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Chapter 1
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Abstract

Keywords:

By synthesizing a growing body of work in search processes thatmdriven

by explicit objectives, this paper advances the hypothesis that thereiila-f
mental problem with the dominant paradigm of objective-based seam®yoin
lutionary computation and genetic programming: Mastbitiousobjectives do

not illuminate a path to themselves. That is, the gradient of improvement in-
duced by ambitious objectives tends to lead not to the objective itself buathste
to dead-end local optima. Indirectly supporting this hypothesis, greci\bs-

ies often are not the result of objective-driven search. For exarttptemajor
inspiration for both evolutionary computation and genetic programmirtgrala
evolution, innovates through an open-ended process that lacks alfjeative.
Similarly, large-scale cultural evolutionary processes, such as tHetievoof
technology, mathematics, and art, lack a unified fixed goal. In additioectdir
evidence for this hypothesis is presented from a recently-introdueecrsalgo-
rithm called novelty search. Though ignorant of the ultimate objectiveartbe

in many instances novelty search has counter-intuitively outperformadtis-

ing directly for the objective, including a wide variety of randomly-getexta
problems introduced in an experiment in this chapter. Thus a new uadeiisg

is beginning to emerge that suggests that searching for a fixed objegliich

is the reigning paradigm in evolutionary computation and even machine learn
ing as a whole, may ultimatelymit what can be achieved. Yet the liberating
implication of this hypothesis argued in this paper is that by embracingtsearc
processes that amtdriven by explicit objectives, the breadth and depth of what
is reachable through evolutionary methods such as genetic programrmainige
greatly expanded.

Novelty search, objective-based search, non-objective seachption, evolu-
tionary computation
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1. Introduction

Evolutionary computation (EC; De Jong, 2006; Holland, 1975) and genetic
programming (GP; Koza, 1992) are algorithmic abstractions of natural-evo
tion, inspired by nature’s prolific creativity and the astronomical complexity
of its products. Supporting such abstractions, evolutionary algorithms)(EA
have achieved impressive results, sometimes exceeding the capabilities of hu
man design (Koza et al., 2003; Spector et al., 1999). Yet the ambitious goal
of evolving artifacts with complexity comparable to those crafted by natural
evolution remains daunting.

An interesting question is what prevents EAs from evolving artifacts with
a functional complexity of the magnitude seen in biological organisms. There
are many possible answers, each pointing to potential faults in currenfefs
example, representation, selection, or the design of problem domains could
each possibly be the paramount issue preventing higher achievement in EC
and there are researchers who investigate ways of improving eachsef the
components (Pelikan et al., 2001; Stewart, 2001). This paper focnsetet-
tion and argues that the currently dominant objective-based selectiorigrarad
significantly limits the potential of EAs.

This handicap results from a well-known problem facing EAs called de-
ception (Goldberg, 1987): Sometimes a mutation increases fitness but actually
leadsfurther from the objective. That is, the fitness function in EC is a heuris-
tic and thus there is no guarantee that increasing fithess actually dectiease
distance to the objective of the search. The fundamental problem is that the
stepping stones that lead to the objective may not resemble the objective itself.
For example, humans bear little resemblance to their flatworm ancestors. In
the words of John Stuart Mill, it is a fallacy to assume that the “conditions of a
phenomenon must, or at least probably will, resemble the phenomenon itself.”
(Mill, 1846, p. 470). Yet this fallacy is the verfpundationof typical fitness
functions and thus ultimately limits their effectiveness.

In practice, researchers become accustomed to the fragility of fitness fun
tions and learn certain rules of thumb that guide their efforts. One prominent
such inductive rule is that the more ambitious the objective is, the less likely
evolution will be able to solve it. This intuition, supported by experiments
in this paper with increasingly difficult problems, highlights the critical prob-
lem undermining objective-based search: While we want to harnesgievolu
to solve ambitious problems, the more ambitious the objective is, the less in-
formative the gradient of the induced objective function will be. A praroc
tive question is whether the quest for the objective itself sometimes precludes
search from achieving anything remarkable. In other words, couldiiggo
the ultimate objective of search, or even searching entirely without an gxplic
objective, sometimes be a more viable approach to discovery?
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A recent technique in EC called novelty search (Lehman and Stanley, 2011
Lehman and Stanley, 2008) shows that indeed new opportunities fovdigco
arise once explicit objectives are abandoned: Contrary to intuitionglsegr
without regard to the objective can often outperform searching expliatly f
the objective. Instead of searching for the objective, novelty searshre-
wards individuals with functionalitgifferentfrom those that precede them in
the search; inspired by nature’s drive towards diversity, noveltychedirectly
incentivizes novelty in lieu of any notion of progress. In a growing nunaber
experiments, novelty search has successfully been applied to solvisigm
often solving them more effectively than an algorithm searching directiyéor
objective (Lehman and Stanley, 2011; Risi et al., 2010; Lehman and ftanle
2010a; Doucette, 2010; Mouret, 2009; Lehman and Stanley, 2010b)ex-
ample, an experiment introduced in this chapter demonstrates the advantages
of novelty search in a wide variety of randomly-generated maze navigation
problems.

However, novelty search provides but one example of a non-objegtareh,

i.e. a search without a final explicit objective. A more prominent example is
natural evolution itself, the process from which both EC and GP are imkpire
While some might view reproduction as the goal of natural evolution, complex
organisms such as ourselves are less efficient and slower to reprtthrc
simple single-celled creatures. Thus, what we might be tempted to character-
ize as progress in natural evolution is in fact quantitatively detrimental to the
supposed objective of reproduction. That is, most innovation seentumaha
evolution may result more from finding new ways of meeting life’s challenges
(i.e. founding new niches) than from simply optimizing reproductive fitness.
Furthermore, nature does not aim at any single point or set of points in the
space of organisms. In contrast, the objective in EC or GP is usually jcist su

a point or set of points (e.g. the optimum or one of a set of optima).

Similarly, the evolution of mathematics, art, and technology are facilitated
by exploration around recent discoveries, serendipity, and a pletfidizerse
and conflicting individual objectives. That is, these human-drivercgsses
of search also do not aim at any unified society-wide singular objectives
the types of search processes that continually innovate to producalradic
vancements often lack a final predefined goal. This observation makes se
because a single fixed goal would either (1) be deceptive and the tefioig
search to a point at which progress would effectively halt, or (2) if il &5
not so deceptive then innovation would cease once the goal is met.

The most awe-inspiring forms of search, which continually discover com-
plex and interesting novelty, tend to build exploratively and incrementally upon
prior innovations while lacking final objectives. When search is framedisn th
way, it is natural to ask, why is the typical approach in EC and GP to start
from a random initial population and then to search narrowly towards d fixe
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goal? While it does indeed succeed in some cases, such objectiveskasel
does not scale to the most ambitious objectives, e.g. the ones that natural ev
lution is able to reach, because the objective-based search paradigiragts
evolution in a particularly restrictive way. That is, natural evolution saedse
because it divergently explores many ways of life while optimizing a behavior
(i.e. reproduction) largelprthogonalto what is interesting about its discover-
ies, while objective-based search directly follows the gradient of impnews

until it either succeeds or is too far deceived.

The main implication of the hypothesis advanced in this paper is that to
reach truly ambitious goals, EAs may need to be modified to exploit richer
gradients of information than estimated distance to a fixed objective. Behav-
ioral novelty is one such gradient, yet although novelty search doesréoitm
objective-based search in many deceptive problems, it too pales in dsorpar
to the creative achievement of natural evolution. That is, there still remains
much work to be done in developing powerful non-objective searchitigus.
Thus, while illustrating the limitations of objective-based search may be a neg-
ative result, at the same time it also illuminates an exciting and potentially pro-
found challenge for researchers in GP and EC: Through exploring tedymo
untamed wilderness of non-objective search algorithms we may be able to fi-
nally devise truly creative algorithms that continually yield innovative complex
artifacts. This paper reviews a spectrum of recent work that supibistgiew,
ultimately building an argument in favor of a wider perspective for GP and EC

2. Deception

In this section we argue that deception is a deleterious fundamental fyroper
of ambitious objectives that paradoxically prevents such objectivesbisng
reached when searching directly for them.

I nvestigating Deception

The motivation behind characterizing deception and problem difficulty is to
understand what properties of problems may cause EAs to fail, so that suc
properties can potentially be remedied or avoided.

The original definition of deception (Goldberg, 1987) is based on the-build
ing blocks hypothesis, in which small genetic building blocks are integrated
to form larger blocks (Holland, 1975). In the original conception, éfmm
is deceptive if lower-order building blocks, when combined, do not leaal to
global optimum. Thus, in deceptive problems the fitness function may actively
steer search away from exactly what is necessary to solve the problem.

Some alternative measures of problem difficulty attempt to quantify the
ruggedness of the fitness landscape, motivated by the intuition that optimiz-
ing more rugged landscapes is more difficult (Weinberger, 1990). lzuptdy,
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because the fitness landscape is induced by the objective functionptiierpr
of ruggedness, presupposing reasonable settings for the EA, ctribeted
to the objective function itself.

Interestingly, other researchers suggest that ruggedness isnplasized
and that neutral fitness plateaus (i.e. neutral networks) are key iofsam
evolutionary dynamics (Barnett, 2001; Stewart, 2001). However, pgatral
networks suggest a deficiency in the objective function: By definitiorué&rake
part of the search space contains no gradient information with respda to
objective function. That is, in a neutral network the compass of the obgecti
function is ambiguous with respect to which way search should proceed.

In summary, there are many ways to consider, measure, and model the diffi-
culty of problems for EAs. While in general the exact properties of alprob
that make it difficult for EAs are still a subject of research, in this papetaim
deception will refer to an intuitive definition of problem hardness: A décep
problem is one in which a reasonable EA (with a reasonable representation
parameters, and search operators) will not reach the desired objectivea-
sonable amount of time. That is, a deceptive problem is simply a problem in
which following the gradient of the objective function leads to local optima.

It is important to note that this definition of deception is different from the
traditional definition (Goldberg, 1987). This intuitive approach helps te iso
late the general problem with particular objective functions because thee wo
“deception” itself reflects a fault in thebjective functior{as opposed to in the
algorithm itself): An objective function with the pathology of deceptiveness
will deceivesearch by actively pointing the wrong way.

Mitigating Deception

Ideally, there would exist a silver bullet method immune to the problem of
deception such that any objective would be reachable in a reasonabletamo
of time. Although it is impossible that any such general silver bullet method
exists (Wolpert and Macready, 1995), researchers strive to aresiteods that
can overcome deception in practice.

Common approaches in EC to mitigating deception are diversity mainte-
nance techniques (Mahfoud, 1995), building models that derive adalition
formation from an imperfect fithess function (Pelikan et al., 2001), oelacc
ating search through neutral networks (Stewart, 2001). Howevesf diese
techniques remain vulnerable to sufficiently uninformative objective funstio

In direct response to the problem of local optima when evolving towards
sophisticated behaviors, some researchers incrementally evolve sologions
sequentially applying carefully crafted objective functions (Gomez and Mi-
ikkulainen, 1997). However, with ambitious objectives crafting an apjmte
sequence of objectives may be difficult or impossible to achieve a priori. Ad
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ditionally, the requirement of such intimate domain knowledge conflicts with
the aspiration omachindearning.

In addition to single-objective optimization, there also exist evolutionary
methods that optimize several objectives at once: Multi-Objective Evolution-
ary Algorithms (MOEASs) (Veldhuizen and Lamont, 2000). However, these
MOEAs are not immune to the problem of deception (Deb, 1999), and adding
objectives does not always make a problem easier (Brockhoff e08i7))2

Another approach in EC related to deception is coevolution, wherein inter-
actions between individuals contribute towards fithess. The hope is that co
tinual competition between individuals will spark an evolutionamns racein
which the interactions between individuals continually creates a smooth gradi-
ent for better performance (Cliff and Miller, 1995). However, in prazgach
arm races often converge to situations analogous to local optima in standard
objective-based search, e.g. mediocre stable-states, cycling betelemndrs
without further progress, or unbalanced adaptation where one symgiefi-
cantly out-adapts other competing species (Ficici and Pollack, 1998).

In summary, because deception is a significant problem in EC, there are
manymethods that have been designed to mitigate deception. However, while
they may sometimes work, ultimately such methods do not cure the underlying
pathology of the objective function that causes deception: The graafi¢ims
objective function may be misleading or uninformative to begin with. Given
a sufficiently uninformative objective function, it is an open question wdreth
anymethod relying solely on the objective function will be effective. Thus an
interesting yet sobering conclusion is that some objectives may be unareach
able by direct objective-based search alone. Furthermore, as teghtexity
increases it is more difficult to successfully craft an appropriate olgefttinc-
tion (Ficici and Pollack, 1998; Zaera et al., 1996). These insights matci man
EC practitioners’ experience that the difficulty in ambitious experiments is of-
ten in crafting a sufficient fitness function. Thus the ultimate conclusion is that
the more ambitious the experiment, the more likely it is that objective-based
search will lead to mediocre local optima as opposed to the desired goal.

3. Non-objective Search

If one accepts that there can be no general solution to the fundameottal pr
lem of deception in objective-based search (Wolpert and Macre&®8) Lit
becomes important to consider alternative paradigms such as searctméshin w
there is no a priori fixed objective.

Interestingly, natural evolution, which inspires both EC and GP, is an ex-
ample of such a non-objective search. That is, there is no final orgdaism
which natural evolution searches. While competition between organisms may
increase reproductive fitness, the complexity of biological organismsathat
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are tempted to attribute to selection is instead nearly always quantitatively
detrimentalto fithess. That is, large complex organisms reproduce slower
and less efficiently than simple single-celled organisms. Indeed, some biol-
ogists have argued that selection pressure may not explain innovatiotd(Go
1996; Lynch, 2007). The conclusion is that innovation may result moira fr
accumulating novel ways of life (i.e. new niches) than from optimizing fitness.

Similarly, cultural evolutionary processes such as the evolution of mathe-
matics, art, and technology also lack a single unified objective. That ig, iher
no fixed final theory of mathematics, no final transcendent pinnacle,cirad
no final culminating technology that these systems singularly strive towards.
Innovation in such systems branches from existing innovations by localsea
empowered by a diversity of differing individual goals and serendipittig-
covery (Drexler and Minsky, 1986; Kelly, 2010, pp. 165-166).

Finally, an interesting, well-studied microcosm of open-ended innovation is
provided by an online system called Picbreeder (Secretan et al., 20&i¢iw
users interactively evolve pictures that are represented as compositioath-
ematical functions. During evolution, a user can publish a particular image to
the Picbreeder website, where other users can see and rate it. Usew®ba
images starting from a random initial population or they can start instead from
any one of the images already published. Most evolution in this system hap-
pens through users branching from already-evolved pictures sedtheay are
more complex and visually appealing than random images. Thus, branching
in Picbreeder fosters a collaborative system that leads to an accumulition o
diverse, complex pictures. It is important to note that there is no overad dr
to the system besides the wide-ranging individual preferences of ¢éns.us

Though there is no system-wide goal and no bias in the encoding towards
particular classes of images, surprisingly, many pictures resembling oglal-w
phenomena such as faces, cars, and butterflies have been evoladis, T
through collaborative interactive evolution users have discovered mathe
cal representations of recognizable images. Creating an interactiltgieno
system that can discover recognizable images is difficult, and is rare among
such systems. Because the evolutionary history of all images is pressrved
Picbreeder, one can trace the ancestors of such complex images all the way
their random origins in an initial population. Whereas one might guess that
users discovered these images by intentionally selecting images that resemble
them, interestingly, that is not the case. In fact, for most cases of complex im-
ages, the nearly-immediate predecessors to what look like particular ogial-w
objects donot resemble that same object (figure 1-1). That is, the precursors
to an image resembling a car were not chosen because they were cautike,
for some other aesthetic merit, mirroring biological exaptation. In fact, users
are often frustrated when they try and fail to evolve towards a specificdmag
class (Secretan et al., 2011), yet those image classes are still distevaue
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Figure 1-1. Deceptive Precursors. Three pairs of related images evolved by users on
Picbreeder are shown above. Each left image is a close evolutioneegtan of the image
to its right. The important insight is that the precursor pictures that ar@isggstones to a
particular image often do not resemble that final image.

only when discovering them isot the goal. In other words, the success of
Picbreeder at finding so many recognizable images results from of itsfack o
an overarching goal. Furthermore, (Woolley and Stanley, 2011) shuats
pictures evolved on Picbreeder cannot be re-evolved effectivethdygame
algorithm and encoding inside Picbreeder if those pictures are set ativige

for evolution.

The implication from reviewing these examples of non-objective searches
is that the types of systems that foster open-ended innovation and lead to the
accumulation of complex interesting artifacts tend to lack singular fixed objec-
tives. While the evidence presented thus far has been inductive, thesation
reviews novelty search, a non-objective search algorithm that candrdita-
tively compared in various domains to more traditional objective-basedsear
Thus novelty search provides an opportunity to test directly whethedanan
ing the single-minded search for the objective is ever beneficial.

4, Novelty Search

Recall that the problem with the objective-based search paradigm that is
common in EC models is that the objective function (e.g. the fitness function)
does not necessarily reward the intermediate stepping stones that lead to the
objective. These stepping stones often do not resemble the objective itself
especially as objectives become more ambitious, which makes it increasingly
difficult to identify these stepping stonaspriori.

The approach in novelty search (Lehman and Stanley, 2008; Lehman and
Stanley, 2011), is to identify novelty aspaoxy for stepping stones. That is,
instead of searching for a final objective, the learning method rewastimices
with functionality significantly different from what has been discoverefbte.

Thus, instead of a traditional objective function, evolution emplope\elty
metric. That way, no attempt is made to measure overall progress. In effect,
such a process performs explicitly what natural evolution does pagsiee
gradually accumulating novel forms that ascend the complexity ladder.

For example, in a biped locomotion domain, initial attempts might simply
fall down. An objective function may explicitlyeward falling the farthest,
which is unrelated to the ultimate objective of walking and thus exemplifies a
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deceptive local optimum. In contrast, the novelty metric would reward simply
falling down in a different way, regardless of whether it is closer to themb
tive behavior or not. After a few ways to fall are discovered, the only tea

be rewarded is to find a behavior that dows fall right away. In this way,
behavioral complexity rises from the bottom up. Eventually, to do something
new, the biped would have to successfully walk for some distance evegithou
it is not an objective.

Novelty search succeeds where objective-based search fails bydiag
the stepping stones. That is, anything that is genuinely different is dedar
and promoted as a jumping-off point for further evolution. While we cannot
know which stepping stones are the right ones, if we accept that the grimar
pathology in objective-based search is that it cannot detect the stegipmes
at all, then that pathology is remedied. This idea is also related to research in
curiosity seekingn reinforcement learning (Schmidhuber, 2006).

Evolutionary algorithms like GP or neuroevolution (Yao, 1999) are well-
suited to novelty search because the population of genomes that is central to
such algorithms naturally covers a wide range of expanding behawfact]
tracking novelty requires little change to any evolutionary algorithm asiae fro
replacing the fitness function withreovelty metric

The novelty metric measures how different an individual is from other indi-
viduals, thereby creating a constant pressure to do something new.eyhe k
idea is that instead of rewarding performance on an objective, the novelty
search rewards diverging from prior behaviors. Thereforegltpwneeds to
bemeasured There are many potential ways to measure novelty by analyzing
and quantifying behaviors to characterize their differences. Imporidikity
the fitness function, this measure must be fitted to the domain.

The novelty of a newly-generated individual is computed with respect to
thebehaviorg(i.e. notthe genotypes) of aarchiveof past individuals and the
current population. The aim is to characterize how far away the newidhail/
is from the rest of the population and its predecessdoeiravior spacg.e. the
space of unique behaviors. A good metric should thus computptirseness
at any point in the behavior space. Areas with denser clusters of visitatsp
are less novel and therefore rewarded less.

A simple measure of sparseness at a point is the average distancekto the
nearest neighbors of that point, whéres a fixed parameter that is determined
experimentally. Intuitively, if the average distance to a given point’s rstare
neighbors is large then it is in a sparse area; it is in a dense region if tregave
distance is small. The sparsengs# pointz is given by

k
p(z) = % > dist(x, 1), (1.1)
=0
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where; is theith-nearest neighbor of with respect to the distance metric
dist, which is a domain-dependent measure of behavioral difference &etwe
two individuals in the search space. The nearest neighbors calculatisn mu
take into consideration individuals from the current population and fram th
permanent archive of novel individuals. Candidates from more spagsons

of this behavioral search space then receive higher novelty sch@s. that

this novelty space cannot be explored purposefully; it is not knavgmiori

how to enter areas of low density just as it is not known a priori how to con-
struct a solution close to the objective. Thus, moving through the space of
novel behaviors requires exploration.

The current generation plus the archive give a comprehensive sahple
where the search has been and where it currently is; that way, by attgrtgotin
maximize the novelty metric, the gradient of search is simply towards what is
new with no explicitly-specified objective within the search space.

Novelty search in general allows any behavior characterization anaany
elty metric. Although generally applicable, novelty search is particularly suited
to domains with deceptive fitness landscapes, intuitive behavioral ¢berac
zation, and domain constraints on possible expressible behaviors. Mare g
erally, novelty search can be applied even when the experimenter hésano c
objective in mind at all. For example, in some domains, rather than optimality,
the aim may be to collect all the interesting behaviors in the space.

Once objective-based fitness is replaced with novelty, the underlyingpEA o
erates as normal, selecting the highest-scoring individuals to reproGvee.
generations, the population spreads out across the space of possialedns,
continually ascending to new levels of complexity to create novel behawsors a
the simpler variants are exhausted.

5. Experimentswith Novelty Search

There have been many successful applications of novelty search indB@an
and Stanley, 2011; Risi et al., 2010; Goldsby and Cheng, 2010; MQQ@9,
Lehman and Stanley, 2008; Lehman and Stanley, 2010a; Lehman and/Stanle
2010b; Doucette, 2010), both with GP (Doucette, 2010; Lehman and Stan-
ley, 2010a; Goldsby and Cheng, 2010) and neuroevolution (LehnthStam-
ley, 2011; Risi et al., 2010; Mouret, 2009; Lehman and Stanley, 201063
section reviews some such results to provide evidence that search ead ind
function effectively without an explicit objective.

Novelty search was first introduced in a conference paper in 2008r{ae
and Stanley, 2008) in which it was combined with the NEAT neuroevolution
method (Stanley and Miikkulainen, 2002) and tested in a deceptive maze-
navigation domain. In the harder of the two tested mazes, novelty search
solved the maze in 39 out of 40 attempts (even though solving the maze was
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notthe objective), while objective-based search nearly always failext ¢sal-

ing only three times out of 40 even though solving the maasthe objective).
These results were also reproduced in combination with a multi-objective EA
(Mouret, 2009). Novelty-related methods have also been shown biahéfic
evolving plastic neural networks that learn from experience (Risi e2@10).

Novelty search was further applied to biped locomotion (Lehman and Stan-
ley, 2011), a difficult control task that is popular within machine learningl(R
and Husbands, 2002). Though it was not looking directly for stable, geits
elty search evolved controllers that traveled farther (4.04 metérs; 2.57)
than solutions evolved by objective-based search (2.88 met&es,1.04) on
average ovel0 runs of both methods. More dramatically, thestgait discov-
ered by novelty search traveled 13.7 meters, while the best gait disddwere
objective-based search traveled only 6.8 meters.

In GP, novelty search has worked successfully in the artificial antimeak
(Lehman and Stanley, 2010a; Doucette, 2010), maze navigation (Lehmdan a
Stanley, 2010a; Doucette, 2010), and in finding latent bugs in softwade mo
els (Goldshy and Cheng, 2010). Novelty search with GP has outperdorme
standard objective-based search (Lehman and Stanley, 2010atR02010),
proven less prone to program bloat (Lehman and Stanley, 2010ajopand
more general solutions than objective-based search (Doucette, 2010)

Building on prior results in maze navigation with GP (Lehman and Stanley,
2010a; Doucette, 2010), the next section describes an experimemntvibst
tigates how the performance of novelty search and traditional objeciiseeb
search degrade with increasing problem complexity.

6. Scaling Problem Complexity in Maze Navigation

A hypothesis advanced by this chapter is that as problems grow more dif-
ficult, the gradient defined by measuring distance to the objective becomes
increasingly deceptive and thereby less informative. Thus as deeeess
increases, non-objective search methods like novelty search may foutper
more traditional objective-based search methods. However, while soggu
tible to traditional deception, novelty search also is not guaranteed to €onsis
tently find specificobjectives as problems become more complex.

Therefore, an interesting experiment is to compare how the relationship be-
tween problem complexity and performance varies in both traditional obgectiv
based search and novelty search, which serves as an example ebbjactive
search algorithm. Maze navigation is a natural choice of domain for such
an investigation because it is a good model for search problems in general
(Lehman and Stanley, 2011), because it is the basis for previous compar
isons between novelty search and objective-based search (Lehih&taan
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Objective: Find a robot that navigates the maze
Terminal set: Left (turn left), Right (turn right), Move (move
forward one square)
Functions set: | IfWallAhead (execute one of two child instru¢
tions based on whether there is a wall diregtly
ahead), IfGoalAhead (execute one of two child
instructions based on whether the goal is within
a 90 degree cone projected outwards from where
the robot is facing), Prog2 (sequentially execute
the two child instructions)

Fitness cases: | One 0f360 randomly-generated mazes

Wrapper: Program repeatedly executed for 200 time steps

Population Size] 500

Termination: Maximum number of generations260, 400 and
600

Table 1-1. Parameters for the Maze Problem

ley, 2010a; Doucette, 2010; Lehman and Stanley, 2011; Mouret, 2660€)
because it is easy to generate mazes of parameterized complexity.

Experiment Description

The GP maze domain works as follows. A robot controlled by a genetic
program must navigate from a starting point to an end point within a fixed
amount of time. The task is complicated by occlusions and cul-de-sacs that
prevent a direct route and create local optima in the fitness landscame. Th
robot can move forward, turn, and act conditionally based on whetber iha
wall directly in front of it or not, or whether it is facing the general direntad
the goal or not. The robot is successful in the task if it reaches thdayadion.

This setup is similar to previous GP maze navigation experiments (Lehman
and Stanley, 2010a; Doucette, 2010). Table 1-1 describes the parsuwfdte
experiment.

Objective fitness-based GP, which will be compared to novelty search, re
quires a fitness function to reward maze-navigating robots. Becausdthe o
jective is to reach the goal, the fitnegss defined as the distance from the
robot to the goal at the end of an evaluatigh:= by — d,, whereb; is the
maximum distance possible adg is the distance from the robot to the goal.
Given a maze with no deceptive obstacles, this fitness function definesea mon
tonic gradient for search. The constaptensures that all individuals will have
positive fithess.

GP with novelty search, on the other hand, requires a novelty metric to dis-
tinguish between maze-navigating robots. Defining the novelty metric requires
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careful consideration because it biases the search in a fundamenthe lif
way than the fithess function. The novelty metric determines the behavior-
space through which search will proceed. It is important that the type-of b
haviors that one hopes to distinguish are recognized by the metric.

As in prior maze navigation experiments (Lehman and Stanley, 2011; Lehman
and Stanley, 2010a), the behavior of a navigator is defined as its enalitg p
tion. The novelty metric is then the Euclidean distance between the ending
positions of two individuals. For example, two robots stuck in the same corner
appear similar, while one robot that simply sits at the start position looks very
different from one that reaches the goal, though they are both equatlevto
the novelty metric.

To compare how effectively fithess-based search and novelty seaoble
navigational policies for increasingly complex maze problems, both search
methods were tested @60 randomly-generated mazes. These mazes were
created by a recursive division algorithm (Reynolds, 2010), whigldes$ an
initally empty maze (i.e. without any interior walls) into two subareas by ran-
domly adding a horizonal or vertical wall with a single randomly-located hole
in it (which makes all open points reachable from any other open point in the
maze.) This process continues recursively within each subarea untikas a
can be further subdivided without making the maze untraversable, othmtil
limit for subdivisions (chosen randomly betwezand50 for each maze in this
experiment) is exceeded. The starting position of the maze navigating robot
and the goal position it is trying to reach are also chosen randomly. Examples
of mazes generated by such recursive division are shown in figRre 1-

j
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(a) Simple Maze Problem (b) More Complex Maze Prob-
lem
Figure 1-2. Two randomly-generated maze problems created by the recursive division
algorithm. In both mazes, the filled circle represents the starting location and the unfiités
represents the goal location. The maze shown in (a) has fewer sgibd#/and a shorter optimal
path to the goal than the maze shown in (b).

1

The length of the shortest possible path between the start and goal position
was found to be a good heuristic for problem complexity. Intuitively, longer
paths potentially require more complex navigational policies. In addition, in-
creasing path length was highly correlated with decreasing performanat f
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of the search methods (adjust&d > 0.75 for each method). Thus mazes
were sampled such thatmaze problems were chosen for each shortest-path
length betweeri0 and100. For each of th&d60 mazes,10 independent runs
were conducted for both fitness-based search, novelty searcGRanith ran-
dom selection. Random selection was considered as a control to diifgeen
novelty search from random exploration of the search space. Expesnvere
conducted with limits 0200, 400, and600 generations. A given run is consid-
ered successful if a navigator was evolved that reaches the goal wighiime

limit of 200 steps.

Results

The main result, as illustrated by figures 1-3a and 1-3b, is that novelty
search solves significantly more instances of the generated maze problems
(p < 0.001, Fischer’s exact test) and that it scales to solving more complex
instances significantly better than objective fithess-based search doman
search § < 0.001, the intercept values of the linear regression models are
significantly different according to an ANCOVA test.) In addition, figur8H.-
shows that novelty search better exploits additional evaluations than fithess-
based search or random search. While random search may wastevakuay e
tions with policies that are the same and fithess-based search may waste many
evaluations attempting to escape from deceptive local optima, novelty search
constantly incentivizes discovering new behaviors.

] - 60 \ o
— ] 200 generations ZZZZZa
o | = N_Ovelty 2 400 generations
% o -0 Fitness o 50 - 600 generations M= |
14 - 5 40 -
)] i<l
a g
Q< [=%
. — 30 L
8o 8 %
> < /
»n E 20t %
o
- : ¢
> T & SeamsoatNe g 10| 2
S | 3 .
1] ¢ A
T E: A ]
20 40 60 80 100 Novelty  Fitness  Random
Maze Complexity Reward scheme
(a) Performance Comparision (b) Performance versus Evaluations

Figure 1-3. Reward scheme comparisons. The effectiveness of novelty search, fitness-based
search, and random search at solving problems of increasing ocdatypéeplotted along with
linear regressions in (a). Novelty search is the most effective althdsgierformance also
degrades with increasing problem complexity. Each plotted point is fromutes) each lasting
600 generations. The effect on performance of varying the amoun¢émtions for novelty
search, fithess-based search, and random search is shown o)ty search exploits addi-
tional evaluations more effectively than fitness-based search oomasdarch.

It is important to note that the performance of each of the three compared
methods decreases with increasingly complex maze instances. Few instances
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are reliably solved by any of the methods with optimal path length greater
than80. Thus while novelty search may outperform the other methods in this
domain, it too struggles to discovepecificambitious objectives from first
principles; this result tentatively supports the hypothesis that in some cases
attempting to achieve specific objectives from a random starting point may
ultimately be futile beyond a certain level of problem complexity.

This experiment and the previous section (which enumerated prior results
with novelty search) offer strong empirical evidence that novelty seuan
often be a viable approach. Though such evidence of its effectigeredin-
ues to accumulate, because it challenges the intuitive assumption that search
should be driven by an objective, some skepticism of novelty searchaisieah
response, as addressed next.

7. Common Objectionsto Novelty Search

Common objections to novelty search include: (1) that it is not general,
(2) that it is ineffective if the space of behaviors to be explored becwass
(3) that maintaining a growing archive of past behaviors is too computdiffona
expensive, and (4) that novelty itself is an objective and thus that naesigh
is still an objective-based search.

7.1 Generality

Because maze-navigation is easily understood and makes a good model
for search in general, it has often been used to illustrate propertiesvef no
elty search (Lehman and Stanley, 2010a; Lehman and Stanley, 200&abeh
and Stanley, 2011; Mouret, 2009; Lehman and Stanley, 2010b). Hwowev
novelty search has also been applied to diverse domains such as bijged wa
ing (Lehman and Stanley, 2011), discovering latent bugs in softwarelsode
(Goldsby and Cheng, 2010), T-mazes common in learning experiments with
rats (Risi et al., 2010), and the artificial ant GP benchmark (Lehman t@mnd S
ley, 2010a). It has been combined with multi-objective search (Mouré8)20
and applied with both neuroevolution and GP. Thus, while of course it will no
always succeed in every domain, evidence of its generality as a viablatool
the toolbox of EC continues to accumulate.

7.2 Dimensionality

Though smaller behavior spaces can be more thoroughly exploredtynove
search incentivizes the discovery of maximally different behaviors irsagy
of behavior space. Thus even in vast behavior spaces noveltyhse#irex-
pand to cover the space loosely, uncovering a wide variety of refedsen
behaviors, some of which may be solutions to problems. For example, even
when exploring a100-dimensional behavior space constructed from consid-
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ering nearly every point in the trajectory of a maze-navigating robot, Ityove
search still consistently discovers neural networks that solve mazbmére
and Stanley, 2011). Of course, it is possible to construct scenariokighw
vast sections of the behavior space are uninteresting. Howeverhseauch
cases can be accelerated by restricting which behaviors are consiuee
(Lehman and Stanley, 2010b).

7.3 Costs of Expanding the Archive

The purpose of the archive of previously novel behaviors in novelgych
is to discourage backtracking by keeping track of where search bampsly
been in the behavior space. Though the archive in general growkyshmwv
cause it grows continually over the course of evolution, it may eventually be
come computationally expensive to calculate the novelty of a new individual.
However, kd-trees or other specialized data structures can reducertiai-
tational complexity of such calculations, and experiments have shown that in
practice it may often be possible to limit the size of the archive without harm-
ing novelty search’s performance (Lehman and Stanley, 2011).

7.4 Novelty as an Objective

While some might say that rewarding novelty effectively means that novelty
is just a special kind of objective, novelty is not an objective in the uquigt s
of the word in EC. That is, for many years objectives in EC have beeasriges
tions ofareas of the search space towards which evolution should be ditected
In other words objectivesdescribe where we want search to go. Yet novelty
doesnot favor any particular part of the search space; instead rétléive to
what behaviors have been previously encountered, is constantlgiogaand
is largely orthogonal to the actual objective of the experiment. Thus while the
semantics of the wordbjectiveare likely to continue to invite debate, drawing
the distinction between novelty on the one hand and traditional objectives on
the other is important because the purpose of scientific languagéaisilitate
drawing such distinctions rather than to obfuscate them. In fact, it could be
argued that one reason that non-objective search has receilittle sttention
until now is that a number of different incentives for search have beeflated
as being one and the same when they are in fact fundamentally differarg. Th
language can help to extricate us from such misleading conflations.

The next section examines the larger implications of non-objective search.

8. Implications

The success of novelty search combined with the general tendencg-of sy
tems that continually innovate to lack fixed objectives is that sometimes it is
beneficial toignorethe objective rather than to seek it. Although this insight
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may at first appear strange or unsettling, the evidence suggests that-the u
derlying assumption causing this discomfort, i.e. that searching for something
is always the best way to find it, does not hold. That is, novelty seamh pr
vides direct evidence that searching without knowledge of the objectine
sometimes provide an advantage.

It is important to note that while novelty search is a viable alternative to
objective-based search and has been shown to outperform it in iviah-do-
mains, it is no panacea and also so far falls short of natural evolutionevé,
as a new tool for EC and a working example of what can be gained from co
sidering non-objective search, novelty search may inspire futurangseto
more powerful EAs that can achieve more by not directly trying to do so.

Thatis, acknowledging that the prevailing paradigm of objective-bssacth
is not the only way nor always the best way to guide search opens ous mind
to the possibilities of non-objective search, of which novelty search is only
one example. Other examples of non-objective search include natutal evo
tion and the cultural evolutions of math, art, and technology. These systems
continually innovate and yield artifacts of increasing complexity though they
are not guided by progress towards a fixed objective. New innovatiagch
objective-less systems typically branch exploratively outwards fronr prio
novations. This dynamic contrasts starkly with the objective paradigm in EC
wherein evolution in any experiment almost always starts from an unsteaictu
random population and then evolves narrowly to a particular goal artifact.

The problem is that we often attribute the creativity and complexity of nature
to optimizationof reproductive fitness by natural selection. Thus the optimiza-
tion process has become the key abstraction driving most EAs. Howewer,
ral evolution’s characteristic prolific creativity and accumulation of complex
may be natural byproducts of diversity and open-ended innovatiorauhste
the struggle to optimize a particular metric (Gould, 1996; Lynch, 2007). That
is, the driving abstraction behind EC may rest upon the wrong bedraak pr
ciple. However, alternative abstractions can easily be investigated while still
preserving the main components of EC and GP algorithms by simply changing
the selection criteria to be driven by something other than explicit objectives.

A narrow interpretation of this argument is that we might sometimes more
effectively achieve our objectives by searching for something otharttiem-
selves. However, the implication of this body of work is actually more fun-
damental: There may be a trade-off in search that has to date received little
attention yet that nevertheless explains why computational approactias se
so qualitatively different from processes in nature. In particular, it bethat
search can either be prodded toward a specific yet not-too-ambitiougiobje
(e.g. as with the traditional fithess functioo) it can discover a multitude of
interesting artifacts, none of which are anticipated a priori or even naris
desired at all (e.g. as in nature). Thus, on the downside, perhap®itpessi-
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ble topurposefullydrive search to our most ambitious objectives. However, on
the upside, perhaps artificial processasdiscover artifacts of unprecedented
scope and complexity, yet only if we relinquish the insistence that we must
define a priori what those discoveries should be. In effect, we nsigaich
without objectivesWho knows what we will find?

9. Conclusion

In conclusion, the reliance on objectives that pervades EC and GP may
not capture the essential dynamics of natural evolution. Indeed, thia-pre
lent paradigm may be preventing us from realizing computationally the pro-
found creativity of natural evolution. That is, although natural evolutioas
not narrowly search for something in particular, that is how we as pragtition
ers typically constrain evolution. Far from bearing a negative messaige, th
paper highlights the opportunity to explore the yet untamed wilderness of non
objective search algorithms to create open-ended systems that yield et+atch
ing proliferation of complex novelty.
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