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t. We present a very simple unsupervised ve
tor quantizer whi
hextra
ts higher order 
on
epts from time series generated from sensors ona mobile robot as it moves through an environment. The ve
tor quantizeris 
onstru
tive, i.e. it adds new model ve
tors, ea
h one en
oding a sep-arate higher order 
on
ept, to a

ount for any novel situation the roboten
ounters. The number of higher order 
on
epts is determined dynam-i
ally, depending on the 
omplexity of the sensed environment, withoutthe need of any user intervention. We show how the ve
tor quantizer el-egantly handles many of the problems fa
ed by an existing ar
hite
tureby Nol� and Tani, and note some dire
tions for future work.1 Introdu
tionAs a mobile robot moves through an environment, it re
eives a sequen
e of inputsthrough its sensory equipment, this sequen
e of inputs is 
alled the `sensory 
ow'.The sensory 
ow 
an easily be in the order of thousands, or even millions, ofdis
rete samples. Finding relations and reo

urring phenomena in this sequen
eis a 
omputationally intra
table task, espe
ially when we re
eive noisy or evenfaulty inputs whi
h need to be �ltered out. However, instead of working onthe sensory input sequen
e dire
tly, abstra
tions 
an be formed whi
h 
apturethe general 
hara
teristi
s of the inputs instead of ea
h individual input. Forinstan
e, when the robot is moving down a 
orridor, it re
eives basi
ally thesame type of inputs time step after time step; a wall to the left and a wall to theright. As the robot en
ounters a fork in the 
orridor, the inputs 
hange radi
ally,suddenly the front sensors may be
ome a
tive and the left and right sensors nolonger sense walls. These distin
t 
hanges in the sensory inputs 
an be exploitedby the robot. If the task of the robot requires it to remember the path it justtook through a maze it 
ould, instead of storing ea
h individual input it re
eived,requiring extensive memory 
apabilities, store an abstra
tion of the inputs, e.g.`
orridor, left turn, room, 
orridor', requiring only a fra
tion of storage spa
e.It 
ould later use this stored abstra
tion to navigate through the maze, or tooutput a des
ription to the user of what the robot has per
eived. Similarly, if the



task involves �nding relations between events that are far apart in time, an error-signal will vanish as it passes through thousands and thousands of intermediatesequen
e elements, making it pra
ti
ally impossible to �nd su
h relations. Thisproblem be
omes more manageable if the input sequen
e is segmented into asequen
e of higher order 
on
epts, ea
h represented by a unique symbol. Findingrelations between these symbols is a mu
h more viable task than working dire
tlyon the input sequen
e.The task of �nding reo

urring sub-sequen
es is however a quite 
omplextask if there are no 
learly de�ned boundaries in the input sequen
e. However,the sequen
e used in this paper has easily identi�able and stable regions withfairly sharp transition borders, similar to the sequen
e shown in Figure 1. Itis generated from the sensors of a mobile wall-following Khepera robot, whi
hmoves through a simulated environment.
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a cc cbba
tFig. 1. The input signal x(t) from a distan
e sensor on a wall-following mobile robotjumps between regions of �xed signal mean with added noise; the task is to �nd the dif-ferent signal levels and to dete
t the transitions between them. Labelling ea
h segmentwith a symbol, the entire sequen
e 
an be stored (with some loss of information) usingjust seven symbols instead of hundreds, or even thousands, of distin
t input values.The length of ea
h sub-sequen
e is however lost during the mappingNol� and Tani [7, 9℄ 
ondu
ted experiments using a similar wall-followingrobot and segmented the sensory 
ow using a hierar
hi
al neural network ar
hi-te
ture 
onsisting of several predi
tion and segmentation networks. While theirsystem managed to extra
t higher order 
on
epts from the sensory 
ow, su
h as`walls', `
orners' and `
orridors', it had problems �nding sub-sequen
es whi
h didnot o

ur very often, yet were quite distin
t. Furthermore, they needed to man-ually spe
ify exa
tly how many higher order 
on
epts the system should splitthe sequen
e into instead of letting the system de
ide this on its own, dependingon the 
omplexity of the sequen
e.In the following, a simple 
onstru
tive ve
tor quantizer whi
h solves theseproblems eÆ
iently is designed. It �nds an `appropriate' segmentation usingjust a single presentation of the input sequen
e, unlike Nol� and Tani's meth-ods whi
h require repeated presentations of the input sequen
e. Higher order




on
epts whi
h do not o

ur very frequently, but are distin
t, are su

essfullyextra
ted by the system. Furthermore, the system determines the number ofhigher order 
on
epts automati
ally, based on the sequen
e 
hara
teristi
s.In se
tion 2, Nol� and Tani's original experiments are summarized, and anumber of problems with their system are highlighted. In se
tion 3, we des
ribethe resour
e allo
ating ve
tor quantizer, whi
h solves these problems. It is de�nedmathemati
ally and results of the experiments 
ondu
ted with this ar
hite
tureare presented. Finally, in se
tion 4, the main advantages of the new approa
hare summarized.2 Existing MethodsIn experiments 
arried out by Nol� and Tani [7, 9℄, di�erent neural networkar
hite
tures were investigated whi
h segmented sensory input sequen
es frommobile robots. In the former paper [9℄, they designed a modular system of gatedexperts, where ea
h module represented a sub-sequen
e. In the latter paper [7℄they presented an altered ar
hite
ture whi
h involved a simpler, yet still quite
omplex, hierar
hi
al ar
hite
ture whi
h is des
ribed below.2.1 Ar
hite
tureThe hierar
hi
al ar
hite
ture Nol� and Tani [7℄ used 
onsisted of a �rst level in-put predi
tion network, a segmentation network, and a se
ond level sub-sequen
epredi
tion network.The �rst level predi
tion network was a re
urrent network with 10 inputunits (en
oding the 8 sensor values and 2 motor values at time t), 3 hiddenunits, and 8 output units (en
oding the expe
ted 8 sensor values at time t+1).The a
tivation of the hidden units at the previous time step was fed into 3additional input units the su

eeding time step, providing a memory of previousevents whi
h 
ould help in predi
ting the next inputs.The a
tivation of the hidden units of the �rst level predi
tion network 
on-stituted the input to the segmentation network, whi
h thus had 3 input units.These input units were 
onne
ted to a pre-de�ned number of `winner take all'output units whi
h ea
h represented a di�erent higher order 
on
ept. Nol� andTani used 3 su
h output units. They argued that a segmentation based on thehidden unit a
tivation of a predi
tion network, instead of using the input se-quen
e dire
tly, allowed enhan
ement of less frequent sub-sequen
es.The segmentation network was updated in an unsupervised manner, similarto a Self-Organizing Map [4℄ with neighbourhood range set to zero (i.e. no neigh-bours were updated). There was also a se
ond level predi
tion network whi
htried to �nd regularities in the sequen
e of extra
ted higher order 
on
epts. Thisparti
ular aspe
t is however not relevant here, but the reader is en
ouraged toread the original paper for more details about this.



2.2 ExperimentsThe environment 
onsisted of two simulated rooms of di�erent sizes, 
onne
tedtogether by a short 
orridor. The robot, a simulated Khepera robot, was 
on-trolled by a �xed wall-following behaviour whi
h was not a�e
ted by the predi
-tion and segmentation networks. The networks merely were idle observers, tryingto �nd regularities in the sequen
e of inputs. Nol� and Tani's experiments arehere repli
ated, using Olivier Mi
hel's publi
ly available Khepera Simulator [5℄,and the resulting segmentation is depi
ted in Figure 2.
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Fig. 2. The simulated environment and the segmentation a
quired using the Nol� andTani approa
h. Ea
h unit in the segmentation network has been assigned a di�erentshade; the shade of the winning unit at ea
h time step is shown. The simulated Kheperarobot is shown to the right; it has eight distan
e sensors and two motors, distan
e sensorvalues are in the range [0,1023℄ and motor values are in the range [-10,10℄As noted by Nol� and Tani, the extra
ted sub-sequen
es 
an be des
ribed as`walls' (light gray), `
orridors' (gray) and `
orners' (bla
k).2.3 ProblemsThe ar
hite
ture used in Nol� and Tani's experiments required many repeatedpresentations of the same input sequen
e (Nol� and Tani used over 300 laps inthe environment) in order to extra
t the sub-sequen
es, whi
h made it 
omputa-tionally intra
table to repeat the experiments with di�erent parameter sets. Thisis a problem sin
e they had many user-spe
i�ed parameters whi
h all in
uen
edthe out
ome of the segmentation, e.g. number of hidden units in the predi
tionnets, 
hoi
e of learning rates, weight initialization, de
ay value, et
., the 
hoi
eof whi
h 
ould lead to very di�erent segmentations.Moreover, the training had to be split into di�erent phases, one for trainingthe �rst level predi
tion network, another for training the segmentation network.The duration of these phases also needed to be de
ided by the user.Further, the system 
ould not dete
t situations whi
h had low density, i.e.that did not o

ur very often or sustain for a long period of time, for examplevery short 
orridors. Even more severe, the system 
ould su�er from 
atastrophi




forgetting if new situations arose whi
h lead to a reallo
ation of the hiddena
tivation spa
e or the �rst layer predi
tion network. Thus making the existingsegmentation layer weights inappropriate or even invalid.Finally, the user was for
ed to manually spe
ify the number of 
ategorieswhi
h should be extra
ted, instead of letting the system determine this on itsown as the robot negotiated the world.The system suggested in the following, deals with all of the above identi�edproblems. It has the ability to segment the input sequen
e using a single presen-tation, without having to split the training into di�erent phases. It also operatesdire
tly on the input sequen
e, avoiding the risk of 
atastrophi
 forgetting. Fi-nally, the system determines the number of higher order 
on
epts automati
allydepending on the 
omplexity of the input sequen
e. It is also able to handlesituations where new 
on
epts are introdu
ed dynami
ally.3 The Resour
e Allo
ating Ve
tor QuantizerThe resour
e allo
ating ve
tor quantizer (RAVQ) represents higher order 
on-
epts using model ve
tors. Additional model ve
tors are allo
ated dynami
allywhen new and stable situations are en
ountered.3.1 Related WorkThe pro
ess of using model ve
tors to represent 
ategories has been su

essfullyemployed in a number of di�erent ar
hite
tures, e.g. in Kohonen's LearningVe
tor Quantization and Self-Organizing Maps [4℄. Su
h networks however relyon a �xed number of model ve
tors. Careful analysis of the 
omplexity of theinput signal has to be performed by the user in order to spe
ify an appropriatenumber of units. Using too few units will for
e the system to disregard someof the possible 
ategories, while too many may 
reate unwanted, or spurious,
ategories.This problem has been alleviated through the development of 
onstru
tivesystems, e.g. systems by Platt [8℄, Fritzke [3℄, Chan and Vetterli [2℄, i.e. systemswhi
h are able to allo
ate further resour
es whenever deemed ne
essary. Whilea variety of su
h systems are employed today, the family of adaptive resonan
etheory (ART) networks by Carpenter and Grossberg [1℄ are most relevant to thedesign of the RAVQ.The ART networks 
lassify inputs into 
ategories, where ea
h 
ategory hasits own prototype. The prototype depi
ts the typi
al input pattern whi
h is as-so
iated with the 
ategory. When new input patterns are en
ountered whi
hdo not 
losely mat
h any of the existing 
ategories, further 
ategories might be
reated. This 
orresponds to the allo
ation of an additional output unit and a
orresponding prototype. The new prototype is initialized to mat
h the present,unfamiliar, input pattern. The ART networks do however have problems 
op-ing with noisy input patterns whi
h 
an result in the in
orporation of spurious
ategories ([6℄ page 138). Many su
h noisy inputs 
an however be �ltered using



a simple method employed by the RAVQ, whi
h stores a number of previousinputs to provide a 
ontext for the 
urrent input pattern.3.2 TheoryThe RAVQ is spe
i�
ally 
onstru
ted for sequentially ordered inputs where ea
hmodel ve
tor 
omes to represent a di�erent sub-sequen
e. The model ve
tors
an be viewed as points in the input spa
e, not as sequen
es or paths. Thisimplies that only sub-sequen
es with stable signal values 
an be representeda

urately using su
h a model ve
tor. This means that the RAVQ is limited toinput sequen
es where the signal mean basi
ally remains �xed for a period oftime with some o

asional transition to a new signal mean. As is shown here,this is adequate for the segmentation of a sequen
e generated from the sensorsof a mobile Khepera robot.The RAVQ has only three user spe
i�ed parameters: a window size n, amismat
h redu
tion requirement Æ, and a stability 
riterion �. The system formsa set of model ve
tors whi
h are pla
ed approximately in the 
entre signal-valueof the sub-sequen
e it is meant to represent. Initially empty, the set of modelve
tors is in
reased as soon as novel, stable, situations are en
ountered. This isdone as follows:A moving average of the last n inputs is 
al
ulated in order to �lter outnoise in the input signal. This moving average is in
orporated as a new modelve
tor (we denote the moving average as a `model ve
tor' as soon as it hasbeen in
orporated) if it 
hara
terizes a stable mismat
h redu
ing situation, i.e.it meets both the mismat
h redu
tion 
riterion and the stability 
riterion:{ the redu
tion 
riterion is that the moving average alone should a

ount forthe inputs better than the existing model ve
tors do, redu
ing the mismat
hat least by Æ,{ the stability 
riterion is that the deviation between the inputs and the mov-ing average should stay below a 
ertain threshold �, otherwise the situationis not 
hara
terized as being stable (the robot may be swit
hing betweenexisting model ve
tors or experien
ing a temporary sensor 
u
tuation).Ea
h of the above 
riteria is not suÆ
ient on its own, as only having a redu
-tion 
riterion 
an lead to the in
orporation of model ve
tors for errati
 inputs(i.e. su�ering from the same problems as the ART networks). Only having a sta-bility 
riterion, on the other hand, 
an lead to the in
orporation of new modelve
tors whi
h are virtually identi
al to already in
orporated model ve
tors.3.3 De�nitionThe key part of the RAVQ is an input bu�er of size n. At ea
h time step thisbu�er stores the last n input ve
tors x(t) 2 X . In the �rst n time steps (t =0; : : : ; n � 1), inputs are simply re
orded into the bu�er and the RAVQ is not



a
tivated until time step t = n�1, when the input bu�er has been �lled. At thistime, the set M(t) of model ve
tors m, is initialized to the empty set:M(n� 1) = ; ; (1)and at ea
h su

essive time step t, the �nite moving average x(t) is 
al
ulated:x(t) = 1n n�1Xi=0 x(t� i) : (2)We de�ne a distan
e metri
 d(V;X) whi
h spe
i�es the mean of the shortestdistan
es between a set of (model / moving average) ve
tors vj 2 V and a set ofinput ve
tors xi 2 X , i.e. the average error for the inputs given a set of ve
tors:d(V;X) = 1jX j jXjXi=1 min1�j�jV jfjjxi � vj jjg;xi 2 X; vj 2 V ; (3)where jj:jj denotes the Eu
lidean distan
e. That is, it returns the best mat
hbetween the model ve
tors and ea
h given input ve
tor. This distan
e metri

an be used to 
al
ulate the mean distan
e dx(t) from ea
h of the last n inputsto the moving average x(t):dx(t) = d(fx(t)g; fx(t); : : : ; x(t� n+ 1)g) ; (4)The same distan
e metri
 is used to 
al
ulate the distan
e dM(t) betweenea
h of the last n inputs and the best mat
hing model ve
tor at ea
h time step:dM(t) = �d(M(t); fx(t); : : : ; x(t� n+ 1)g) jM(t)j > 0�+ Æ otherwise : (5)If there are no model ve
tors in M(t), i.e. the RAVQ has just started, thedistan
e dM(t) is set to be suÆ
ient for in
orporation of this moving averageinto the set of model ve
tors. For the moving average to be in
orporated asa model ve
tor, the mean distan
e between the last n inputs and the movingaverage x(t) must stay below the threshold �, i.e. it must 
onstitute a stableinput lo
ation, and the improvement whi
h is possible through an in
orporationof the 
urrent moving average into the set of model ve
tors must ex
eed theminimum improvement requirement Æ:M(t+ 1) = �M(t) [ x(t) dx(t) � min(�; dM(t) � Æ)M(t) otherwise : (6)The higher order 
on
ept the system is in at time t, is indi
ated by thesele
tion of the best mat
hing model ve
tor win(t) in relation to the movingaverage x(t) at that time step:win(t) = arg min1�j�jM(t)jfjjx(t)�mj jjg;mj 2M(t) : (7)That is, win(t) spe
i�es the index of the best mat
hing model ve
tor at timestep t.



3.4 ExperimentsRepli
ating the segmentation part of the Nol� and Tani [7℄ experiments, but inOlivier Mi
hel's publi
ly available Khepera Simulator [5℄, and this time usingthe RAVQ, the same segmentation was a
hieved in only a fra
tion of the time(Figure 3). The system operates dire
tly on the input sequen
e. The input ve
torto the RAVQ had 10 elements, 8 distan
e sensor values and 2 motor values, allnormalized to the range [0.0,1.0℄. The parameters used were n = 10, Æ = 0:9 and� = 0:2.
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Fig. 3. The resulting segmentation dire
tly from the �rst lap (about 1,900 time steps)in the environment. There is a slight delay of n inputs before the �rst 
orridor and
orner segments are dete
ted. The winning model ve
tor win(t) at ea
h time step isindi
ated using di�erent shadesThe system is also 
apable of instantaneous learning of new, previously un-en
ountered, situations at any time of the simulation sin
e there is no de
ayinglearning rate or similar parameter whi
h would make su
h learning harder atlater points in the simulation. For instan
e, if a turning 
orridor is added (some-thing whi
h was not present in Nol� and Tani's original experiments) the RAVQ�rst tries to handle the situation using the existing model ve
tors; the best mat
his the `
orner' model ve
tor. But this model ve
tor does not exa
tly mat
h thesituation sin
e there now is a wall on the left side, the RAVQ swiftly adds a newmodel ve
tor for `turning 
orridor' (Figure 4a), and the next time this situationo

urs, this model ve
tor is used a

ordingly (Figure 4b). (There is no sensorpointing ba
k to the sides, this is why the system produ
es a `wall' segment justbefore the `
orridor' / `turning 
orridor' sin
e the inputs depi
t a wall to theright but nothing to the left.)The ar
hite
ture used by Nol� and Tani [7℄ is in
apable of dete
ting new situ-ations, there is no me
hanism for adding more units, representing sub-sequen
es,when su
h units are needed. Further, starting out with `extra' units would nothelp either sin
e they would soon be allo
ated to better 
over the more denseinput regions, and would subsequently be hard to reallo
ate to handle new sit-uations instead.
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wallFig. 4. A new model ve
tor is in
orporated as soon as a new situation is dete
ted, forinstan
e a 
orridor whi
h turns (a). The uptake region of the new model ve
tor stealsspa
e from the existing model ve
tors; the `
orner' model ve
tor is no longer a
tivatedthe next time this parti
ular situation is en
ountered (b)4 Con
lusionsWe have des
ribed a resour
e allo
ating ve
tor quantizer (RAVQ) whi
h is 
a-pable of single presentation segmentation of the sensory 
ow of a mobile robot.Compared to the earlier models of Nol� and Tani [7℄, the RAVQ approa
h forsegmentation is 
onsiderably simpler, requiring no division of the training intoseparate phases, and with just three user spe
i�ed parameters: a window sizen, a mismat
h redu
tion requirement Æ and a stability 
riterion �. The RAVQelegantly handles low density inputs; not basing the pla
ement of model ve
-tors a

ording to input frequen
y but novelty and stability. Further, and moreimportantly, the RAVQ dynami
ally determines the appropriate number of 
at-egories to use, without the need for any user intervention, and �nally, sin
e theRAVQ works dire
tly on the input sequen
e, there is no risk of 
atastrophi
 for-getting due to a reallo
ation of the hidden spa
e whi
h 
ould be very damagingin previously used methods for this task.The RAVQ is limited to sequen
es where the signal mean basi
ally remains�xed for a period of time with some o

asional transition to a new signal mean.The 
ause of this limitation is that ea
h higher order 
on
ept is representedusing a single model ve
tor, pla
ed dire
tly in input spa
e. If instead regions orpaths 
ould be identi�ed in the input spa
e, and represented using model ve
tors,sequen
es of inputs 
ould form higher order 
on
epts. This 
ould, for instan
e,
orrespond to situations where a mobile robot travels through a broadening
orridor or moves diagonally through a room. Future extensions should alsoinvolve the in
orporation of adaptation of the model ve
tors to better a

ountfor the higher order 
on
epts whi
h they represent. This 
ould be performedusing a learning rule similar to that employed in Self-Organizing Maps [4℄.The extra
ted sequen
e of higher order 
on
epts 
an be viewed as an abstra
trepresentation of the environment, 
reated through the eyes of the robot. Thegranularity of the segmentation 
an be 
ontrolled indire
tly through the mis-mat
h redu
tion and the stability 
riteria. As di�erent levels of segmentationsmay be needed for di�erent tasks, a series of robot tasks should be designed,testing how useful the higher order 
on
epts a
tually are in ta
kling memory-



intensive tasks su
h as path learning through mazes and �nding long time de-penden
ies in the sensory-motor 
ow.A
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