
Sensory Flow Segmentation using a ResoureAlloating Vetor QuantizerFredrik Lin�aker1;2 and Lars Niklasson11 Department of Computer Siene, University of Sk�ovde,P.O. Box 408, SE-541 28 Sk�ovde, Sweden2 Department of Computer Siene, University of SheÆeld,Regent Court, 211 Portobello Street, SheÆeld S1 4DP, United Kingdomfredrik.linaker�ida.his.selars.niklasson�ida.his.seAbstrat. We present a very simple unsupervised vetor quantizer whihextrats higher order onepts from time series generated from sensors ona mobile robot as it moves through an environment. The vetor quantizeris onstrutive, i.e. it adds new model vetors, eah one enoding a sep-arate higher order onept, to aount for any novel situation the robotenounters. The number of higher order onepts is determined dynam-ially, depending on the omplexity of the sensed environment, withoutthe need of any user intervention. We show how the vetor quantizer el-egantly handles many of the problems faed by an existing arhitetureby Nol� and Tani, and note some diretions for future work.1 IntrodutionAs a mobile robot moves through an environment, it reeives a sequene of inputsthrough its sensory equipment, this sequene of inputs is alled the `sensory ow'.The sensory ow an easily be in the order of thousands, or even millions, ofdisrete samples. Finding relations and reourring phenomena in this sequeneis a omputationally intratable task, espeially when we reeive noisy or evenfaulty inputs whih need to be �ltered out. However, instead of working onthe sensory input sequene diretly, abstrations an be formed whih apturethe general harateristis of the inputs instead of eah individual input. Forinstane, when the robot is moving down a orridor, it reeives basially thesame type of inputs time step after time step; a wall to the left and a wall to theright. As the robot enounters a fork in the orridor, the inputs hange radially,suddenly the front sensors may beome ative and the left and right sensors nolonger sense walls. These distint hanges in the sensory inputs an be exploitedby the robot. If the task of the robot requires it to remember the path it justtook through a maze it ould, instead of storing eah individual input it reeived,requiring extensive memory apabilities, store an abstration of the inputs, e.g.`orridor, left turn, room, orridor', requiring only a fration of storage spae.It ould later use this stored abstration to navigate through the maze, or tooutput a desription to the user of what the robot has pereived. Similarly, if the



task involves �nding relations between events that are far apart in time, an error-signal will vanish as it passes through thousands and thousands of intermediatesequene elements, making it pratially impossible to �nd suh relations. Thisproblem beomes more manageable if the input sequene is segmented into asequene of higher order onepts, eah represented by a unique symbol. Findingrelations between these symbols is a muh more viable task than working diretlyon the input sequene.The task of �nding reourring sub-sequenes is however a quite omplextask if there are no learly de�ned boundaries in the input sequene. However,the sequene used in this paper has easily identi�able and stable regions withfairly sharp transition borders, similar to the sequene shown in Figure 1. Itis generated from the sensors of a mobile wall-following Khepera robot, whihmoves through a simulated environment.
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tFig. 1. The input signal x(t) from a distane sensor on a wall-following mobile robotjumps between regions of �xed signal mean with added noise; the task is to �nd the dif-ferent signal levels and to detet the transitions between them. Labelling eah segmentwith a symbol, the entire sequene an be stored (with some loss of information) usingjust seven symbols instead of hundreds, or even thousands, of distint input values.The length of eah sub-sequene is however lost during the mappingNol� and Tani [7, 9℄ onduted experiments using a similar wall-followingrobot and segmented the sensory ow using a hierarhial neural network arhi-teture onsisting of several predition and segmentation networks. While theirsystem managed to extrat higher order onepts from the sensory ow, suh as`walls', `orners' and `orridors', it had problems �nding sub-sequenes whih didnot our very often, yet were quite distint. Furthermore, they needed to man-ually speify exatly how many higher order onepts the system should splitthe sequene into instead of letting the system deide this on its own, dependingon the omplexity of the sequene.In the following, a simple onstrutive vetor quantizer whih solves theseproblems eÆiently is designed. It �nds an `appropriate' segmentation usingjust a single presentation of the input sequene, unlike Nol� and Tani's meth-ods whih require repeated presentations of the input sequene. Higher order



onepts whih do not our very frequently, but are distint, are suessfullyextrated by the system. Furthermore, the system determines the number ofhigher order onepts automatially, based on the sequene harateristis.In setion 2, Nol� and Tani's original experiments are summarized, and anumber of problems with their system are highlighted. In setion 3, we desribethe resoure alloating vetor quantizer, whih solves these problems. It is de�nedmathematially and results of the experiments onduted with this arhitetureare presented. Finally, in setion 4, the main advantages of the new approahare summarized.2 Existing MethodsIn experiments arried out by Nol� and Tani [7, 9℄, di�erent neural networkarhitetures were investigated whih segmented sensory input sequenes frommobile robots. In the former paper [9℄, they designed a modular system of gatedexperts, where eah module represented a sub-sequene. In the latter paper [7℄they presented an altered arhiteture whih involved a simpler, yet still quiteomplex, hierarhial arhiteture whih is desribed below.2.1 ArhitetureThe hierarhial arhiteture Nol� and Tani [7℄ used onsisted of a �rst level in-put predition network, a segmentation network, and a seond level sub-sequenepredition network.The �rst level predition network was a reurrent network with 10 inputunits (enoding the 8 sensor values and 2 motor values at time t), 3 hiddenunits, and 8 output units (enoding the expeted 8 sensor values at time t+1).The ativation of the hidden units at the previous time step was fed into 3additional input units the sueeding time step, providing a memory of previousevents whih ould help in prediting the next inputs.The ativation of the hidden units of the �rst level predition network on-stituted the input to the segmentation network, whih thus had 3 input units.These input units were onneted to a pre-de�ned number of `winner take all'output units whih eah represented a di�erent higher order onept. Nol� andTani used 3 suh output units. They argued that a segmentation based on thehidden unit ativation of a predition network, instead of using the input se-quene diretly, allowed enhanement of less frequent sub-sequenes.The segmentation network was updated in an unsupervised manner, similarto a Self-Organizing Map [4℄ with neighbourhood range set to zero (i.e. no neigh-bours were updated). There was also a seond level predition network whihtried to �nd regularities in the sequene of extrated higher order onepts. Thispartiular aspet is however not relevant here, but the reader is enouraged toread the original paper for more details about this.



2.2 ExperimentsThe environment onsisted of two simulated rooms of di�erent sizes, onnetedtogether by a short orridor. The robot, a simulated Khepera robot, was on-trolled by a �xed wall-following behaviour whih was not a�eted by the predi-tion and segmentation networks. The networks merely were idle observers, tryingto �nd regularities in the sequene of inputs. Nol� and Tani's experiments arehere repliated, using Olivier Mihel's publily available Khepera Simulator [5℄,and the resulting segmentation is depited in Figure 2.
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Fig. 2. The simulated environment and the segmentation aquired using the Nol� andTani approah. Eah unit in the segmentation network has been assigned a di�erentshade; the shade of the winning unit at eah time step is shown. The simulated Kheperarobot is shown to the right; it has eight distane sensors and two motors, distane sensorvalues are in the range [0,1023℄ and motor values are in the range [-10,10℄As noted by Nol� and Tani, the extrated sub-sequenes an be desribed as`walls' (light gray), `orridors' (gray) and `orners' (blak).2.3 ProblemsThe arhiteture used in Nol� and Tani's experiments required many repeatedpresentations of the same input sequene (Nol� and Tani used over 300 laps inthe environment) in order to extrat the sub-sequenes, whih made it omputa-tionally intratable to repeat the experiments with di�erent parameter sets. Thisis a problem sine they had many user-spei�ed parameters whih all inuenedthe outome of the segmentation, e.g. number of hidden units in the preditionnets, hoie of learning rates, weight initialization, deay value, et., the hoieof whih ould lead to very di�erent segmentations.Moreover, the training had to be split into di�erent phases, one for trainingthe �rst level predition network, another for training the segmentation network.The duration of these phases also needed to be deided by the user.Further, the system ould not detet situations whih had low density, i.e.that did not our very often or sustain for a long period of time, for examplevery short orridors. Even more severe, the system ould su�er from atastrophi



forgetting if new situations arose whih lead to a realloation of the hiddenativation spae or the �rst layer predition network. Thus making the existingsegmentation layer weights inappropriate or even invalid.Finally, the user was fored to manually speify the number of ategorieswhih should be extrated, instead of letting the system determine this on itsown as the robot negotiated the world.The system suggested in the following, deals with all of the above identi�edproblems. It has the ability to segment the input sequene using a single presen-tation, without having to split the training into di�erent phases. It also operatesdiretly on the input sequene, avoiding the risk of atastrophi forgetting. Fi-nally, the system determines the number of higher order onepts automatiallydepending on the omplexity of the input sequene. It is also able to handlesituations where new onepts are introdued dynamially.3 The Resoure Alloating Vetor QuantizerThe resoure alloating vetor quantizer (RAVQ) represents higher order on-epts using model vetors. Additional model vetors are alloated dynamiallywhen new and stable situations are enountered.3.1 Related WorkThe proess of using model vetors to represent ategories has been suessfullyemployed in a number of di�erent arhitetures, e.g. in Kohonen's LearningVetor Quantization and Self-Organizing Maps [4℄. Suh networks however relyon a �xed number of model vetors. Careful analysis of the omplexity of theinput signal has to be performed by the user in order to speify an appropriatenumber of units. Using too few units will fore the system to disregard someof the possible ategories, while too many may reate unwanted, or spurious,ategories.This problem has been alleviated through the development of onstrutivesystems, e.g. systems by Platt [8℄, Fritzke [3℄, Chan and Vetterli [2℄, i.e. systemswhih are able to alloate further resoures whenever deemed neessary. Whilea variety of suh systems are employed today, the family of adaptive resonanetheory (ART) networks by Carpenter and Grossberg [1℄ are most relevant to thedesign of the RAVQ.The ART networks lassify inputs into ategories, where eah ategory hasits own prototype. The prototype depits the typial input pattern whih is as-soiated with the ategory. When new input patterns are enountered whihdo not losely math any of the existing ategories, further ategories might bereated. This orresponds to the alloation of an additional output unit and aorresponding prototype. The new prototype is initialized to math the present,unfamiliar, input pattern. The ART networks do however have problems op-ing with noisy input patterns whih an result in the inorporation of spuriousategories ([6℄ page 138). Many suh noisy inputs an however be �ltered using



a simple method employed by the RAVQ, whih stores a number of previousinputs to provide a ontext for the urrent input pattern.3.2 TheoryThe RAVQ is spei�ally onstruted for sequentially ordered inputs where eahmodel vetor omes to represent a di�erent sub-sequene. The model vetorsan be viewed as points in the input spae, not as sequenes or paths. Thisimplies that only sub-sequenes with stable signal values an be representedaurately using suh a model vetor. This means that the RAVQ is limited toinput sequenes where the signal mean basially remains �xed for a period oftime with some oasional transition to a new signal mean. As is shown here,this is adequate for the segmentation of a sequene generated from the sensorsof a mobile Khepera robot.The RAVQ has only three user spei�ed parameters: a window size n, amismath redution requirement Æ, and a stability riterion �. The system formsa set of model vetors whih are plaed approximately in the entre signal-valueof the sub-sequene it is meant to represent. Initially empty, the set of modelvetors is inreased as soon as novel, stable, situations are enountered. This isdone as follows:A moving average of the last n inputs is alulated in order to �lter outnoise in the input signal. This moving average is inorporated as a new modelvetor (we denote the moving average as a `model vetor' as soon as it hasbeen inorporated) if it haraterizes a stable mismath reduing situation, i.e.it meets both the mismath redution riterion and the stability riterion:{ the redution riterion is that the moving average alone should aount forthe inputs better than the existing model vetors do, reduing the mismathat least by Æ,{ the stability riterion is that the deviation between the inputs and the mov-ing average should stay below a ertain threshold �, otherwise the situationis not haraterized as being stable (the robot may be swithing betweenexisting model vetors or experiening a temporary sensor utuation).Eah of the above riteria is not suÆient on its own, as only having a redu-tion riterion an lead to the inorporation of model vetors for errati inputs(i.e. su�ering from the same problems as the ART networks). Only having a sta-bility riterion, on the other hand, an lead to the inorporation of new modelvetors whih are virtually idential to already inorporated model vetors.3.3 De�nitionThe key part of the RAVQ is an input bu�er of size n. At eah time step thisbu�er stores the last n input vetors x(t) 2 X . In the �rst n time steps (t =0; : : : ; n � 1), inputs are simply reorded into the bu�er and the RAVQ is not



ativated until time step t = n�1, when the input bu�er has been �lled. At thistime, the set M(t) of model vetors m, is initialized to the empty set:M(n� 1) = ; ; (1)and at eah suessive time step t, the �nite moving average x(t) is alulated:x(t) = 1n n�1Xi=0 x(t� i) : (2)We de�ne a distane metri d(V;X) whih spei�es the mean of the shortestdistanes between a set of (model / moving average) vetors vj 2 V and a set ofinput vetors xi 2 X , i.e. the average error for the inputs given a set of vetors:d(V;X) = 1jX j jXjXi=1 min1�j�jV jfjjxi � vj jjg;xi 2 X; vj 2 V ; (3)where jj:jj denotes the Eulidean distane. That is, it returns the best mathbetween the model vetors and eah given input vetor. This distane metrian be used to alulate the mean distane dx(t) from eah of the last n inputsto the moving average x(t):dx(t) = d(fx(t)g; fx(t); : : : ; x(t� n+ 1)g) ; (4)The same distane metri is used to alulate the distane dM(t) betweeneah of the last n inputs and the best mathing model vetor at eah time step:dM(t) = �d(M(t); fx(t); : : : ; x(t� n+ 1)g) jM(t)j > 0�+ Æ otherwise : (5)If there are no model vetors in M(t), i.e. the RAVQ has just started, thedistane dM(t) is set to be suÆient for inorporation of this moving averageinto the set of model vetors. For the moving average to be inorporated asa model vetor, the mean distane between the last n inputs and the movingaverage x(t) must stay below the threshold �, i.e. it must onstitute a stableinput loation, and the improvement whih is possible through an inorporationof the urrent moving average into the set of model vetors must exeed theminimum improvement requirement Æ:M(t+ 1) = �M(t) [ x(t) dx(t) � min(�; dM(t) � Æ)M(t) otherwise : (6)The higher order onept the system is in at time t, is indiated by theseletion of the best mathing model vetor win(t) in relation to the movingaverage x(t) at that time step:win(t) = arg min1�j�jM(t)jfjjx(t)�mj jjg;mj 2M(t) : (7)That is, win(t) spei�es the index of the best mathing model vetor at timestep t.



3.4 ExperimentsRepliating the segmentation part of the Nol� and Tani [7℄ experiments, but inOlivier Mihel's publily available Khepera Simulator [5℄, and this time usingthe RAVQ, the same segmentation was ahieved in only a fration of the time(Figure 3). The system operates diretly on the input sequene. The input vetorto the RAVQ had 10 elements, 8 distane sensor values and 2 motor values, allnormalized to the range [0.0,1.0℄. The parameters used were n = 10, Æ = 0:9 and� = 0:2.
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Fig. 3. The resulting segmentation diretly from the �rst lap (about 1,900 time steps)in the environment. There is a slight delay of n inputs before the �rst orridor andorner segments are deteted. The winning model vetor win(t) at eah time step isindiated using di�erent shadesThe system is also apable of instantaneous learning of new, previously un-enountered, situations at any time of the simulation sine there is no deayinglearning rate or similar parameter whih would make suh learning harder atlater points in the simulation. For instane, if a turning orridor is added (some-thing whih was not present in Nol� and Tani's original experiments) the RAVQ�rst tries to handle the situation using the existing model vetors; the best mathis the `orner' model vetor. But this model vetor does not exatly math thesituation sine there now is a wall on the left side, the RAVQ swiftly adds a newmodel vetor for `turning orridor' (Figure 4a), and the next time this situationours, this model vetor is used aordingly (Figure 4b). (There is no sensorpointing bak to the sides, this is why the system produes a `wall' segment justbefore the `orridor' / `turning orridor' sine the inputs depit a wall to theright but nothing to the left.)The arhiteture used by Nol� and Tani [7℄ is inapable of deteting new situ-ations, there is no mehanism for adding more units, representing sub-sequenes,when suh units are needed. Further, starting out with `extra' units would nothelp either sine they would soon be alloated to better over the more denseinput regions, and would subsequently be hard to realloate to handle new sit-uations instead.
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wallFig. 4. A new model vetor is inorporated as soon as a new situation is deteted, forinstane a orridor whih turns (a). The uptake region of the new model vetor stealsspae from the existing model vetors; the `orner' model vetor is no longer ativatedthe next time this partiular situation is enountered (b)4 ConlusionsWe have desribed a resoure alloating vetor quantizer (RAVQ) whih is a-pable of single presentation segmentation of the sensory ow of a mobile robot.Compared to the earlier models of Nol� and Tani [7℄, the RAVQ approah forsegmentation is onsiderably simpler, requiring no division of the training intoseparate phases, and with just three user spei�ed parameters: a window sizen, a mismath redution requirement Æ and a stability riterion �. The RAVQelegantly handles low density inputs; not basing the plaement of model ve-tors aording to input frequeny but novelty and stability. Further, and moreimportantly, the RAVQ dynamially determines the appropriate number of at-egories to use, without the need for any user intervention, and �nally, sine theRAVQ works diretly on the input sequene, there is no risk of atastrophi for-getting due to a realloation of the hidden spae whih ould be very damagingin previously used methods for this task.The RAVQ is limited to sequenes where the signal mean basially remains�xed for a period of time with some oasional transition to a new signal mean.The ause of this limitation is that eah higher order onept is representedusing a single model vetor, plaed diretly in input spae. If instead regions orpaths ould be identi�ed in the input spae, and represented using model vetors,sequenes of inputs ould form higher order onepts. This ould, for instane,orrespond to situations where a mobile robot travels through a broadeningorridor or moves diagonally through a room. Future extensions should alsoinvolve the inorporation of adaptation of the model vetors to better aountfor the higher order onepts whih they represent. This ould be performedusing a learning rule similar to that employed in Self-Organizing Maps [4℄.The extrated sequene of higher order onepts an be viewed as an abstratrepresentation of the environment, reated through the eyes of the robot. Thegranularity of the segmentation an be ontrolled indiretly through the mis-math redution and the stability riteria. As di�erent levels of segmentationsmay be needed for di�erent tasks, a series of robot tasks should be designed,testing how useful the higher order onepts atually are in takling memory-
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