorithm if all the input elements are equal?

R-11.16 Of the n! possible inputs to a given comparison-based sorting algorithm,
what is the absolute maximum number of inputs that could be sorted with
just n comparisons?

R-11.17 Bella has a comparison-based sorting algorithm that sorts the first k ele-
ments in sequence of size n in O(n) time. Give a big-Oh characterization
of the biggest that k can be?

R-11.18 Is the merge-sort algorithm in Section 11.1 stable? Why or why not?

R-11.19 An algorithm that sorts key-value entries by key is said to be straggling
if, any time two entries ei and e j have equal keys, but ei appears before e j

in the input, then the algorithm places ei after e j in the output. Describe a
change to the merge-sort algorithm in Section 11.1 to make it straggling.

R-11.20 Describe a radix-sort method for lexicographically sorting a sequence S of
triplets (k, l,m), where k, l, and m are integers in the range [0,N−1], for
some N ≥ 2. How could this scheme be extended to sequences of d-tuples
(k1,k2, . . . ,kd), where each ki is an integer in the range [0,N−1]?

R-11.21 Is the bucket-sort algorithm in-place? Why or why not?

R-11.22 Give an example input list that requires merge-sort and heap-sort to take
O(n log n) time to sort, but insertion-sort runs in O(n) time. What if you
reverse this list?

R-11.23 Describe, in pseudo-code, how to perform path compression on a path of
length h in O(h) time in a tree-based partition union/find structure.

R-11.24 Edward claims he has a fast way to do path compression in a partition
structure, starting at a node v. He puts v into a list L, and starts following
parent pointers. Each time he encounters a new node, u, he adds u to L
and updates the parent pointer of each node in L to point to u’s parent.
Show that Edward’s algorithm runs in Ω(h2) time on a path of length h.

R-11.25 Describe an in-place version of the quick-select algorithm in pseudo-code.
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R-11.26 Show that the worst-case running time of quick-select on an n-element
sequence is Ω(n2).

Creativity

C-11.1 Describe an efficient algorithm for converting a dictionary, D, implemented
with a linked list, into a map, M, implemented with a linked list, so that
each key in D has an entry in M, and the relative order of entries in M is
the same as their relative order in D.

C-11.2 Linda claims to have an algorithm that takes an input sequence S and
produces an output sequence T that is a sorting of the n elements in S.

a. Give an algorithm, isSorted, for testing in O(n) time if T is sorted.
b. Explain why the algorithm isSorted is not sufficient to prove a par-

ticular output T of Linda’s algorithm is a sorting of S.
c. Describe what additional information Linda’s algorithm could out-

put so that her algorithm’s correctness could be established on any
given S and T in O(n) time.

C-11.3 Given two sets A and B represented as sorted sequences, describe an effi-
cient algorithm for computing A⊕B, which is the set of elements that are
in A or B, but not in both.

C-11.4 Suppose that we represent sets with balanced search trees. Describe and
analyze algorithms for each of the functions in the set ADT, assuming that
one of the two sets is much smaller than the other.

C-11.5 Describe and analyze an efficient function for removing all duplicates
from a collection A of n elements.

C-11.6 Consider sets whose elements are integers in the range [0,N−1]. A pop-
ular scheme for representing a set A of this type is by means of a Boolean
array, B, where we say that x is in A if and only if B[x] = true. Since each
cell of B can be represented with a single bit, B is sometimes referred to
as a bit vector. Describe and analyze efficient algorithms for performing
the functions of the set ADT assuming this representation.

C-11.7 Consider a version of deterministic quick-sort where we pick the median
of the d last elements in the input sequence of n elements as our pivot, for
a fixed, constant odd number d ≥ 3. What is the asymptotic worst-case
running time of quick-sort in this case?

C-11.8 Another way to analyze randomized quick-sort is to use a recurrence
equation. In this case, we let T (n) denote the expected running time
of randomized quick-sort, and we observe that, because of the worst-case
partitions for good and bad splits, we can write

T (n)≤ 1
2

(T (3n/4)+ T (n/4))+
1
2

(T (n−1))+ bn,



i

i

“main” — 2011/1/13 — 9:10 — page 548 — #570
i

i

i

i

i

i

548 Chapter 11. Sorting, Sets, and Selection

where bn is the time needed to partition a list for a given pivot and concate-
nate the result sublists after the recursive calls return. Show, by induction,
that T (n) is O(n log n).

C-11.9 Modify inPlaceQuickSort (Code Fragment 11.6) to handle the general
case efficiently when the input sequence, S, may have duplicate keys.

C-11.10 Describe a nonrecursive, in-place version of the quick-sort algorithm. The
algorithm should still be based on the same divide-and-conquer approach,
but use an explicit stack to process subproblems.

C-11.11 An inverted file is a critical data structure for implementing a search en-
gine or the index of a book. Given a document D, which can be viewed
as an unordered, numbered list of words, an inverted file is an ordered list
of words, L, such that, for each w word in L, we store the indices of the
places in D where w appears. Design an efficient algorithm for construct-
ing L from D.

C-11.12 Given an array A of n entries with keys equal to 0 or 1, describe an in-place
function for ordering A so that all the 0’s are before every 1.

C-11.13 Suppose we are given an n-element sequence S such that each element
in S represents a different vote for president, where each vote is given
as an integer representing a particular candidate. Design an O(n log n)-
time algorithm to see who wins the election S represents, assuming the
candidate with the most votes wins (even if there are O(n) candidates).

C-11.14 Consider the voting problem from Exercise C-11.13, but now suppose that
we know the number k < n of candidates running. Describe an O(n log k)-
time algorithm for determining who wins the election.

C-11.15 Consider the voting problem from Exercise C-11.13, but now suppose a
candidate wins only if he or she gets a majority of the votes cast. Design
and analyze a fast algorithm for determining the winner if there is one.

C-11.16 Show that any comparison-based sorting algorithm can be made to be
stable without affecting its asymptotic running time.

C-11.17 Suppose we are given two sequences A and B of n elements, possibly
containing duplicates, on which a total order relation is defined. Describe
an efficient algorithm for determining if A and B contain the same set of
elements. What is the running time of this method?

C-11.18 Given an array A of n integers in the range [0,n2− 1], describe a simple
function for sorting A in O(n) time.

C-11.19 Let S1,S2, . . . ,Sk be k different sequences whose elements have integer
keys in the range [0,N − 1], for some parameter N ≥ 2. Describe an al-
gorithm running in O(n + N) time for sorting all the sequences (not as a
union), where n denotes the total size of all the sequences.
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C-11.20 Given a sequence S of n elements, on which a total order relation is de-
fined, describe an efficient function for determining whether there are two
equal elements in S. What is the running time of your function?

C-11.21 Let S be a sequence of n elements on which a total order relation is de-
fined. Recall that an inversion in S is a pair of elements x and y such
that x appears before y in S but x > y. Describe an algorithm running in
O(n log n) time for determining the number of inversions in S.

C-11.22 Let S be a random permutation of n distinct integers. Argue that the ex-
pected running time of insertion-sort on S is Ω(n2).
(Hint: Note that half of the elements ranked in the top half of a sorted
version of S are expected to be in the first half of S.)

C-11.23 Let A and B be two sequences of n integers each. Given an integer m,
describe an O(n log n)-time algorithm for determining if there is an integer
a in A and an integer b in B such that m = a+ b.

C-11.24 Given a set of n integers, describe and analyze a fast method for finding
the ⌈log n⌉ integers closest to the median.

C-11.25 James has a set A of n nuts and a set B of n bolts, such that each nut in
A has a unique matching bolt in B. Unfortunately, the nuts in A all look
the same, and the bolts in B all look the same as well. The only kind of a
comparison that Bob can make is to take a nut-bolt pair (a,b), such that a
is in A and b is in B, and test it to see if the threads of a are larger, smaller,
or a perfect match with the threads of b. Describe and analyze an efficient
algorithm for Bob to match up all of his nuts and bolts.

C-11.26 Show how to use a deterministic O(n)-time selection algorithm to sort a
sequence of n elements in O(n log n) worst-case time.

C-11.27 Given an unsorted sequence S of n comparable elements, and an integer k,
give an O(n log k) expected-time algorithm for finding the O(k) elements
that have rank ⌈n/k⌉, 2⌈n/k⌉, 3⌈n/k⌉, and so on.

C-11.28 Let S be a sequence of n insert and removeMin operations, where all the
keys involved are integers in the range [0,n− 1]. Describe an algorithm
running in O(n log∗ n) for determining the answer to each removeMin.

C-11.29 Space aliens have given us a program, alienSplit, that can take a sequence
S of n integers and partition S in O(n) time into sequences S1,S2, . . . ,Sk of
size at most ⌈n/k⌉ each, such that the elements in Si are less than or equal
to every element in Si+1, for i = 1,2, . . . ,k−1, for a fixed number, k < n.
Show how to use alienSplit to sort S in O(n log n/ log k) time.

C-11.30 Karen has a new way to do path compression in a tree-based union/find
partition data structure starting at a node v. She puts all the nodes that are
on the path from v to the root in a set S. Then she scans through S and sets
the parent pointer of each node in S to its parent’s parent pointer (recall
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that the parent pointer of the root points to itself). If this pass changed the
value of any node’s parent pointer, then she repeats this process, and goes
on repeating this process until she makes a scan through S that does not
change any node’s parent value. Show that Karen’s algorithm is correct
and analyze its running time for a path of length h.

C-11.31 Let S be a sequence of n integers. Describe a method for printing out all
the pairs of inversions in S in O(n+k) time, where k is the number of such
inversions.

C-11.32 This problem deals with modification of the quick-select algorithm to
make it deterministic yet still run in O(n) time on an n-element sequence.
The idea is to modify the way we choose the pivot so that it is chosen
deterministically, not randomly, as follows:

Partition the set S into ⌈n/5⌉ groups of size 5 each (except pos-
sibly for one group). Sort each little set and identify the median
element in this set. From this set of ⌈n/5⌉ “baby” medians, ap-
ply the selection algorithm recursively to find the median of the
baby medians. Use this element as the pivot and proceed as in
the quick-select algorithm.

Show that this deterministic method runs in O(n) time by answering the
following questions (please ignore floor and ceiling functions if that sim-
plifies the mathematics, for the asymptotics are the same either way):

a. How many baby medians are less than or equal to the chosen pivot?
How many are greater than or equal to the pivot?

b. For each baby median less than or equal to the pivot, how many
other elements are less than or equal to the pivot? Is the same true
for those greater than or equal to the pivot?

c. Argue why the method for finding the deterministic pivot and using
it to partition S takes O(n) time.

d. Based on these estimates, write a recurrence equation to bound the
worst-case running time t(n) for this selection algorithm (note that in
the worst case there are two recursive calls—one to find the median
of the baby medians and one to recur on the larger of L and G).

e. Using this recurrence equation, show by induction that t(n) is O(n).

Projects

P-11.1 Design and implement two versions of the bucket-sort algorithm in C++,
one for sorting an array of char values and one for sorting an array of
short values. Experimentally compare the performance of your imple-
mentations with the sorting algorithm of the Standard Template Library.
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P-11.2 Experimentally compare the performance of in-place quick-sort and a ver-
sion of quick-sort that is not in-place.

P-11.3 Design and implement a version of the bucket-sort algorithm for sorting
a linked list of n entries (for instance, a list of type std::list<int>) with
integer keys taken from the range [0,N − 1], for N ≥ 2. The algorithm
should run in O(n+ N) time.

P-11.4 Implement merge-sort and deterministic quick-sort and perform a series
of benchmarking tests to see which one is faster. Your tests should include
sequences that are “random” as well as “almost” sorted.

P-11.5 Implement deterministic and randomized versions of the quick-sort al-
gorithm and perform a series of benchmarking tests to see which one is
faster. Your tests should include sequences that are very “random” looking
as well as ones that are “almost” sorted.

P-11.6 Implement an in-place version of insertion-sort and an in-place version of
quick-sort. Perform benchmarking tests to determine the range of values
of n where quick-sort is on average better than insertion-sort.

P-11.7 Design and implement an animation for one of the sorting algorithms de-
scribed in this chapter. Your animation should illustrate the key properties
of this algorithm in an intuitive manner.

P-11.8 Implement the randomized quick-sort and quick-select algorithms, and
design a series of experiments to test their relative speeds.

P-11.9 Implement an extended set ADT that includes the functions union(B),
intersect(B), subtract(B), size(), empty(), plus the functions equals(B),
contains(e), insert(e), and remove(e) with obvious meaning.

P-11.10 Implement the tree-based union/find partition data structure with both the
union-by-size and path-compression heuristics.

Chapter Notes

Knuth’s classic text on Sorting and Searching [60] contains an extensive history of the
sorting problem and algorithms for solving it. Huang and Langston [48] show how to
merge two sorted lists in-place in linear time. Our set ADT is derived from that of Aho,
Hopcroft, and Ullman [5]. The standard quick-sort algorithm is due to Hoare [45]. More
information about randomization, including Chernoff bounds, can be found in the ap-
pendix and the book by Motwani and Raghavan [80]. The quick-sort analysis given in
this chapter is a combination of the analysis given in a previous edition of this book and
the analysis of Kleinberg and Tardos [55]. Exercise C-11.8 is due to Littman. Gonnet and
Baeza-Yates [37] analyze and experimentally compare several sorting algorithms. The term
“prune-and-search” comes originally from the computational geometry literature (such as
in the work of Clarkson [21] and Megiddo [71, 72]). The term “decrease-and-conquer” is
from Levitin [65].
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