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As we can see in these figures, visual features were classified

similarly to action classes. Note that the clustering results of

visual features are not necessarily similar to the action classes,

since actions and visual effects are not always in one-to-one

correspondence.

Figure 23(c) and (d) plot a set of the visual features fv(te)
of actions performed by an experimenter with labels of visual

effect classes and action classes, respectively. Figure 23(d) also

presents the trajectories of the intermediate visual features

fv(t) (they are referred to in classification consistency as

detailed later). The visual effect of the experimenter’s action

was classified by the prototypes trained with self-generated

actions. A comparison of Fig. 23(a) with (c) suggests that the

visual features of the experimenter’s actions were distributed

similarly to those of the robot’s actions. Therefore, the visual

effects of the actions performed by the robot and the experi-

menter were similarly classified.

Figure 23(e) shows the consistency of the visual effect

classification of the experimenter’s actions at intermediate

states (referred to in Fig. 23(d)). The horizontal and vertical

axes indicate time and classification consistency, respectively.

Here, classification consistency cc represents the number of

trials with an identical classification result at the present t
and the end of the action te. The values in Fig. 23(e) were

normalized with the number of trials (the maximum value is

1.0), and the time interval was normalized with five slices.

Most of the original time intervals of the actions were around

3s. The error bar in the plot indicates the deviation of the

values with respect to the action class. Figure 23(e) shows that

predictive classification of the visual effect from observation

of 1/2 of the action sequence had a consistency rate of 86%. In

comparison, predictive classification upon observing 3/4 of the

action sequence achieved 96% with an acceptable deviation.

2) Action perception: Figure 24 shows the results of action

perception. In all of the graphs, the horizontal axis from left

to right indicates the number of visual classes (2 to 10), and

the horizontal axis from near to far indicates the number of

proprioceptive effect classes (2 to 10). The number of classes

corresponds to the resolution of the sensory effect in cluster-

ing. The vertical axis indicates the action recognition rate. The

number of tactile classes was fixed at 3. We selected the best

clustering results from 20 learning trials for each coupling of

the visual and proprioceptive effect class numbers. The action

recognition rate is the number of correctly recognized actions

divided by the number of all trials. Note that all grid points in

the graphs correspond to real values given by the experimental

results (i.e. no interpolation technique was used for visualizing

the grid surface).

Figures 24(a), (b) and (c) show the recognition results of the

actions performed by the robot. The recognized action classes

were given by Eq.48. Figure 24(a) shows the recognition

results when the system used all sensory modalities (vision,

proprioception and touch). Figure 24(b) shows the results

when the system only used vision. Figure 24(c) shows the

results when the system used proprioception and touch (i.e. the

action was recognized in a blind condition). In these contexts,

the action perception system was aware of the action classes

because they were given by the action generator (refer to
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Fig. 24. Action recognition. The horizontal axes from left to right and from
near to far indicate the number of classes (resolution of description) of visual
and proprioceptive sensory effect, respectively. The vertical axis indicates the
recognition rate. (a) presents the action recognition rate when the action agent
was the robot and the sensory modalities used in recognition were vision,
proprioception and touch. (b), (c) and (d) are labeled in the same manner.

efference copy presented in Fig. 21). Efference copies were

used as ground-truth action classes to evaluate the estimations.

Figure 24(a) suggests that if the class number of either

modality of vision or proprioception was five or more, action

recognition rates were maximal. This means that a synergy

of multi-modal sensing recovers low resolution of a member

modality in action recognition. As shown in Fig. 24(b) and (c),

when some sensory modalities are unavailable, the available

modalities (vision in (b), and proprioception and touch in (c))

require high resolution to achieve a high action recognition

rate. Figure 24(d) shows the recognition results of actions

performed by the experimenter. The experimenter’s actions

were recognized well if the resolution of visual effect was

high enough. This result was similar to the recognition of self-

generated actions with vision-only in Fig. 24(b).

3) Cross-modal sensory anticipation: Figure 25 shows the

results of cross-modal sensory anticipation. Estimations from

Eq.49 and actual perception are compared.

The horizontal axes in both graphs are the same as those

in Fig. 24. The vertical axis indicates the sensory match

rate defined as the number of correctly estimated sensory

effect classes divided by the number of all trials. Figure 25(a)

shows visual sensory anticipation from the proprioceptive and

tactile effect (visual anticipation) in (AC3). In this context,

the actions were generated by the robot in a blind condition.

Figure 25(b) shows tactile sensory anticipation from the visual

effect (tactile anticipation) in (AC2). In this context, the

actions were generated by the experimenter. To evaluate the

sensory match rate, we used the corresponding visual and
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(b) tactile anticipation (human)

Fig. 25. Cross-modal sensory anticipation. The horizontal axes indicate
the number of classes (resolution of description) of visual and proprioceptive
sensory effect, respectively. The vertical axis indicates the sensory match rate.
The graph labels present the estimated sensory modality and the action agent.

tactile effect classes observed in (AC1) as the ground-truth

classes.

Figure 25(a) suggests that visual anticipation scored highly

when the resolution of the visual effect was low and that of the

proprioceptive effect was high. This means that (1) if visual

resolution is low, visual anticipation matches easily; and (2)

if the proprioceptive resolution is high, the input information

is not lost and this then aids in reliable estimation. This

experiment corresponds to the recovery of the visual sensory

modality while executing an action in darkness. The results

are also related to the behaviors of monkeys’ mirror neurons

in darkness [3].

Figure 25(b) suggests that tactile anticipation scored highly

when resolution of the visual effect is high. Tactile anticipation

is not affected by proprioceptive resolution, since only the

visual sensory modality describes the experimenter’s actions

and no useful information comes from proprioception while

observing them. Tactile anticipation is an interesting property

of the proposed action perception; as we can see in the results,

developments in action perception enabled the robot to gener-

ate internal sensory information of the experimenter (his touch

sense) based on observation of human actions and the robot’s

sensory experience in its own action executions. We believe

that action learning by robots set in human environments may

increase the robots’ sympathetic perception of humans.

4) Action reproduction by observation: We let the robot

reproduce sequential actions from observation. Figure 26

presents scenes of action observation and action reproduction.

An experimenter presented sequential actions to a robot. The

action perception system buffered the recognition results and

sent them to the action generator (see Fig. 5). The action

generator then reproduced the actions in the buffered order.

Figure 26 shows a demonstration composed of the grasp, hold

and drop actions in the recognized order. At the end of each

action, the experimenter paused between movements. This

pause was used to segment the actions in the action perception

system. As shown in the figure, the robot reproduced these

actions in the same order as the experimenter’s demonstration.

VI. DISCUSSION

In this section, we compare the proposed method to related

works in robotics and discuss the relation to infant develop-

(a) action observation

(b) action reproduction

Fig. 26. Action reproduction by observation. The grasp, hold and drop
actions are sequentially presented by an experimenter. The robot observed the
actions and reproduced them in the order of recognition. The time course of
the scenes is from left to right.

ment and biological mirror systems. We then present the limits

of the proposed framework and possible solutions.

A. Comparison with robotic systems

In robotics, developmental sensory-motor coordination in-

volving neuroscientific aspects and developmental psychology

is well studied; e.g. sensorimotor prediction [19][20], mirror

system [11][21], action-perception link [22], and imitation

learning [23][24] are representative studies. Below, we will

review literature that addresses body presentation and object

affordance. These two aspects constitute the cornerstone of the

research into body image and action perception implemented

in this work.

Body presentation plays an important role for a robot

dealing with voluntary actions [25]. Hikita et al. proposed a

visuo-proprioceptive representation of the end effector based

on Hebbian learning [26]. Stoytchev proposed a visually-

guided developmental reaching [27] which demonstrated tasks

similar to those examined in [2]. Kemp et al. approached

robot hand discovery utilizing mutual information between

arm joint angles and the visual location of an object [28].

Saegusa et al. proposed an own body definition system based

on visuomotor correlation, and the system created a body

representation regardless of body appearances or kinematic

structures [10].

Object affordance (or possible actions to operate an object)

plays an important role in manipulation [29]. In literature

on robotic object manipulation, Natale et al. proposed a

developmental grasping system that allows self hand recog-

nition [30]. Montesano et al. proposed a learning model

of object affordance using Bayesian networks [31]. In this

work, the probabilistic links between action, effect, and object

allow plausible action imitation [21]. Oztop et al. proposed

a biologically comparable model of mirror systems [16][32].

Castellini et al. studied an effect of object affordance in object

recognition [33] in which the authors experimentally showed

that object recognition with visuomotor features gives higher
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scores than a case with visual features.

In contrast to the previous studies, the framework proposed

here is original in its developmental construction of the whole

perception system (e.g. body identification, learning of motor

control and learning of action perception) driven by self-

generated actions. We hypothesize that only the results of ac-

tions can lead to reliable identity of the dynamically changing

body and the meaning of actions in unknown or non-stationary

environments. In previous work of [10], we proposed a body

definition system based on visuomotor correlation that creates

the body image of a single motor unit in monocular vision.

The new system allows for creation of a more general body

image with distinction of multiple motor units in binocular

vision.

Moreover, the proposed system develops an incremental

motor repertoire and action perception that is able to recognize

human actions predictively. A simple action for humans such

as picking up an object is rather complicated for robots. In the

literature, Yokota et al. achieved action encoding and decoding

with recursive network models [34]. Paine et al. proposed

a model to decompose an action into motor primitives au-

tonomously [35]. In our developmental scenario, we let a

robot learn primitive actions (fixate, reach and grasp) and then

construct more complex manipulative actions by combining

them. This approach allows the motor repertoire to be built

incrementally.

Compared to the predictive recognition system in [16], we

implemented the system on an actual robot and demonstrated

action perception in the real world. The Bayesian approach

for action perception in [21][31] is related to the proposed

work. We generalized the main idea of these studies to en-

compass cross-modal sensory association which yields sensory

anticipation or compensation of unavailable sensory modalities

when observing and executing actions. For example, the robot

anticipates tactile sensory input when observing a human

action, whereas the robot anticipates visual sensory input

when executing an action blind. These are new functions

compared to related methods. Compared to the latest studies

in affordance learning [36] [37], the proposed method focuses

on incremental ability in the development of perception from

low level sensory-motor signals.

B. Comparison with biological systems

The findings of the study in [8] overlap the proposed

procedure of learning from primitive to specific in this work.

In the initial phase, the proposed system develops perception

ability of the self’s body from low-level visuomotor signals

and proceeds to learn primitive actions (e.g. fixation, reaching

and grasping) in the next phase. In the final phase, the robot

develops the recognition of more specific, complex behaviors

(e.g. grasp, hold and drop an object) based on the developed

body image and primitive actions.

Some functions of the proposed action perception system

are consistent with mirror systems in nature [3][4][7]. In par-

ticular, the proposed system supports the three action contexts,

AC1, AC2 and AC3, for learning action perception, action

execution and reproduction of recognized actions. These action

contexts are equivalent to the experimental conditions with

monkeys in [3]. In modeling action perception as well, the

box of motor repertoire and connected signal flows in Fig. 21

correspond to the instance of mirror neurons in monkeys.

C. Limits of the proposed system

The described method proposes different phases in au-

tonomous development of perception. However, we did not

investigate how the transition between these phases could

happen in a continuous developmental path. In the experiments

reported in this paper, the human experimenter manually

switched each learning phase (the learning phase of primitive

actions and action perception). How to make this autonomous

is an important problem to be investigated in the future. In

addition, complex actions like a sequence of grasp, hold and

drop were defined beforehand by selecting and combining

together the learned primitives. Such actions could however be

learned autonomously by the robot either in exploration [38]

or observation [39].

Additionally, a general and consistent learning algorithm

applicable for all modules should be introduced into the

proposed framework. At the moment, the learning modules use

a memory system that indexes data using a nearest neighbor

approach and interpolates the output locally. This approach

can scale well to allow for long-term learning in which a large

amount of data has to be processed, but it also has limitations

due to the lack of topological maps representing the state

space. Learning such topological maps was not investigated

in this work, since, as mentioned in Section I, the main focus

of this work is not on the development of motor control but

rather on the development of sensory perception.

VII. CONCLUSION

We proposed a robot’s developmental perception driven by

active motor exploration. In the proposed framework, the robot

discovers its own body (body image) through self-generated

actions, the relationship between sensory states and motor

commands (motor control), and the effects of actions on

objects (action perception). In the development of perception,

multi-modal sensing played an important role, since multi-

modality allows cross-modal sensory anticipation.

We evaluated the proposed framework in repetitive experi-

ments with an anthropomorphic robot. The robot developmen-

tally achieved the following perceptual abilities: body image

of multiple motor units, primitive motor skills of fixation,

reaching and grasping, predictive human action recognition,

and cross-modal sensory effect anticipation. Overall, the robot

succeeded in recognizing actions performed by a human exper-

imenter and in mapping the corresponding sensory feedback

on its own internal sensory system.

Development ability is the most important aspect for robots

or mobile intelligence targeted for work in non-stationary

environments. A typical problem of non-stationary settings for

robots is self-perception. As shown in the experiments, the

self-perception system was able to adapt to drastic changes in

body appearance as a result of object grasping. This perceptual
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ability also helped the robot perceive actions performed by

humans.

An ability lacking in the proposed system is the use of a

tool. Tool use was beyond the scope of the current work, since

we intended to focus on the robot’s perceptual developments

rather than those of motor control. However, in this work we

demonstrated that the proposed system can adapt to changes

in the kinematics and hand visual appearance resulting when

the robot grasps a tool. Such a perceptual component is of

critical importance for learning tool use.
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