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Finding Structure in Time
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Time undyrlies many interesting hunan béhaviors. Thus, the question of
how to represert time in conredionist models is very impatant. One
appoad is o represent time implicitly by its dfects onprocessing rather
than exgicitly (asin a spatial representation). The currernt report develops
a poposl aong hese lines first described by brdan (1986) which
involves the ug d recurrent links in order to provide retworks with a
dynamic menory. In this goproadh, hdden unt pattems are fed back to
themselves; the intemal representations which develop thus reflect task
demards in the mntext of prior internd states. A set of simulations is
repated which range from relatively simple problems (temporal version
of XOR) to dscowering syrtactic/semantic features for words The
networks ae able to learn interesting internal represerntations which
incorporate task demands with memory demands indeed, in this goproach
the ndion of memory is inextricably bound upwith task processng. These
representations reveal a rich structure, which alows them to be highly
conext-depencent while also expressng generali zations across classes of
items. These representations suggest a method for representing lexical
categaies andthe type/tokendistinction.
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Introduction

Timeis cleally important in cognition. It is inextricady bound upwith many behaviors (such as
language) which express themselves as tempaa sequerces. Indedd, it is dfficult to know how
one might deal with such basic problems as gal-directed behavior, planring, a causation
withou same way of represerting time.

The question of how to represent time nmight seem to arise asa spedal problem unque to
parallel processing nodels, if only becausethe parallel nature d compuation gpears to be at
odds with the serial nature d temporal everts. However, even within traditiond (serial)
frameworks, the represertation of serial order and the interaction of a serial input or output with
higher levels of representation presents chall enges. For example, in models o motor activity an
important issue is whether the action dan is a literal spedficaion d the ouput sequence, or
whether the plan represents serial order in a more abstract manner (eg., LasHey, 1951;
MacNeilage, 1970 Fowler, 1977 1980;Kelso, Saktzman, & Tuller, 1986 Satzman & Kelso,
1987 Jadan & Rosentaum, 1988) Linguistic theoreticians have perhaps tended to be less
corcemed with the representaion and pocessng of the tempora aspects to uterances
(asuming, for instance, that dl the information in an uterance is samehov macde available
simultaneoudy in asyntactic tree); but the research in natural language pasing suggedsthat the
problem is na trivially sdved (e.g., Frazier & Fodor, 1978 Marcus, 1980. Thus, whatis ore of
the most elementary facts abou much of human activity -that it has temporal extent -is
sametimesignoredand is often problematic.

In parallel dstributed pocessing nodels, the pocessing d sequential inputs ha been
accomplished in several ways. The mog common lution is to atempt to “paralels time” by
giving it a gatia representation. However, there ae problems with this appoach, and it is
ultimately nat a goodsolution. A better gpproach would be to represent time implicitly rather
than exgicitly. That is, we represent time by the effed it has onprocessing and not as an
addtiond dimension of the input.

This ppe de<ribes the results o pursuing tis gproach, with particular emphasis on
problems that are relevarnt to natural language processng. The gproach taken is rather smple,
but the reallts are sometimescomplex and urexpected. Indeed, it seems that the sdution to the
problem of time may interact with ather problems for connectionist architectures induding the
problem of symbolic representation and hav conrectionist representationsencode structure. The
current approach supports the noton oulined by Van Gdder (1989 see also Sndensky, 1987,
1988 Elman, 1989, that conrectionist representations may have a functional compasitionality
withou being syntactically compasitional.

The first section lriefly describessome o the poblems that arise whentime is represented
externaly as a gatial dimenson. The scond ®ction describesthe apgoach wsed in this work.
The major partion of this report presents the results d applying this new architedureto a dverse
set of problems. These problems range in complexity from a temporal version d the Exclusve-
OR function  thedisavely of syntactic/semantic categaiesin naura language data.

The Problem with Time

One obvbus way of deding with pattems that have a tempora extent is to represent time
expicitly by associating the serial order of the pattem with the dmensionality of the pettern
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vector. The first temporal event is represerted by the first element in the pattern vector, the
secondtemparal evert is represented bythe second paosition in the pettern vector; and soon. The
ertire pettern vector is pocessed in parallel bythe nmodel. This gproach has been used in a
variety of models (eg., Cattrell, Munro, & Zipser, 1987 Elman& Zipser, 1988;Hanson & Kegl,
1987).

There are several drawbacks to this approach, which basicdly uses a spatial metaphor for
time. First, it requires that there ke me interface with the world which bufers theinputsothat
itcan ke pesaited all at once. It is nd clea that bologcal systems make wse d such shift
regsters. There are also logcal problems;, how should asystem knowv when a bufer’s contents
shoud beexamned?

Second the shift-regster imposes arigid limit on the duraton d patterns (since the input
layer must provide for thelongest possible pettern), and further suggeds that all input vectors be
the same lengh. These pioblems are particularly troublesome in domeins such as langlage,
where onewould like mmparable representationsfor patternsthat are of variade lengh. Thisis
astrue d the basic unts of speech (phoretic segments) as it is d sentences.

Finally, andmast seriously, such an approach does nd easily distingush relative temporal
pasition from absolute emporal postion. For example, consider the following two vectors.

[ 011100000]

[ 000111000]
These two vedors appear to be instances d the same baic pattern, bu dispaced in gpace (or
time, if we gve these atempaad interpretation). However, as the geometric interpretation of

these vectors makes clear, the two petterns arein fact quite dissimilar and spatially distant! PDP
models can d couse betrained to treat these two pdterns as similar. But the similarity is a
corseqglernce d anexternal teacher and nd of the similarity structure ofthe patems themselves,
andthe desired smilarity does na generalize © novel patterns This shortcoming is grious if
one is interested in patterns in which the relative tenpora structure is preserved in the face d
absdute temparal dispacemerts.

What onewould like is a representation d time which is richer and which does not lave
these pioblems. In what follows hee, a ssimple architecture is described which hasa rumber o
desirade temparal properties and has yieldedintereding results.

Network swith Memory

The spatial representation d time desaibed abowe treats time as an explicit part of the input.
There isandher, very different possibility, which is o allow time to be represeanted by the effect
it has on pocessing. This mears giving the pocessing system dynanic propetties which are
resporsive to temparal sequerces. In shat, the retwork mustbe gvenmemory.

1. Thereader may more easily be convinced of this by comparing the locations of the vectors[100], [010], and
[001] in 3-space. Although these patterns might be considered ' temporally displaced’ versions of the same basic pat-
tern, the vectors are very different.
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OUTPUT

HIDDEN

INPUT PLAN

Figure 1. Architecture used by Jordan (1986).
Connections from output to state units are one-for-
one, with a fixed weight of 1.0. Not all connections
are shown.

This appoach can bemodified in
the following way. Suppo® a
network (shown in Figure 2 is
augmented at the inpu level by
addtiond units; call these Context
Units. Theseunits are also“hidden”
in the serse that they interact
exclusively with ohe nodes
internal to the néwork, and na the
outside world.

Imagne that there isa
sequertial inputto be pocessdl,
and some clock which reguates
presertation d the input to the
network. Processing would then
corsist of the following sequence of
evernts. At time t, the input units

There are many ways in which this can be
accomplished, and a nunber of interesting
propasals have appeared in the literature (e.g.
Jadan 1986 Tank & Hopfield, 1987;
Stornetta, Hogg, & Huberman, 1987
Watrous &  Shastri, 1987; Waibdl,
Harezawa, Hinton, Shkang & Lang 1987;
Pinedg, 1988;Williams & Zipser, 198§. One
of the most promising was suggested by
Jardan (1986. Jadan described a nework
(shavn in Figure 1) containing recurrent
conrections which were wsed to asscciate a
static pattem (a “Plan”) with a serially
ordered ouput patern (a seqlerce d
“Actions’). The reaurrent conrections allow
the neéwork’s hidden unts o see its own
previous ouput, so tha the sulseqlernt
behavior can te shaped by pevious
resporses. These recurrert conrections are
what give the retwork memory.

OUTPUT UNITS

Figure 2.

INPUT UNITS CONTEXT UNITS

A simple recurrent network in which activations are
copied from hidden layer to context layer on a one-for-one
basis, with fixed weight of 1.0. Dotted lines represent trainable
connections.

receive the first input in the sequence. Each input might be a singe scdar value ora vector,

dependng onthe ndure d the pioblem The context units are initialy set to 0.5.2 Both the input
units and mntext units activate the hdden unts; and then the hidden unts feel forward to

2. The activation function used here bounds values between 0.0 and 1.0.
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activate the ouput unts. The hdden unis also feed kad to activate the context units. This
corstitutes the forward adivation. Dependng onthe tak, there may a may nd be a learning
phase in this time gycle. If so, the ouput is compared with a teacher input and backpropagation
of error (Rumelhat, Hinton, & Williams, 1986)is weal to incrementally adjus connection

strenghs. Reaurrent conredions are fixed at 1.0 and are nd subject to adjustment. 3 At the next
time stept+1 the above sequence is repeded This ime the mntext units contain vadues which
are exactly the hdden unt vaues at time t. These context units thus povide the néwork with
memory.

Internal Representation of Time. In feedorward networks enploying hidden unts and a
leaming algorithm, the hidden units develop intemal representations for the input gatterns which
recode thase pdterns in away which enables the retwak to produce the correct ouput for a
given input. In the present architecture, the cortext units remember the previous internal state.
Thus, the hidden unis have the task of mapping bah an external input and dso the pevious
internal state to same desired ouput Because the patterns onthe hidden units are what are saved
as cortext, the hidden unis must accomplish this mappng and at the same time develop
representations which are wseful encodngs of the temporal properties d the squertial input
Thus, the internal represertations that develop are sersitive o temporal context; the effect of
time is implicit in these internal states. Note, however, that these representations d temporal
context need not [e literal. They represent a memory which is hghly task and stmulus-
depencen.

Corsider now the results of applying tis architecture to a number d problems which
involve processing of inputs which are naturally presented in sequence.

Exclusive-OR

The Exclusive-OR (XOR) function ha keen of interest kecause it canna be leamed bya simple
two-layer retwork. Instead it requiresat least three-layers. The XOR is usidly preseried as a
problem involving 2-bit input vedors (00, 11, 01 10) yielding 1-bit output vectors O, O, 1, 1,
respectively).

This pioblem can te trarslated into a tempaa domain in several ways. One \ersion
involves corstructing a sequence d 1-bit inpus by presenting the 2bit inputs ore Lt at a time
(i.e., in two time step9), followed bythe 1-bit output, then continuing with andher input/output
pair chcsenat randan. A sample input might be:

101000011110101...

Here, the first andsecond btsare XOR-edto produce the third; the fourth and fifth are XOR-ed
to give the sixth; and 9 on. Theinpus are concatenated and presented as an unbroken sequence.

In the current version of the XOR problem, the input congsted of a sequence d 3000 hts
corstructed in this manrer. This input stream was peserted to the néwork shown in Hgure 2
(with Linput unit, 2 hidden unts, loufput unt, and 2 @ntext units), ore bi at atime. The task
of the néwork was at each pont in time, to predict the nect bit in the sequence. That is, gven

3. A littlemoredetail isin order about the connections between the context units and hidden units. In the network

used here there were one-for-one connections between each hidden unit and each context unit. Thisimplies there are
an equal number of context and hidden units. The upward connections between the context units and the hidden units
were fully distributed, such that each context unit activates all the hidden units.
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the input sequerce shown, where one It is pesented & a time, the corred output at
correspondng points in timeis shown below.

input: 101000011110101...
output: 01000011110101~...

Recall that the adud inputto the hiddenlayer consists d theinputshown above, as well as
a opy d the hdden unt activations from the gevious cycle. The piediction is thus based not
just on input from the world, bu aso on he retwork’s previous state (which is @mntinuously
passedbadk to itself on each cycle).

Notice that, given the temmpora structure d this sequerce, it is only sometimes pasible to
correctly predct the rext item. When the retwork has received the first bit—1 in the example
abowe—there is a 50%chance that the rext bit will be a 1(or a Q. Whenthe ndéwork receives
the second hit (0), howewer, it should then be pasible to predct that the third will be the XOR,
1. When the fourth hit is presented, the fifth is nd predctable. But from the fifth bit, the sixth
can be predicted; andso on.

In fact, after 600 passes througha 3000 bt sequence condructed in this way, the retwak’s
ahlity to predict the squertial inpu closdy follows the above schedule. This can be seen by
looking at the sum squared error in the ouput prediction & successive pants in the inpu. The
error signal provides a wsdul guide asto when the neéwork remgnized atempaa sejuence,
because & such moments its ouputs exhbit low error. Figure 3 contains a pot of the sum

0.4
0.35 -
0.3 -
0.25 -

Error

0.2 -
0.15 -
0.1 -
0.05 -

O T T T T T T
0 2 4 6 8 10 12 14

Cycle (mod 12)

Figure 3. Graph of root mean squared error over 12 consecutive inputs in sequential XOR task. Data
points are averaged over 1200 trials.

squared error over 12 time steps (@veraged ove 1200 gycles). The error drops at those ponts in
the sequence where a crred prediction is pasble; a other pants, the error is high. Thisis an
indication tha the retwak has learned samething abou the temparal structure of the input and
is abe to use previous context and aurrent inpu to make predctions dou future inpu. The
network in fact attempts to use the XOR rule at all points in time; this fact is obsared by the
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averagng o error which was donefor Figure 3 If one looks at the ouput adivations it is
apparent from the reture ofthe errors that the retwork predicts successive inpus o be the XOR
of the pevioustwo. This is guararteed to besuccessful every third bit, and will sometimes—-
fortuitously—also reault in corred predictionsat other times.

It is interesting tha the lution to thetempara verson d XOR is smewhat different than
the static verson o the same pioblem. In a retwak with 2 hdden unis, one uit is highly
activated when the inpu sequence is a series d identical elements (all 1s or &), whereas the
other unit is highly activated whenthe inpu elements alternate. Ancther way of viewing this is
that the retwork developed unts which were sensitive to high andlow-frequerncy inputs. This is
a different solution than is found wih feedforward ndworks and smultaneoudy presented
inputs. This suggests that problems may change their naure when cast in a temporal form. It is
not clear that the sdution will be easer a more dfficult in this form; bu it is an impatant
lessonto realize that the lution may be different.

In this simulation the prediction task has been usedin a way which is somewha amalogous
to autoassociation. Autoassociation is a useful technique for discovering the intrinsic structure
possessed bya set of patterns This accurs because the retwark must transform the pdterns into
more compact representations; it generally doesso by exgoiting redundarciesin the tterns.
Finding these redundhrcies can be & interest for what they tell us abou the similarity structure
of the data set (cf. Cattrell, Munro, & Zipser, 1987 Elman & Zipser, 1989.

In this simulation the gal wasto find the temporal structure d the XOR squence. Simple
auoasscaciation would na work, since the tak of simply reproduwcing the inpu at dl points in
time is trivially sdvable and doe nd require sensitivity to sequertia paterns. The pediction
taskis wseful because its sdution requires thatthe retwak be sensitive to temporal structure.

Structure in Letter Sequences

One quetion which might ke asked is whether the menory capacity of the rnetwork architecture
employed lere is sufficient to deted more complex sequential patternsthan the XOR. The XOR
pattem is smple in several respects. It involves sngle-bit inpus, requires a memory which
extends only one ht badk in time, and there are ony four different input paterns. More
challenging inputs would require multi-bit inputs d greater temporal extent, and a larger
inventory of possible sequences. Variahlity in the duation of a pattem might also complicate
the problem.

An input seqernce was avised which was intencedto provide just these orts d complications.
The sequence was mmposed of six different 6-bit binary vectors. Althoughthe vectors were not
derived from rea speech, ore mght think of them as representing eech sounds with the six
dimensions d the vector corresponding o aticulatory features. Tabde 1 shows the vector for
each o thesix letters.

The sequence was formed in two steps. First, the 3 consonants (b, d, g were combined in
randon oder to obin a 1006 etter sequence. Then each consorant was replaced usng the
rules

b O ba
dQd di
g guu
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Table 4 Vector Definitions of Alphabet

Consonant Vowel Interrupted High Back Voiced
b [1 0 1 0 0 1]
d [1 0 1 1 0 1]
g [ 1 0 1 0 1 1]
a [0 1 0 0 1 1]
i [0 1 0 1 0 1]
u [0 1 0 1 1 1]

Thus, an initial seqerce of the form dbgbddg... gavelise to the final sequerce
diibaguuubadiidiiguuu... (each letter keing represernted by oe ofthe abowe 6-bit vedors). The
sequence was semi-randont cononants accurred randomly, bu following a gven corsoran the
idertity and number of following vowels was regular.

The baic netwak used in the XOR simulation was expanded to provide for the 6bit input
vectors; there were 6input units, 20hiddenunits, 6 output units,and20 context units.

The training regmeninvolved presenting each 6-bit input \ector, one at a ime, in sequence.
The task for the néwork wasto predict the next input. (The sequence wrapped aound,such tha
the first pattern was presented ater thelast.) The retwak was trained on 200 psses throughthe
seqerce. It was then tested onandher sequencewhich obeyed the sameregularities, bu created
from a dfferert initial randamization.

The erorsgnal for pat of this testing plese is showvn in Fgure 4.

1.4

h (U)

Figure 4. Graph of root mean squared error in letter prediction task. labels indicate the correct output
prediction at each point in time. Error is computed over the entire output vector.
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Target oufputs are shown in paenthesis, and the gaph gdots the crrespondng eror for each
predction. It is obvious that the error oscillates markedly; at same ponts in time, the gediction
is correct (and eror is low), while at other paints in time the ability to correctly predict is
evidertly quite poa. More precisdy, eror tendsto be high when predicting corsonants, and low
whenpredcting thevowels.

Given the ndure of the sequence, this bénavior is ®nsible. The consonants were adered
randanly, butthe vowels were nd. Once the néwork has goten a wnsonant asinput, it can
predct the identity of the following vowel. Indeed it can domore; it knows hav many tokens of
the vowel to expect. At the end d the vavel sequerce it has noway to predict the net
corsorart. At these pantsin time, the aror is high.

This globd error pattern does nd tell the whole story, hovever. Remember that the input
pattems (which are also the patternsthe retwork is trying o predict) are 6bit vectors. The eror
shown in Figure 4 is the sum squared error ove all 6-bits. Examine the error on a hit-by-bit
basis; a gaphof the error for bits[1] and[4] (over 20time steps) is shown in Figure 5. There is a

14 14

1.2 4 1.2 4

0.8 1 0.8 1
0.6 1 0.6 1

0.4 1 0.4
(0)
@

@ ©
(u) ¥ (@)

0 §-()—~C(d) tey

0.2

Figure 5. (a) Graph of root mean squared error in letter prediction task. Error is computed on bitl ,
representing the feature CONSONANTAL. (b) Graph of root mean squared error in letter prediction
task. Error is computed on bit 4, representing the feature HIGH.

striking dfference in the error paterns. Error on predicting the first bit is congstently lower than
error for the fourth bit, and atall paintsintime. Why shoud this be so?

The first bit corresponds to the feature Consanant; the fourth bit corregponds © the feaure
High. It hgppenstha while al cononants have the same vdue for the feature Consanant, they
differ for High. The neéwork has learned which vowels follow which consorarts; this is why
error on vowels is low. It has aso learned hav many vawvels follow each cononant. An
interesting corollary is that the retwork also knowvs hav soonto expect the rext consorart. The
network canna know which consorart, butit cancorrectly predict thata consorant follows. This
iswhy the bi paterns for Consanant show low error, and the bt pattems for High show high
error. (It is this behavior which requres the use of context units; a smple feedorward network
coud learn the transitiond probabilitiesfrom oneinput to the next, bu could notlearn patterns
that spanmore thantwo inputs.)

This simulation cenonstrates an interesting pant. This inpu sequence wasin some ways
more complex than the XOR input. The serial patterns are longe in duration; they are of variable
lengh so that a prediction dgends ona \ariable mourt of temporal context; and each input
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corsists of a 6hit rather than a thit vedor. One might have reasorally thougtt that the more
extenced seqerntial depencercies of these patterns would exceed the temparal processing
cgpacity of the netwak. But aimostthe opmsiteis true. The fad that there ae sibregularities (at
the level of individud bit patterns) enables the retwark to make partial predictions even in cases
where the complete prediction is notpassible. All of thisis depencert onthe fact that the input is
structured, of course. The lesson sems to be that more extendced squential dependencies may
not necessarily be more dfficult to learn. If the dependencies are structured, that structure may
make learning easier and nd harder.

Discovering the notion “word”

It is takenfor granted tha learning alanguage involves (among many other thingsg learning the
sound of tha langwage, as well as the morphemes and words. Many thearies of acquisition
depend crucidly on such primitive types @ word, or morpheme, a more abstract categories as
noun verb, a phrase (e.g., Berwick & Weinberg, 1984 Pinker, 1984. It israrely asked how itis
that a languwage learner knows to begin with tha these aentities exist. Thes notons are dten
assumedto be innate.

Yet in fact, there is considerable debate among lingusts and pgcholingusts aboutwhat are
the representations sedin language. Althoughitis commonpaceto speak of basic urits such as
“phoneme,” “morpheme,” and “word”, thes condructs have no clear and umontroversial
definition. Moreover, the commitment to such dstinct levels d representation leaves a troubling
residue of entitiesthat appea to lie ketween the levels. For ingance, in many languages, there
are soundmeanng correpondences which lie between the phoreme and the morpheme (i.e.,
soundsymbdism). Even the concept “word” is na as straightforward as onemight think (cf.
Greenlerg, 1963 Lehman, 1962) Within Endish, for instance, there is noconsistently definable
distinction ketween words (e.g., “appl€’), compourds (“apple p€’) and phrases (“Library of
Congess’ or “man in the street”). Furthermore, languayes dffer drametically in what they treat
as words. In pdysynrthetic langwages (e.g., Eskmo) what would be clled words nore reardy
resemble what the Englishspeaker would call phrases or entire sentences.

Thus, the most fundamertal corcepts d lingustic aralysis have a fluidity which & the very
least suggests an important role for leaming; and the exact form of the thoseconcepts remains an
openandimportant question.

In PDP ndworks, representational form and representationd content often can be learned
simultaneoudy. Moreover, the representations which reault have many of the flexible and graded
characteristics which were nded aove. Thus, ore @an ask whether the ndion “word” (or
samething which maps onto this concept) coud emerge as a corsequerce d leaming the
sequertial structure of letter sequences which form words and sernternces (out in which word
boundries are nd marked).

Let usthusimagne another version of the previoustask, in which the letter sequences form
real words, andthe words form senterces. The inpu will corsist of the individual letters (we will
imagine these as andogousto speech sound, while recognzing tha the athogaphic input is
vastly simpler than acoustic inputwould be). The letters will be presentedin ssquence, ore at a
time, with no ress ketween theletters in aword, and no be&s betweenthe words of dfferent
serterces.

Swh a seqlence was created using a sentence generating program and a lexicon of 15

words.* The pogram gererated 200sentences d varying lengh, from 4to 9 words The
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serterces were ancatenated, forming a stream of 1,270 words. Next, thewords were kroken into
their letter parts, yielding 4963 ktters. Finally, each letter in each word was convetedinto a 5-
bit randomvector.

The resut was a stream d 4,963 €parate 5bit vedors, ore for each letter. These vectors
were the input andwere preserted ore at atime. Thetask at each pdnt in time wasto predict the
next letter. A fragmert of theinputand desired outputis shown in Table 2.

Table 6

Input Output
0110 m 0000 a
0000 a 0111 n
0111 n 1100 y
1100 y 1100 y
1100 y 0010 e
0010 e 0000 a
0000 a 1001 r
1001 r 1001 S
1001 s 0000 a
0000 a 0011 g
0011 g 0111 o]
0111 o] 0000 a
0000 a 0001 b
0001 b 0111 0
0111 o] 1100 y
1100 y 0000 a
0000 a 0111 n
0111 n 0010 d
0010 d 0011 g
0011 g 0100 i
0100 i 1001 r
1001 r 0110 I
0110 I 1100 y
1100 y

4. The program used was asimplified version of the program described in greater detail in the next simulation.
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A network with 5 input unts, 20 hidden units, 5 output urts, and 20 conext unts was
trained on 10complete presentations ofthe sequence. The error was relatively high d this pant;
the sequence was sufficiently randam that it would be dfficult to obtin very low error without
memorizing the ertire sequence (whichwould have requredfar more than 10presentations).

Nonetheless, a giaph of error over time reveals aninteresting pattem. A partion d the emror
is plotted in Figure 6; each data pant is marked with the letter that should be pedcted at that
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Figure 6. (a) Graph of root mean squared error in letter-in-word prediction task.

point in time. Notice that atthe on®t of each new word, theeror is high. As more of theword is
received the error declines since the sequernceisincreasingly predictable.

The error thus provides a goodclue as o what are recurring quences in the input, and
these arrelate highly with words. The informationis na categorical, however. The error reflects
statistics d co-occurrence, andthese are graded. Thus, while it is posible to determine, more or
less, what sequences mnstitute words (those sequernces boundd by Hgh error), the critera for
boundries arerelative. This leads to ambiguities, as in the case d the y in they (see Figure 0} it
coud also lead to the misidentification of common sequences tha incorporate nore than one
word, but which co-occur freqently enough o be treated as a quasi-unit. This is the ort of
behavior observed in children, who at early stages d languwage aquisition may treatidioms and
other formulaic plrases as fixedlexical items (MacWhinney, 1978).

This simulaton shoud na be taken as a nodel of word aayuisition. While listeners are
clearly able b make predctions baed on patia inpu (Marsen-Wilson & Tyler, 1980;
Grogiean, 198Q Sdasoo & Pisoni, 1985, predction is na the mgor god of the language
leamer. Furthermore, the co-occurrence of sounds is only part of what identifies aword as such.
The eavironment in whichthosesounds are utered, andthelingustic context are equally critical
in estadishing the mherence d the sound sequence and associating it with meaning. This
simulation focuses on oty a limited prt of the information available to the language learner.
The simulation makes the simple pont that there is information in the signd which could srve
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as a ae as b the boundries of linguistic units which must ke learned, andit demorstrates the
ahlity of simple recurrent netwarks to extract this information.

Discovering lexical classesfrom word order

Corsider now another problem which arises in the context of word squences The ader d
words in senterces reflects a number of condraints. In languages suwch as Endish (so-called
“fixed word-order” langwages), the oder is tightly constrained. In many other languayes (the
“free word-order” langlages), there is greater optionality asto word order (but even here the
order is not free in the serse of random). Syntactic structure, selectional redrictions,
sulrategaization, and dscouse @nsiderations are anongthe many fadors which join together
to fix the oder in which words acur. Thus, the ssquential order d wordsin sentercesis reither
smple na isit determined by a single cause In addtion, it has keen agued tha generalizations
abou word order cannot ke accourted for solely in terms d linear ader (Chonsky, 1957
Chamsky, 1965) Rather, there is an adract structure which undrlies the suface strings and it
isthis structure which provides a more insightful basis for understanding the constraints onword
order.

While it is undoubtdy true tha the surface oder d words doe not povide the most
insightful basisfor generalizations about word order, it is also true tat fromthe pont of view of
the listener, the surface oder is the ory thing visible (or audble). Whatever the abstract
underlying structure be it is aued by e surface forms and therefore that sructure is implicit in
them.

In the previoussimulation, we saw that anetwork was able to learn thetemporal structure of
letter sequences. Theorder of lettersin that smulation, havever, can be gven with a small set of

relatively smple mles>® The rules for determining word order in English, onthe oher hand, will
be mmplex and numerous. Traditiond accournts of word order generally invoke symbolic
processing systems to express abstract structural relatonships. One might therefore easily
believe that there is a qualitative dfference in the rature d the computation required for the last
simulation, andthat requiredto predict the word arder of English sertences Knowledge o word
order might require ymbadlic representations which are beyondthe capacity of (apparently) non-
symbdic PDP g/stems. Furthermore, while it is true, as panted ou above that the surface
strings may be cuesto abstract Sructure, corsiderable innae knowledge may berequired in order
to reconstruct the abstract structure from the surface strings. It is therefore aninteresting question
to ask whether a retwork can learn any aspects of that undelying abgract structure.

Simple sentences. As a first step, a samewhat modest experiment was undertaken. A sentence
gererator program was weal to corstruct a set of shat (two and threeword) utterances. 13
classes of nours and verbs were chosen; these are listed in Table 3. Examples of each categay
are given; it will be notced that instances of some categories (e.g, VERB-DESTROY) may be
includedin others (eg., VERB-TRAN). There were 29 different lexical items.

5. Inthe worst case, each word constitutesa rule. More hopefully, networks will learn that recurring orthographic
regularities provide additional and more general constraints (cf. Sejnowski & Rosenberg, 1987).
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Table 3 Categaies d lexical items used in sentence simulation

Category Examples
NOUN-HUM man, woman
NOUN-ANIM cat, mouse
NOUN-INANIM book, rock
NOUN-AGRESS dragon, monster
NOUN-FRAG glass, plate
NOUN-FOOD cookie, sandwich
VERB-INTRAN think, sleep
VERB-TRAN see, chase
VERB-AGPA move, break
VERB-PERCEPT smell, see

VERB-DESTROY
VERB-EA

break, smash

eat

The geerator program used thesecategories and the 15sentence templates gvenin Table 4

Table 4 Templates for sentence gene ator

WORD 1 WORDS WORD 3
NOUN-HUM VERB-EAT NOUN-FOOD
NOUN-HUM VERB-PERCEPT NOUN-INANIM
NOUN-HUM VERB-DESTROY NOUN-FRAG
NOUN-HUM VERB-INTRAN
NOUN-HUM VERB-TRAN NOUN-HUM
NOUN-HUM VERB-AGPAT NOUN-INANIM
NOUN-HUM VERB-AGPAT
NOUN-ANIM VERB-EAT NOUN-FOOD
NOUN-ANIM VERB-TRAN NOUN-ANIM
NOUN-ANIM VERB-AGPAT NOUN-INANIM
NOUN-ANIM VERB-AGPAT
NOUN-INANIM VERB-AGPAT
NOUN-AGRESS VERB-DESTORY NOUN-FRAG
NOUN-AGRESS VERB-EAT NOUN-HUM
NOUN-AGRESS VERB-EAT NOUN-ANIM
NOUN-AGRESS VERB-EAT NOUN-FOOD

to create 10000 rmandom two- and three-word sentence frames. Each sertence frame was then
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filled n byrandomy selecting one 6the passble words appopriate to each caegory. Each
word was repdaced by arandonly assgned 3bit vector in which each word was represented by
a different hbit. Whenrever the word was present, that bit was flipped on. Two extra kts were
reservedfor later simulations. This encoding scheme guwrarteed that each vedor was athogoral
to every other vedor and refleded nahingaboutthe form dassor meaning of the words. Finally,
the 27354 word vectors in the 1Q000 sentences were concatereted, so that an input stream d
27,354 31hit vectors was created. Each word vector was dstindt, bu there were no lveaks
between successve entences. A fragmert of the inpu streamis shovn in column 1 d Table 5,
with the Endish gossfor each vector in parentheses. Thedesired outputis given in column 2.

Table 5 Fragment of training ssquences for sentence simulation

INPUT OUTPUT
0000000000000000000000000000010 (woman) _0000000000000000000000000010000 (smash)
0000000000000000000000000010000 (smash) 0000000000000000000001000000000 (plate)
0000000000000000000001000000000 (plate)  0000010000000000000000000000000 (cat)
0000010000000000000000000000000 (cat) 0000000000000000000100000000000 (move)
0000000000000000000100000000000 (move)  0000000000000000100000000000000 (man)
0000000000000000100000000000000 (man)  0001000000000000000000000000000 (break)
0001000000000000000000000000000 (break) ~ 0000100000000000000000000000000 (car)
0000100000000000000000000000000 (car) 0100000000000000000000000000000 (boy)
0100000000000000000000000000000 (boy) 0000000000000000000100000000000 (move)
0000000000000000000100000000000 (move)  0000000000001000000000000000000 (girl)
0000000000001000000000000000000 (girl) 0000000000100000000000000000000 (eat)
0000000000100000000000000000000 (eat) 0010000000000000000000000000000 (bread)
0010000000000000000000000000000 (bread)  0000000010000000000000000000000 (dog)
0000000010000000000000000000000 (dog) 0000000000000000000100000000000 (move)
0000000000000000000100000000000 (move)  0000000000000000001000000000000 (mouse)
0000000000000000001000000000000 (mouse) 0000000000000000001000000000000 (mouse)
0000000000000000001000000000000 (mouse) 0000000000000000000100000000000 (move)
0000000000000000000100000000000 (move)  1000000000000000000000000000000 (book)
1000000000000000000000000000000 (book)  0000000000000001000000000000000 (lion

For this simulation a retwak was usd which was similar to that in the first simulation,
except tha the input layer and ouput layers contained 31 nodes each, andthe hidden and context
layers corntained 150nodes each.

The task gven to the néwork wasto lean to predict the ader d successive words The
training strategy was as follows. The sequence d 27,354 31bit vedors formed an input
sequernce. Each word in the squence was input, ore at atime, in arder. The tak on each input
cycle wasto predict the 31bit vector correponding o thenext word in the sequence. At the end
of the 27354 word squence, the pocess kegan again withou a lre& starting with the first
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word. The training cortinued in this manner untl the retwark had experienced 6 complete passes
throughthe sequence.

Measuing the peformance of the retwak in this simulation is nd straightforward. RMS
error after training dropped to 0.88. When ouput vectors are as arse as those sed in this
smulation (only 1 ou of 31 hits turned on), the retwork quickly learns to turn al the ouput
units df, which drops error from the initial randan vdue d ~155 to 10. In this light, a final
error of 0.88doesnot seemimpressive.

Recall that the prediction task is nondeterministic. Successors annd be predicted with
absdute certainty. There is thusa bult-in eror which is inevitable. Nonetheless, although the
predction cannot ke error-free, it is aso true that word order is notrandom For any given
sequence of words there are a limited number of possible siccessors. Under these circumstances,
the ndéwork should lean the expected frequerncy o occurrence d each d the passble successor
words; it should then adivate the output nodespropationd to theseexpeded frequencies.

This suggeststhat rather thantesting netwak performance with the RMS error calculated on
the adual successors, the ouput should be compared with the expected frequercies of
occurrence of pasible successors. These expected latter values can be determined empirically
from the training crpus. Every word in a sentence is mmpared against all other sentencesthat
are, upto that pant, idertical. Theseconditute the comparison st The probahility of occurrence
for al possible succeswors is then determinedfrom this set This yieldsa vector for each word in
the training set. The vector is d the sme dmensionality as the ouput vector, bu rather than
represerting a dstinct word (by tuming a a singe hit), it represents the likelihood of each
possible word occurring next (where each hbit position is a fradiond number equal to the
probahility). For testing purposes this likelihoodvedor can be usedin place of theactual teacher
anda RMS error compued kesed onthe comparison with the retwork output. (Note that it is
appopriate to use these likelihood vetors orly for the teding phase. Training must be done on
actual successors, becausethe pointis to forcethe retwak to learn the probabilities.)

When performarnce is evaluated in this manner, RMS error onthe training set is 0.053 (s
0.100). One remaining minor problem with this error measure istha whereas the elementsin the
likelihood edors must sum to 10 (since they represer probabilities), the activations of the
network need nd sumto 10. It is cornceivable that the retwork oufput learns the relative
frequercy o occurrerce of successar words more readly than it gpproximates exact
probahilities In this case the shepe of the two vectors might be similar, but their length different.
An atemative measure which normalizesfor length differencesand captures the degee to which
the shape ofthe vedorsissimilar is thecosne d the angle betweenthem. Two vectors mght be
parallel (cosine d 1.0) bu ill yield an RMS error, and in this case we might fed that the
network has extracted the audal information. The mean cosne d the angle between network
output ontraining items andlikelihood vectorsis 0.916 (sd 0.123) By either measure, RMS o
cosine, the nework seans to have learned to goproximate the likelihood ratios d potential
SUCCESsas.

How has this keen accomplished? The inpu representations give noinformation (such as
form-class) that coud be usd for prediction. The word vectors are othogona to each other.
Whatever generaizations are true of classes of words mug be learned from the co-occurrence
satistics, and the composition d those classes must itself belearned.

If indeed the retwork hasextracted such generalizations, as oppaed to simply memorizing
the sequernce, one might exped to seethese patterns energein the internd represertations which
the ndework develops in the couse d learning the task. These internal representations are
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cgptured bythe pattem of hiddenunit activationswhich are evoked in regponseto each word and
its context. (Recdl tha hidden unts are activated by boh input units and also context units.
There are norepresentations of wordsin isolation.)

The ndure d these internal representations was studied in the following way. After the
leaming phase d 6 complete passes throughthe corpus, the mnredion strengths in the retwark
were frozen The input stream was pased through he retwak onre final time, with no karning
taking place. During this teding, the netwak produced predictions d future inputs onthe ouput
layer. These were ignored Instead the hidden unt activationsfor each word+context inpu were
saved resuting in 27,354 1506hit vectors. Each word occurs many times, in differernt contexts.
As a first appoximation d a word’s piototypicad or composite representation, dl hidden unit
activation patterns produced by a gvenword (in all its contexts) were averagedto yield a single

150-bit vector for each d the 29unique words in the input stream (In the next section we will
see howit is posible to gudy the internd representations of words in context.) These internd
representations were then aubject to a herarchical clustering analysis. Figure 7shows the
resuting tree this tree reflects the similarity structure d the internal representations of these
lexical items. Lexical items which have similar propertiesare gouped together lower in the tree,
andclusters d similar words which resemble other clusters are conreded higherin the tree.

The nework has discovered that there are several magjor categaies of words One large
category corresponds to verbs andher categay correspond to nours. The veb categay is
broken davn into groups which requre a drect olject; which are intransitive; andfor which a
direct olject is optonal. The nouncategay is bioken into mgjor groups for inanimates, and
animates. Animates are dvided into human and nornr-human; the nonhuman are divided into
large animas and smadl animals. Inanmates are kroken into breakalles, edbles, and nous
which appeared assuljects of agent-lessactive verbs

The nework has developeal internal representations for the input vectors which reflect facts
abou the possible sequential ordering d the inpus. The network is not able o predict the precise
order of words, bu it recognizes that (in this corpus) thereis a dass d inputs (viz., verbs) which
typically follow ather inpus (viz., nours). This knowkdge of class kehavior is quie cetail ed;
from the fad that there is a dass d itemswhich always precedes “chas€’, “break’, “smash”, it
infers that the large anmals form a class.

Sewera points shoud be emphasized First, the category structure appears t© be hierarchical.
Thus, “dragors’ are large animals, but also members d the class d [-human, +anmate] nouns
The hierarchical interpretation is achieved throughthe way in which the spatial relations (of the
represertations) are aganzed. Representations which are rear ore another in the
represertational space form classes, while higher-level categories corregpond b larger and nore
gerera regons d this gace.

Second it is aso true that the herarchicdity is “sdft” and implicit. While some categories
may ke quaitatively distinct (i.e., very far from each aher in space), there may dso be dher

6. Tony Plate (personal communication) has pointed out that this technique is dangerous, inasmuch as it may intro-
duce astatistical artifact. The hidden unit activation patterns are highly dependent on preceding inputs. Because the
preceding inputs are not uniformly distributed (they follow precisely the co-occurrence conditionswhich are appro-
priate for the different categories), this means that the mean hidden unit pattern across al contexts of aspecific item
will closely resemble the mean hidden unit pattern for other itemsin the same category. This could occur even with-
out learning andis a consequence of the averaging of vectorswhich occurs prior to cluster analysis. Thus the results
of the averaging technique should be verified by clustering individual tokens; tokens should always be closer to other
members of the same type than to tokens of other types.
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Figure 7. Hierarchical cluster diagram of hidden unit activation vectors in simple sentence prediction task.
labels indicate the inputs which produced the hidden unit vectors; inputs were presented in context, and
the hidden unit vectors averaged across multiple contexts.
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categories which share properties and have less dstinct boundries. Categay membershp in
same cases may be marginal or unambiguous.

Finally, the contert of the categories is na known to the retwak. The retwork has no
information avail able which would “ground” the structural informaton in the real world. In this
respect, the retwork has much less information to work with than is availade to real language

leamers.” In amore realistic modd of aaquisition, one mightimagine that the uterance provides
one souce of information abou the rature of lexical categories the world itsdf provides another
souce. One mght model this by embeddng the “lingustic” task in anenvironment; the network
would have the dua task d extracting structural information contained in the uterance, and
extracting structural information abou the environment. Lexicd meaning would grow out d the
asscciationsof these two types of input

In this simulation, an impartant comporent of meaning is @wntext. The representation of a
word is closely tied upwith the sequence in which it is enbedded. Indeed, it is incorrect to speak
of the hiddenunit patterns asword representations in the conventional sense, sncethese mtterns
alsoreflect the prior context. This view of word meaning, i.e., its depencence oncontext, can be
demonrstratedin the following way.

Freeze the connedions in the retwak that has jug been trained, s that nofurther learning
occurs. Imagine a nowel word, zog which the néwork has never seen before (we assign to this
word a [t pattern which is differert than those it was trainedon). Thisword will be wsed in place
of the word mar everywhere that man could occur, zog will occur instead A new sequernce of
10,000 serterces is created, and presented orce to the trained retwak. The hidden unt
activations are saved and subjected to a hHerarchical clustering aralysis of the same sort used
with the training data.

The resuting tree is s1own in Figure 8 The internal representation for the word zog bears
the same relationship to the dher words as did the word manin the ofigind training set. This
new word has been assgnedaninterna representation which is consistent with what the retwork
has already leamed (no leaning ocurs in this simulaton) andwhich is congstent with the new
word’'s bénavior. Another way of looking & thisis in certain corntexts, the néwork expects man
or samething very much like it. In just such a way, one can imagine real language learners
making use d the cues piovided by word order to make intelligent guesses abou the meaning of
novel words.

Althoughthis simulation was not asigned to provide a nodel of context effects in word
recogntion, its béavior is cnsistent with findings that have been describedin the experimental
literature. A number of investigaors have suded the dfects d sentertial context on word
recogntion. Although sme researchers hare claimed tha lexical accessis insersitive to context
(Swinney, 1979) there are aher results which suggest that whencontext is sufficiently strong, it
does indeed selectively facilitate access © related words (Tabass, Coombo, & Job, 1987).
Furthermore, individual items are typically not wery predictable but classes of words are
(Tabessi, 1988; Schwarenflugel & Shoben, 1985. This is precisely the patem found tere, in
which the error in predcting the adud next word in a gven cortext remains high, bu the
network is able to predict the goproximate likelihoodof occurrence of classes o words.

7. Jay McClelland has suggested a humorous--but entirely accurate--metaphor for this task: It islike tryingto learn
alanguage b y listening to the radio.
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Figure 8. Hierarchical clustering diagram of hidden unit activation vectors in simple sentence prediction
task, with the addition of the novel input ZOG.

Types, tokens, and stru cturedrepresentations

There ha been condderable dscusson abou the ways in which PDP retwarks differ from
tradtional computational models. One gpaent difference is tha traditional modds involve
symbdic representations, whereas PDP rets seem to many people o be nonr or perhaps sub
symbdic (Foda & Pylyshyn, 188, Smadersky, 1987, 1988 This is a dfficult and complex
isSUe, in part because the ddinition of symbd is problematic. Symbols do many things, and it
might ke more usful to contrast PDP vs traditional models with regard to the various functions
that symbols canserve.

Both tradtional and PDP retworks involve representations which are symbdic in the
specific serse that the representations refer to ather things. In tradtional systens, the symbols
have nanes such as A, or X, or 3. In PDP nds, the internd representations are ganerally
activation patterns acrossa st d hidden urits. Although bdh kinds of representations do the
task d referring, there are important dfferences. Classical symbals typically refer to clases or
categories, whereas in PDP rets the represertations may be hghly conext-depencert. This doe
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nat meantha the representations donot capture information abou category or class(this should
be clea from the pevious simulation); it does mean that there is room in the representation
scheme asoto pick outindividuals.

This piopety of PDP representations might seemto someto be a serious daw-back. In the
extreme, it suggests that there muld be separate representations for the entity Johnin every
differert cortext in which that entity canoccur, leading o aninfinite number ofJohn. But rather

than keing a diawback, | suggest this agped of PDP retworks sgnificartly extends their
representational power. Theuseof distributed representations, together with the use of context in
representing words (which is a omnsequence d simple recurrent netwarks) provides ore lution
to athorny problem -the question of hav to represent type/'token differences - and dheds insight
onthewaysin which dstributedrepresenations canrepresen structure.

In order to justify this claim, let me beyin by mmmening onthe representational richness
provided by the dstributed representations daveloped aadoss the hdden unts. In locdist
schemes, each nock stands for a sparate corcept. Acquiring nev concepts wswally requires
addng rew nodes. In contrast, the hdden unt patterns in the simulations reported here have
tenced to develop dstributed representations. In this scheme, concepts are expressed as
activation patterns ower a fixed number d nodes. A given nod paticipates in representing
multiple conaepts. It is the activation pattern in its ertirety thatis meaningful. The activation of
anindividual nodemay be unnterpretable in isolation (.e., it may na evenrefer to a feature a
micro-feature).

Distributed representations have a nunber of advartages ower localist representations

(althoughthe latter are nd withou their own bervafits).8 If the unts are aralog (i.e., capable o
assuming activation states in acortinuousrange between some minimum andmaximum values),
then there is in principle nolimit to the number of conoepts which can be represented with a
finite set d units. In the simulations tere, the hdden unt pattems dodoube duy. They are
requred nd only to represent inputs, butto develop represertations which will seve & wseful
encodngs of temporal context which can ke ugd when processing sulseqlen inpus. Thus, in
theay, aralog hidden units would also be capable of providing infinite memory.

Of couse, there are many reasors why in practice the memory is bounad, and why the
number of conceps that can be stored is finite. There is limited numeric predsion in the
madhineson which these smulations are n; the adivation function is repetitively apgied to the
memory and resuts in exponenitial decay, and the training regmen may nd be ogimal for
expoiting the full capadty of the retwaks. For instance, many d the smulations reported here
involved the prediction task. This task incorporates feedlack onevetry training cycle. In other
pil ot work, it wasfoundtha there was poorer performance in taksin which there was a celay in
injecting eror into the retwork. Still, just what the representational capecity of these simple
recurrent networks is remains an open quedion (put see Sevan-Schreiber, Cleeremans, &
McClelland, 1988.

Having made these peliminay obsevations, let us nav return to the quetion o the
conext-sersitivity of the representations aveloped in the smulations repated here. Consider
the sertence-processing simulation. It was fourd that after leaming to predict words in sertence
sequerces, the retwork developed representationswhich reflected aspects d the words' meaning
aswell astheir grammatical caegory. Thiswas appaentin the similarity sructure ofthe internal
represertation of each word; this structure was presented graphically as atree in Figure 7.

8. These advantages are discussed at length in Hinton, McClelland, and Rumelhart (1986).
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In what serse are the representations that have been clusteredin Figure 7 context-sersitive?
In fact, they are nd; recdl that these representationsare compostes d the hidden unit activation
pattems in reporse © each word averaged aaoss many dfferent contexts. So the hdden unit
activation pattem used to represent boy, for indance, was redly the mean \ector of activation
pattems in reporse toboy as it occursin many different cortexts.

The reason for using the mean vector in the previous analysis was in large part practical. It is
difficult to doa herarchical clustering of 27454 ttems, and even more dfficult to display the
resuting tree gaphically. However, ore might want to know whether the patterns dsplayed in
the tree in Figure 7 are in any way artifadtual. Thus, a £oondardysis was carried out in which
al 27,454 @ttems were dustered. The treecanna be dspayed here, bu the numerical results
indicate that the tree would be identical to the tree shown in Figure 7. except that instead of
endng with the terminals that stand for the dfferert lexical items, the branches would continue
with further arborization containing the specific indances d each lexicd item in its context. No
instance d anylexical item gppears inappopriately in the branch belonging © ancther.

It would be aorrect to think of the tree in FHgure 7 as showing that the retwork has
discovered that amongst the sequence d 27,454 npus, there are 29 types. These types are the
different lexical items hown in that figure. A finer-grained analysis reveals that the network also
distingushes letween the specific occurrences d each lexica item, i.e., the tokers. The internal
represertations d the vaious tokens d a lexical type are very similar. Hence, they all are
gatheredunder a singe branch in the tree. However, the intemal representations also make subtle
distinctions ketween (for example), boy in one cortext andboy in andher. Indeed, as similar as
the represertations d the varioustokers are, notwo tokens d atype ae exactly identical.

Even more interesting is that there is asub-structure d the representations o the \arious
types of a token. This can ke seen by looking a Figure 9, which shows the subtrees
correspondng to the tokens of boy andgirl. (Think of these as expansions oftheterminal leaves
for boy and grl in Figure 7.) The individual tokens are dstinguished bylabels which indicate
their original cortext.

One thing that is goparent is that sub-trees d both types ( boy and girl) are similar to one
andher. On closer scrutiny, we seethat there is same aganization here; (with some exceptions)
tokers d boy which occur in sentence-initia position are clustered together, andtokens ofboy in
serterce-final podtion are clustered together. Furthermore, this same pattern occurs amongthe
pattems representing girl. Sertence-final words are clustered together onthe lasis of similarities
in the precedng words. The basis for clugering of sentence-initial inpus is sSmply that they are
al precedal by what is effectively noise (prior sentences). This is kecause there are nouseful
expectatonsabou the sertence-initial noun(other than thatit will be a noun) lased on te prior
serterces. On the ohe hand one can imagne that if there were sme dscouse structure
relating serternces o each ather, thenthere mightbe wseful information from onesenterce which
would affect the representation of sentence-nitial words. For example, such information might
disambiguate (i.e., give referential contert to) sentence-initial pronouns.

Once gyain, it is wsdul to try to understand theseresults in geometric terms. The hidden unit
activation patterns pck out ponts in a high (out fixed) dmensiona space This is the space
available o the retwork for its internd representations. The nework structures that space, in
swch a way that important relations between entities is trandated into spatial relationships.
Entities which ae nours are located in ore regon of space and vebs in ancther. In a similar
manrer, differert types (here, lexica items) are dstinguished from oneandher by occupying
different regons of space; bu also, tokers of a same type are differertiated The differentiation
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Figure 9. Hierarchical cluster diagram of hidden unit activation vectors in response to some
occurrences of BOY and GIRL. Upper-case labels indicate the actual input; lower-case labels
indicate the context.

is nonrandom and the way in which tokens d onetype are elaborated is similar to elabaation
of andher type. That is, John, bears the same atial relationship to John, as Mary; bears to
Marys,.

This ug o context is appealing, because it provides the bais bdh for establishing
gereraizaions abou classes of items andalso allows for the taggng of individual items by their
context. The resut is that we ae able to identify types at the same ime & tkens. In symbolic
systems, type/token dstinctions are dten made byindexing or bnding operations; the retworks
here provide an dternative accourt of how such dstinctions can be made without indexing or
binding.

Conclusions

There are many human béhaviors which unfold ower time. It would be folly to try to understand
those bdnaviors withouttaking into accounttheir temporal nature. The current se of simulations
expores the corsequernces d attenpting to develop an representations d time which are
distributed task-depencert, andin whichtime is represented implicitly in the nework dynamics.

The approach described here enploys a smple architecture butis surprisingly powerful. The
are severa points worth highlighting.

» Same problems change their nature when expressed @& tempaal events. In the first
smulation, a eqtential version of the XOR was leaned. The sdution to this poblem
involveddetection of state changes, andthe development of frequerncy-sensitive hidden units.
Casting the XOR problem in tenpora terms led to a dfferent solution than is typically
obtainedin feed-forward (smultaneousinpuf netwaks.
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The time-varying error signd can be @$ed & a clue to tempaal structure. Tempaa
sequerces are nd aways unformly sructured, na uniformly predictable. Even when the

network hassuccessfully learned abou the structure d a tempaa sequerce, the error may
vary. Theeror signal is agoodmetric of where dructure exists; it thus provides a potentially
very useful form of feedkadk to the system.

Increasing the sequertial depencercies in a task does nd necessarily result in worse
performarce. In the secnd simulation, the task was complicated by increasng the
dimensionality of theinput vector, by extendng the duation d thesequence, and by making
the dustion o the sequerce vaiable. Paformance remained good, lecause these
complications were accomparedby redunancy, which provided additiond cues for the task.
The neéwork was also able o dsaver which parts d the complex input were predictable,
making it possible b maximize performance in the face of partial unpredictability.

The representation d time-and memory--is highly task-dependent. The n@works here
depend oninternal represertations which have available as part of their input their own
previous state. In this way the intemal representations inter-mix the demands d the task with
the demands impased by carrying ou that task over time. There is no separate
“representation of time”. There is smply the represertation of inputpaterns in the context of
a given ouput fundion; it jus hgopens that those input patterns are fquential. That
represertation - and thus the representation d time -variesfrom task to tak. This esents a
samewhat novd view of memory. In this account memory is reither passive nora sparate
subsystem. One cannot poperly speek of a menory for sequences; that memory is
inextricady bound upwith the rest of the processing mecdhanism.

The represerntations need not ke “flat’, atomidic, or unstructured. The serterce task
demonrstrated that sequential inpus may gve rise to internal representations which are
hierarchical in nature. The herarchicality is implicit in the smilarity structure of the hidden
unit activations and daes na requre an a piori architedural commitmert to the depth or
form of the herarchy. Importantly, distributed representations meke availabde a space which
can berichly structured. Categorial relationships as well as type'token distinctions are readily
apprent. Every item may have its own representation, but because the representations are
structured relations between representationsare preserved.

The resuts described here are peliminary in nature. They are highly suggestive, and oten

raise more quetions than they answer. These retwaks ae poperly though of as dynamical
systems, and ore would like b knowvw more abou ther properties as such. For instance, the
aralyses repated here made freqernt ue d hierarchicd clustering techniques in order to
examine the smilarity structure d the internal representations. These representations are
smpshds of the internd states duing the murse d processing a sequential input Hierarchical
clustering of these sngpshats gves ugful information éoutthe ways in which theinterna states
of the néwork at different paints in ime ae similar or dssimilar. But the temporal relationship
between states is lost. One would like b know what the trajectories between states (i.e., the

vectorfield) look like. What sort of attractors develop in these systems? It is a problem, of course,
that the retworks sudied hee are high-dimensional systems and corsequenrtly difficult to study
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using tradtional techniques One pomising goproach whichis currently beingstudiedis to carry
out a pincdpd components andysis d the hdden unt activation pattem time series and then to
corstruct phase state patraits of the most significant prindpal comporents (Elman, 1989).

Another question of interest is what is the memory capecity of such retwaks. The results
repated here suggest that these retworks have mnsiderable representationd power; but more
systematic analysis using better defined tasks is clearly desirable. Experiments are aurrently
underway wsing sequernces grerated byfinite state automata o varioustypes; these devices are
relatively well-understood and their memory requirements may be pecisely cortrolled (Servan
Schreiber, Cleeremans, & McClelland, 1988).

One d the things which feedforward PDP nodels have shown usis that smple retwaks are
cgpable of discovering useful andinteresting intemal representations d many static taks. Or put
the oher way around: Rich representations are implicit in many tasks. However, many of the
most interesting hunan kehaviors have a serial component. What is exciting éout the present
resutsis that they suggest thatthe indudive paver of the PDP goproach can be used to dsaover
structure andrepresertations in taks which urfold over time.
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