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Chapter 1

NOVELTY SEARCH AND THE PROBLEM WITH
OBJECTIVES
TO APPEAR IN: GENETIC PROGRAMMING THEORY AND PRACTICE IX (GPTP 2011).

NEW YORK, NY: SPRINGER

Joel Lehman1 and Kenneth O. Stanley1
1Department of EECS, University of Central Florida, Orlando, Florida, USA;

Abstract By synthesizing a growing body of work in search processes that are not driven
by explicit objectives, this paper advances the hypothesis that there is a funda-
mental problem with the dominant paradigm of objective-based search inevo-
lutionary computation and genetic programming: Mostambitiousobjectives do
not illuminate a path to themselves. That is, the gradient of improvement in-
duced by ambitious objectives tends to lead not to the objective itself but instead
to dead-end local optima. Indirectly supporting this hypothesis, great discover-
ies often are not the result of objective-driven search. For example, the major
inspiration for both evolutionary computation and genetic programming, natural
evolution, innovates through an open-ended process that lacks a finalobjective.
Similarly, large-scale cultural evolutionary processes, such as the evolution of
technology, mathematics, and art, lack a unified fixed goal. In addition, direct
evidence for this hypothesis is presented from a recently-introduced search algo-
rithm called novelty search. Though ignorant of the ultimate objective of search,
in many instances novelty search has counter-intuitively outperformed search-
ing directly for the objective, including a wide variety of randomly-generated
problems introduced in an experiment in this chapter. Thus a new understanding
is beginning to emerge that suggests that searching for a fixed objective, which
is the reigning paradigm in evolutionary computation and even machine learn-
ing as a whole, may ultimatelylimit what can be achieved. Yet the liberating
implication of this hypothesis argued in this paper is that by embracing search
processes that arenotdriven by explicit objectives, the breadth and depth of what
is reachable through evolutionary methods such as genetic programmingmay be
greatly expanded.

Keywords: Novelty search, objective-based search, non-objective search, deception, evolu-
tionary computation
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1. Introduction

Evolutionary computation (EC; De Jong, 2006; Holland, 1975) and genetic
programming (GP; Koza, 1992) are algorithmic abstractions of natural evolu-
tion, inspired by nature’s prolific creativity and the astronomical complexity
of its products. Supporting such abstractions, evolutionary algorithms (EAs)
have achieved impressive results, sometimes exceeding the capabilities of hu-
man design (Koza et al., 2003; Spector et al., 1999). Yet the ambitious goal
of evolving artifacts with complexity comparable to those crafted by natural
evolution remains daunting.

An interesting question is what prevents EAs from evolving artifacts with
a functional complexity of the magnitude seen in biological organisms. There
are many possible answers, each pointing to potential faults in current EAs. For
example, representation, selection, or the design of problem domains could
each possibly be the paramount issue preventing higher achievement in EC,
and there are researchers who investigate ways of improving each of these
components (Pelikan et al., 2001; Stewart, 2001). This paper focuses on selec-
tion and argues that the currently dominant objective-based selection paradigm
significantly limits the potential of EAs.

This handicap results from a well-known problem facing EAs called de-
ception (Goldberg, 1987): Sometimes a mutation increases fitness but actually
leadsfurther from the objective. That is, the fitness function in EC is a heuris-
tic and thus there is no guarantee that increasing fitness actually decreases the
distance to the objective of the search. The fundamental problem is that the
stepping stones that lead to the objective may not resemble the objective itself.
For example, humans bear little resemblance to their flatworm ancestors. In
the words of John Stuart Mill, it is a fallacy to assume that the “conditions of a
phenomenon must, or at least probably will, resemble the phenomenon itself.”
(Mill, 1846, p. 470). Yet this fallacy is the veryfoundationof typical fitness
functions and thus ultimately limits their effectiveness.

In practice, researchers become accustomed to the fragility of fitness func-
tions and learn certain rules of thumb that guide their efforts. One prominent
such inductive rule is that the more ambitious the objective is, the less likely
evolution will be able to solve it. This intuition, supported by experiments
in this paper with increasingly difficult problems, highlights the critical prob-
lem undermining objective-based search: While we want to harness evolution
to solve ambitious problems, the more ambitious the objective is, the less in-
formative the gradient of the induced objective function will be. A provoca-
tive question is whether the quest for the objective itself sometimes precludes
search from achieving anything remarkable. In other words, could ignoring
the ultimate objective of search, or even searching entirely without an explicit
objective, sometimes be a more viable approach to discovery?
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A recent technique in EC called novelty search (Lehman and Stanley, 2011;
Lehman and Stanley, 2008) shows that indeed new opportunities for discovery
arise once explicit objectives are abandoned: Contrary to intuition, searching
without regard to the objective can often outperform searching explicitly for
the objective. Instead of searching for the objective, novelty search only re-
wards individuals with functionalitydifferentfrom those that precede them in
the search; inspired by nature’s drive towards diversity, novelty search directly
incentivizes novelty in lieu of any notion of progress. In a growing numberof
experiments, novelty search has successfully been applied to solving problems,
often solving them more effectively than an algorithm searching directly forthe
objective (Lehman and Stanley, 2011; Risi et al., 2010; Lehman and Stanley,
2010a; Doucette, 2010; Mouret, 2009; Lehman and Stanley, 2010b). For ex-
ample, an experiment introduced in this chapter demonstrates the advantages
of novelty search in a wide variety of randomly-generated maze navigation
problems.

However, novelty search provides but one example of a non-objectivesearch,
i.e. a search without a final explicit objective. A more prominent example is
natural evolution itself, the process from which both EC and GP are inspired.
While some might view reproduction as the goal of natural evolution, complex
organisms such as ourselves are less efficient and slower to reproduce than
simple single-celled creatures. Thus, what we might be tempted to character-
ize as progress in natural evolution is in fact quantitatively detrimental to the
supposed objective of reproduction. That is, most innovation seen in natural
evolution may result more from finding new ways of meeting life’s challenges
(i.e. founding new niches) than from simply optimizing reproductive fitness.
Furthermore, nature does not aim at any single point or set of points in the
space of organisms. In contrast, the objective in EC or GP is usually just such
a point or set of points (e.g. the optimum or one of a set of optima).

Similarly, the evolution of mathematics, art, and technology are facilitated
by exploration around recent discoveries, serendipity, and a plethoraof diverse
and conflicting individual objectives. That is, these human-driven processes
of search also do not aim at any unified society-wide singular objective.Thus
the types of search processes that continually innovate to produce radical ad-
vancements often lack a final predefined goal. This observation makes sense
because a single fixed goal would either (1) be deceptive and therefore bring
search to a point at which progress would effectively halt, or (2) if the goal is
not so deceptive then innovation would cease once the goal is met.

The most awe-inspiring forms of search, which continually discover com-
plex and interesting novelty, tend to build exploratively and incrementally upon
prior innovations while lacking final objectives. When search is framed in this
way, it is natural to ask, why is the typical approach in EC and GP to start
from a random initial population and then to search narrowly towards a fixed
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goal? While it does indeed succeed in some cases, such objective-basedsearch
does not scale to the most ambitious objectives, e.g. the ones that natural evo-
lution is able to reach, because the objective-based search paradigm constrains
evolution in a particularly restrictive way. That is, natural evolution succeeds
because it divergently explores many ways of life while optimizing a behavior
(i.e. reproduction) largelyorthogonalto what is interesting about its discover-
ies, while objective-based search directly follows the gradient of improvement
until it either succeeds or is too far deceived.

The main implication of the hypothesis advanced in this paper is that to
reach truly ambitious goals, EAs may need to be modified to exploit richer
gradients of information than estimated distance to a fixed objective. Behav-
ioral novelty is one such gradient, yet although novelty search does outperform
objective-based search in many deceptive problems, it too pales in comparison
to the creative achievement of natural evolution. That is, there still remains
much work to be done in developing powerful non-objective search algorithms.
Thus, while illustrating the limitations of objective-based search may be a neg-
ative result, at the same time it also illuminates an exciting and potentially pro-
found challenge for researchers in GP and EC: Through exploring the mostly
untamed wilderness of non-objective search algorithms we may be able to fi-
nally devise truly creative algorithms that continually yield innovative complex
artifacts. This paper reviews a spectrum of recent work that supportsthis view,
ultimately building an argument in favor of a wider perspective for GP and EC.

2. Deception

In this section we argue that deception is a deleterious fundamental property
of ambitious objectives that paradoxically prevents such objectives frombeing
reached when searching directly for them.

Investigating Deception

The motivation behind characterizing deception and problem difficulty is to
understand what properties of problems may cause EAs to fail, so that such
properties can potentially be remedied or avoided.

The original definition of deception (Goldberg, 1987) is based on the build-
ing blocks hypothesis, in which small genetic building blocks are integrated
to form larger blocks (Holland, 1975). In the original conception, a problem
is deceptive if lower-order building blocks, when combined, do not lead toa
global optimum. Thus, in deceptive problems the fitness function may actively
steer search away from exactly what is necessary to solve the problem.

Some alternative measures of problem difficulty attempt to quantify the
ruggedness of the fitness landscape, motivated by the intuition that optimiz-
ing more rugged landscapes is more difficult (Weinberger, 1990). Importantly,
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because the fitness landscape is induced by the objective function, the problem
of ruggedness, presupposing reasonable settings for the EA, can beattributed
to the objective function itself.

Interestingly, other researchers suggest that ruggedness is overemphasized
and that neutral fitness plateaus (i.e. neutral networks) are key influences on
evolutionary dynamics (Barnett, 2001; Stewart, 2001). However, evenneutral
networks suggest a deficiency in the objective function: By definition a neutral
part of the search space contains no gradient information with respect tothe
objective function. That is, in a neutral network the compass of the objective
function is ambiguous with respect to which way search should proceed.

In summary, there are many ways to consider, measure, and model the diffi-
culty of problems for EAs. While in general the exact properties of a problem
that make it difficult for EAs are still a subject of research, in this paper the term
deception will refer to an intuitive definition of problem hardness: A deceptive
problem is one in which a reasonable EA (with a reasonable representation,
parameters, and search operators) will not reach the desired objective in a rea-
sonable amount of time. That is, a deceptive problem is simply a problem in
which following the gradient of the objective function leads to local optima.

It is important to note that this definition of deception is different from the
traditional definition (Goldberg, 1987). This intuitive approach helps to iso-
late the general problem with particular objective functions because the word
“deception” itself reflects a fault in theobjective function(as opposed to in the
algorithm itself): An objective function with the pathology of deceptiveness
will deceivesearch by actively pointing the wrong way.

Mitigating Deception

Ideally, there would exist a silver bullet method immune to the problem of
deception such that any objective would be reachable in a reasonable amount
of time. Although it is impossible that any such general silver bullet method
exists (Wolpert and Macready, 1995), researchers strive to createmethods that
can overcome deception in practice.

Common approaches in EC to mitigating deception are diversity mainte-
nance techniques (Mahfoud, 1995), building models that derive additional in-
formation from an imperfect fitness function (Pelikan et al., 2001), or acceler-
ating search through neutral networks (Stewart, 2001). However, allof these
techniques remain vulnerable to sufficiently uninformative objective functions.

In direct response to the problem of local optima when evolving towards
sophisticated behaviors, some researchers incrementally evolve solutionsby
sequentially applying carefully crafted objective functions (Gomez and Mi-
ikkulainen, 1997). However, with ambitious objectives crafting an appropriate
sequence of objectives may be difficult or impossible to achieve a priori. Ad-
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ditionally, the requirement of such intimate domain knowledge conflicts with
the aspiration ofmachinelearning.

In addition to single-objective optimization, there also exist evolutionary
methods that optimize several objectives at once: Multi-Objective Evolution-
ary Algorithms (MOEAs) (Veldhuizen and Lamont, 2000). However, these
MOEAs are not immune to the problem of deception (Deb, 1999), and adding
objectives does not always make a problem easier (Brockhoff et al., 2007).

Another approach in EC related to deception is coevolution, wherein inter-
actions between individuals contribute towards fitness. The hope is that con-
tinual competition between individuals will spark an evolutionaryarms racein
which the interactions between individuals continually creates a smooth gradi-
ent for better performance (Cliff and Miller, 1995). However, in practice such
arm races often converge to situations analogous to local optima in standard
objective-based search, e.g. mediocre stable-states, cycling between behaviors
without further progress, or unbalanced adaptation where one species signifi-
cantly out-adapts other competing species (Ficici and Pollack, 1998).

In summary, because deception is a significant problem in EC, there are
manymethods that have been designed to mitigate deception. However, while
they may sometimes work, ultimately such methods do not cure the underlying
pathology of the objective function that causes deception: The gradientof the
objective function may be misleading or uninformative to begin with. Given
a sufficiently uninformative objective function, it is an open question whether
anymethod relying solely on the objective function will be effective. Thus an
interesting yet sobering conclusion is that some objectives may be unreach-
able by direct objective-based search alone. Furthermore, as task complexity
increases it is more difficult to successfully craft an appropriate objective func-
tion (Ficici and Pollack, 1998; Zaera et al., 1996). These insights match many
EC practitioners’ experience that the difficulty in ambitious experiments is of-
ten in crafting a sufficient fitness function. Thus the ultimate conclusion is that
the more ambitious the experiment, the more likely it is that objective-based
search will lead to mediocre local optima as opposed to the desired goal.

3. Non-objective Search

If one accepts that there can be no general solution to the fundamental prob-
lem of deception in objective-based search (Wolpert and Macready, 1995), it
becomes important to consider alternative paradigms such as searches in which
there is no a priori fixed objective.

Interestingly, natural evolution, which inspires both EC and GP, is an ex-
ample of such a non-objective search. That is, there is no final organismfor
which natural evolution searches. While competition between organisms may
increase reproductive fitness, the complexity of biological organisms thatwe
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are tempted to attribute to selection is instead nearly always quantitatively
detrimentalto fitness. That is, large complex organisms reproduce slower
and less efficiently than simple single-celled organisms. Indeed, some biol-
ogists have argued that selection pressure may not explain innovation (Gould,
1996; Lynch, 2007). The conclusion is that innovation may result more from
accumulating novel ways of life (i.e. new niches) than from optimizing fitness.

Similarly, cultural evolutionary processes such as the evolution of mathe-
matics, art, and technology also lack a single unified objective. That is, there is
no fixed final theory of mathematics, no final transcendent pinnacle of art, and
no final culminating technology that these systems singularly strive towards.
Innovation in such systems branches from existing innovations by local search
empowered by a diversity of differing individual goals and serendipitous dis-
covery (Drexler and Minsky, 1986; Kelly, 2010, pp. 165–166).

Finally, an interesting, well-studied microcosm of open-ended innovation is
provided by an online system called Picbreeder (Secretan et al., 2011) wherein
users interactively evolve pictures that are represented as compositionsof math-
ematical functions. During evolution, a user can publish a particular image to
the Picbreeder website, where other users can see and rate it. Users can evolve
images starting from a random initial population or they can start instead from
any one of the images already published. Most evolution in this system hap-
pens through users branching from already-evolved pictures because they are
more complex and visually appealing than random images. Thus, branching
in Picbreeder fosters a collaborative system that leads to an accumulation of
diverse, complex pictures. It is important to note that there is no overall drive
to the system besides the wide-ranging individual preferences of the users.

Though there is no system-wide goal and no bias in the encoding towards
particular classes of images, surprisingly, many pictures resembling real-world
phenomena such as faces, cars, and butterflies have been evolved. That is,
through collaborative interactive evolution users have discovered mathemati-
cal representations of recognizable images. Creating an interactive evolution
system that can discover recognizable images is difficult, and is rare among
such systems. Because the evolutionary history of all images is preservedby
Picbreeder, one can trace the ancestors of such complex images all the wayto
their random origins in an initial population. Whereas one might guess that
users discovered these images by intentionally selecting images that resemble
them, interestingly, that is not the case. In fact, for most cases of complex im-
ages, the nearly-immediate predecessors to what look like particular real-world
objects donot resemble that same object (figure 1-1). That is, the precursors
to an image resembling a car were not chosen because they were car-like,but
for some other aesthetic merit, mirroring biological exaptation. In fact, users
are often frustrated when they try and fail to evolve towards a specific image
class (Secretan et al., 2011), yet those image classes are still discovered – but
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Figure 1-1. Deceptive Precursors. Three pairs of related images evolved by users on
Picbreeder are shown above. Each left image is a close evolutionary ancestor of the image
to its right. The important insight is that the precursor pictures that are stepping stones to a
particular image often do not resemble that final image.

only when discovering them isnot the goal. In other words, the success of
Picbreeder at finding so many recognizable images results from of its lack of
an overarching goal. Furthermore, (Woolley and Stanley, 2011) showsthat
pictures evolved on Picbreeder cannot be re-evolved effectively bythe same
algorithm and encoding inside Picbreeder if those pictures are set as objectives
for evolution.

The implication from reviewing these examples of non-objective searches
is that the types of systems that foster open-ended innovation and lead to the
accumulation of complex interesting artifacts tend to lack singular fixed objec-
tives. While the evidence presented thus far has been inductive, the next section
reviews novelty search, a non-objective search algorithm that can be quantita-
tively compared in various domains to more traditional objective-based search.
Thus novelty search provides an opportunity to test directly whether abandon-
ing the single-minded search for the objective is ever beneficial.

4. Novelty Search

Recall that the problem with the objective-based search paradigm that is
common in EC models is that the objective function (e.g. the fitness function)
does not necessarily reward the intermediate stepping stones that lead to the
objective. These stepping stones often do not resemble the objective itself,
especially as objectives become more ambitious, which makes it increasingly
difficult to identify these stepping stonesa priori.

The approach in novelty search (Lehman and Stanley, 2008; Lehman and
Stanley, 2011), is to identify novelty as aproxy for stepping stones. That is,
instead of searching for a final objective, the learning method rewards instances
with functionality significantly different from what has been discovered before.
Thus, instead of a traditional objective function, evolution employs anovelty
metric. That way, no attempt is made to measure overall progress. In effect,
such a process performs explicitly what natural evolution does passively, i.e.
gradually accumulating novel forms that ascend the complexity ladder.

For example, in a biped locomotion domain, initial attempts might simply
fall down. An objective function may explicitlyreward falling the farthest,
which is unrelated to the ultimate objective of walking and thus exemplifies a
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deceptive local optimum. In contrast, the novelty metric would reward simply
falling down in a different way, regardless of whether it is closer to the objec-
tive behavior or not. After a few ways to fall are discovered, the only way to
be rewarded is to find a behavior that doesnot fall right away. In this way,
behavioral complexity rises from the bottom up. Eventually, to do something
new, the biped would have to successfully walk for some distance even though
it is not an objective.

Novelty search succeeds where objective-based search fails by rewarding
the stepping stones. That is, anything that is genuinely different is rewarded
and promoted as a jumping-off point for further evolution. While we cannot
know which stepping stones are the right ones, if we accept that the primary
pathology in objective-based search is that it cannot detect the steppingstones
at all, then that pathology is remedied. This idea is also related to research in
curiosity seekingin reinforcement learning (Schmidhuber, 2006).

Evolutionary algorithms like GP or neuroevolution (Yao, 1999) are well-
suited to novelty search because the population of genomes that is central to
such algorithms naturally covers a wide range of expanding behaviors. In fact,
tracking novelty requires little change to any evolutionary algorithm aside from
replacing the fitness function with anovelty metric.

The novelty metric measures how different an individual is from other indi-
viduals, thereby creating a constant pressure to do something new. The key
idea is that instead of rewarding performance on an objective, the novelty
search rewards diverging from prior behaviors. Therefore, novelty needs to
bemeasured. There are many potential ways to measure novelty by analyzing
and quantifying behaviors to characterize their differences. Importantly, like
the fitness function, this measure must be fitted to the domain.

The novelty of a newly-generated individual is computed with respect to
thebehaviors(i.e. not the genotypes) of anarchiveof past individuals and the
current population. The aim is to characterize how far away the new individual
is from the rest of the population and its predecessors inbehavior space, i.e. the
space of unique behaviors. A good metric should thus compute thesparseness
at any point in the behavior space. Areas with denser clusters of visited points
are less novel and therefore rewarded less.

A simple measure of sparseness at a point is the average distance to thek-
nearest neighbors of that point, wherek is a fixed parameter that is determined
experimentally. Intuitively, if the average distance to a given point’s nearest
neighbors is large then it is in a sparse area; it is in a dense region if the average
distance is small. The sparsenessρ at pointx is given by

ρ(x) =
1

k

k∑

i=0

dist(x, µi), (1.1)
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whereµi is the ith-nearest neighbor ofx with respect to the distance metric
dist, which is a domain-dependent measure of behavioral difference between
two individuals in the search space. The nearest neighbors calculation must
take into consideration individuals from the current population and from the
permanent archive of novel individuals. Candidates from more sparse regions
of this behavioral search space then receive higher novelty scores.Note that
this novelty space cannot be explored purposefully; it is not knowna priori
how to enter areas of low density just as it is not known a priori how to con-
struct a solution close to the objective. Thus, moving through the space of
novel behaviors requires exploration.

The current generation plus the archive give a comprehensive sampleof
where the search has been and where it currently is; that way, by attempting to
maximize the novelty metric, the gradient of search is simply towards what is
new, with no explicitly-specified objective within the search space.

Novelty search in general allows any behavior characterization and anynov-
elty metric. Although generally applicable, novelty search is particularly suited
to domains with deceptive fitness landscapes, intuitive behavioral characteri-
zation, and domain constraints on possible expressible behaviors. More gen-
erally, novelty search can be applied even when the experimenter has no clear
objective in mind at all. For example, in some domains, rather than optimality,
the aim may be to collect all the interesting behaviors in the space.

Once objective-based fitness is replaced with novelty, the underlying EA op-
erates as normal, selecting the highest-scoring individuals to reproduce.Over
generations, the population spreads out across the space of possible behaviors,
continually ascending to new levels of complexity to create novel behaviors as
the simpler variants are exhausted.

5. Experiments with Novelty Search

There have been many successful applications of novelty search in EC (Lehman
and Stanley, 2011; Risi et al., 2010; Goldsby and Cheng, 2010; Mouret,2009;
Lehman and Stanley, 2008; Lehman and Stanley, 2010a; Lehman and Stanley,
2010b; Doucette, 2010), both with GP (Doucette, 2010; Lehman and Stan-
ley, 2010a; Goldsby and Cheng, 2010) and neuroevolution (Lehman and Stan-
ley, 2011; Risi et al., 2010; Mouret, 2009; Lehman and Stanley, 2010b). This
section reviews some such results to provide evidence that search can indeed
function effectively without an explicit objective.

Novelty search was first introduced in a conference paper in 2008 (Lehman
and Stanley, 2008) in which it was combined with the NEAT neuroevolution
method (Stanley and Miikkulainen, 2002) and tested in a deceptive maze-
navigation domain. In the harder of the two tested mazes, novelty search
solved the maze in 39 out of 40 attempts (even though solving the maze was
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not the objective), while objective-based search nearly always failed (succeed-
ing only three times out of 40 even though solving the mazewasthe objective).
These results were also reproduced in combination with a multi-objective EA
(Mouret, 2009). Novelty-related methods have also been shown beneficial in
evolving plastic neural networks that learn from experience (Risi et al.,2010).

Novelty search was further applied to biped locomotion (Lehman and Stan-
ley, 2011), a difficult control task that is popular within machine learning (Reil
and Husbands, 2002). Though it was not looking directly for stable gaits, nov-
elty search evolved controllers that traveled farther (4.04 meters,sd = 2.57)
than solutions evolved by objective-based search (2.88 meters,sd = 1.04) on
average over50 runs of both methods. More dramatically, thebestgait discov-
ered by novelty search traveled 13.7 meters, while the best gait discovered by
objective-based search traveled only 6.8 meters.

In GP, novelty search has worked successfully in the artificial ant benchmark
(Lehman and Stanley, 2010a; Doucette, 2010), maze navigation (Lehman and
Stanley, 2010a; Doucette, 2010), and in finding latent bugs in software mod-
els (Goldsby and Cheng, 2010). Novelty search with GP has outperformed
standard objective-based search (Lehman and Stanley, 2010a; Doucette, 2010),
proven less prone to program bloat (Lehman and Stanley, 2010a), andfound
more general solutions than objective-based search (Doucette, 2010).

Building on prior results in maze navigation with GP (Lehman and Stanley,
2010a; Doucette, 2010), the next section describes an experiment thatinves-
tigates how the performance of novelty search and traditional objective-based
search degrade with increasing problem complexity.

6. Scaling Problem Complexity in Maze Navigation

A hypothesis advanced by this chapter is that as problems grow more dif-
ficult, the gradient defined by measuring distance to the objective becomes
increasingly deceptive and thereby less informative. Thus as deceptiveness
increases, non-objective search methods like novelty search may outperform
more traditional objective-based search methods. However, while not suscep-
tible to traditional deception, novelty search also is not guaranteed to consis-
tently findspecificobjectives as problems become more complex.

Therefore, an interesting experiment is to compare how the relationship be-
tween problem complexity and performance varies in both traditional objective-
based search and novelty search, which serves as an example of a non-objective
search algorithm. Maze navigation is a natural choice of domain for such
an investigation because it is a good model for search problems in general
(Lehman and Stanley, 2011), because it is the basis for previous compar-
isons between novelty search and objective-based search (Lehman and Stan-
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Objective: Find a robot that navigates the maze
Terminal set: Left (turn left), Right (turn right), Move (move

forward one square)
Functions set: IfWallAhead (execute one of two child instruc-

tions based on whether there is a wall directly
ahead), IfGoalAhead (execute one of two child
instructions based on whether the goal is within
a 90 degree cone projected outwards from where
the robot is facing), Prog2 (sequentially execute
the two child instructions)

Fitness cases: One of360 randomly-generated mazes
Wrapper: Program repeatedly executed for 200 time steps
Population Size: 500
Termination: Maximum number of generations =200, 400 and

600

Table 1-1. Parameters for the Maze Problem

ley, 2010a; Doucette, 2010; Lehman and Stanley, 2011; Mouret, 2009), and
because it is easy to generate mazes of parameterized complexity.

Experiment Description

The GP maze domain works as follows. A robot controlled by a genetic
program must navigate from a starting point to an end point within a fixed
amount of time. The task is complicated by occlusions and cul-de-sacs that
prevent a direct route and create local optima in the fitness landscape. The
robot can move forward, turn, and act conditionally based on whether there is a
wall directly in front of it or not, or whether it is facing the general direction of
the goal or not. The robot is successful in the task if it reaches the goallocation.
This setup is similar to previous GP maze navigation experiments (Lehman
and Stanley, 2010a; Doucette, 2010). Table 1-1 describes the parameters of the
experiment.

Objective fitness-based GP, which will be compared to novelty search, re-
quires a fitness function to reward maze-navigating robots. Because the ob-
jective is to reach the goal, the fitnessf is defined as the distance from the
robot to the goal at the end of an evaluation:f = bf − dg, wherebf is the
maximum distance possible anddg is the distance from the robot to the goal.
Given a maze with no deceptive obstacles, this fitness function defines a mono-
tonic gradient for search. The constantbf ensures that all individuals will have
positive fitness.

GP with novelty search, on the other hand, requires a novelty metric to dis-
tinguish between maze-navigating robots. Defining the novelty metric requires
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careful consideration because it biases the search in a fundamentally different
way than the fitness function. The novelty metric determines the behavior-
space through which search will proceed. It is important that the type of be-
haviors that one hopes to distinguish are recognized by the metric.

As in prior maze navigation experiments (Lehman and Stanley, 2011; Lehman
and Stanley, 2010a), the behavior of a navigator is defined as its ending posi-
tion. The novelty metric is then the Euclidean distance between the ending
positions of two individuals. For example, two robots stuck in the same corner
appear similar, while one robot that simply sits at the start position looks very
different from one that reaches the goal, though they are both equally viable to
the novelty metric.

To compare how effectively fitness-based search and novelty searchevolve
navigational policies for increasingly complex maze problems, both search
methods were tested on360 randomly-generated mazes. These mazes were
created by a recursive division algorithm (Reynolds, 2010), which divides an
initally empty maze (i.e. without any interior walls) into two subareas by ran-
domly adding a horizonal or vertical wall with a single randomly-located hole
in it (which makes all open points reachable from any other open point in the
maze.) This process continues recursively within each subarea until no areas
can be further subdivided without making the maze untraversable, or untilthe
limit for subdivisions (chosen randomly between2 and50 for each maze in this
experiment) is exceeded. The starting position of the maze navigating robot
and the goal position it is trying to reach are also chosen randomly. Examples
of mazes generated by such recursive division are shown in figure 1-2.

(a) Simple Maze Problem (b) More Complex Maze Prob-
lem

Figure 1-2. Two randomly-generated maze problems created by the recursive division
algorithm. In both mazes, the filled circle represents the starting location and the unfilledcircle
represents the goal location. The maze shown in (a) has fewer subdivisions and a shorter optimal
path to the goal than the maze shown in (b).

The length of the shortest possible path between the start and goal position
was found to be a good heuristic for problem complexity. Intuitively, longer
paths potentially require more complex navigational policies. In addition, in-
creasing path length was highly correlated with decreasing performance for all
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of the search methods (adjustedR2 > 0.75 for each method). Thus mazes
were sampled such that4 maze problems were chosen for each shortest-path
length between10 and100. For each of the360 mazes,10 independent runs
were conducted for both fitness-based search, novelty search, andGP with ran-
dom selection. Random selection was considered as a control to differentiate
novelty search from random exploration of the search space. Experiments were
conducted with limits of200, 400, and600 generations. A given run is consid-
ered successful if a navigator was evolved that reaches the goal withinthe time
limit of 200 steps.

Results

The main result, as illustrated by figures 1-3a and 1-3b, is that novelty
search solves significantly more instances of the generated maze problems
(p < 0.001, Fischer’s exact test) and that it scales to solving more complex
instances significantly better than objective fitness-based search or random
search (p < 0.001, the intercept values of the linear regression models are
significantly different according to an ANCOVA test.) In addition, figure 1-3b
shows that novelty search better exploits additional evaluations than fitness-
based search or random search. While random search may waste many evalua-
tions with policies that are the same and fitness-based search may waste many
evaluations attempting to escape from deceptive local optima, novelty search
constantly incentivizes discovering new behaviors.
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Figure 1-3. Reward scheme comparisons. The effectiveness of novelty search, fitness-based
search, and random search at solving problems of increasing complexity is plotted along with
linear regressions in (a). Novelty search is the most effective althoughits performance also
degrades with increasing problem complexity. Each plotted point is from tenruns, each lasting
600 generations. The effect on performance of varying the amount of generations for novelty
search, fitness-based search, and random search is shown in (b).Novelty search exploits addi-
tional evaluations more effectively than fitness-based search or random search.

It is important to note that the performance of each of the three compared
methods decreases with increasingly complex maze instances. Few instances
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are reliably solved by any of the methods with optimal path length greater
than80. Thus while novelty search may outperform the other methods in this
domain, it too struggles to discoverspecificambitious objectives from first
principles; this result tentatively supports the hypothesis that in some cases
attempting to achieve specific objectives from a random starting point may
ultimately be futile beyond a certain level of problem complexity.

This experiment and the previous section (which enumerated prior results
with novelty search) offer strong empirical evidence that novelty searchmay
often be a viable approach. Though such evidence of its effectiveness contin-
ues to accumulate, because it challenges the intuitive assumption that search
should be driven by an objective, some skepticism of novelty search is a natural
response, as addressed next.

7. Common Objections to Novelty Search

Common objections to novelty search include: (1) that it is not general,
(2) that it is ineffective if the space of behaviors to be explored becomesvast,
(3) that maintaining a growing archive of past behaviors is too computationally
expensive, and (4) that novelty itself is an objective and thus that noveltysearch
is still an objective-based search.

7.1 Generality

Because maze-navigation is easily understood and makes a good model
for search in general, it has often been used to illustrate properties of nov-
elty search (Lehman and Stanley, 2010a; Lehman and Stanley, 2008; Lehman
and Stanley, 2011; Mouret, 2009; Lehman and Stanley, 2010b). However,
novelty search has also been applied to diverse domains such as biped walk-
ing (Lehman and Stanley, 2011), discovering latent bugs in software models
(Goldsby and Cheng, 2010), T-mazes common in learning experiments with
rats (Risi et al., 2010), and the artificial ant GP benchmark (Lehman and Stan-
ley, 2010a). It has been combined with multi-objective search (Mouret, 2009)
and applied with both neuroevolution and GP. Thus, while of course it will not
always succeed in every domain, evidence of its generality as a viable toolin
the toolbox of EC continues to accumulate.

7.2 Dimensionality

Though smaller behavior spaces can be more thoroughly explored, novelty
search incentivizes the discovery of maximally different behaviors in anysize
of behavior space. Thus even in vast behavior spaces novelty search will ex-
pand to cover the space loosely, uncovering a wide variety of representative
behaviors, some of which may be solutions to problems. For example, even
when exploring a400-dimensional behavior space constructed from consid-
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ering nearly every point in the trajectory of a maze-navigating robot, novelty
search still consistently discovers neural networks that solve mazes (Lehman
and Stanley, 2011). Of course, it is possible to construct scenarios in which
vast sections of the behavior space are uninteresting. However, search in such
cases can be accelerated by restricting which behaviors are considered novel
(Lehman and Stanley, 2010b).

7.3 Costs of Expanding the Archive

The purpose of the archive of previously novel behaviors in novelty search
is to discourage backtracking by keeping track of where search has previously
been in the behavior space. Though the archive in general grows slowly, be-
cause it grows continually over the course of evolution, it may eventually be-
come computationally expensive to calculate the novelty of a new individual.
However, kd-trees or other specialized data structures can reduce thecompu-
tational complexity of such calculations, and experiments have shown that in
practice it may often be possible to limit the size of the archive without harm-
ing novelty search’s performance (Lehman and Stanley, 2011).

7.4 Novelty as an Objective

While some might say that rewarding novelty effectively means that novelty
is just a special kind of objective, novelty is not an objective in the usual spirit
of the word in EC. That is, for many years objectives in EC have been descrip-
tions ofareas of the search space towards which evolution should be directed.
In other words,objectivesdescribe where we want search to go. Yet novelty
doesnot favor any particular part of the search space; instead, it isrelative to
what behaviors have been previously encountered, is constantly changing, and
is largely orthogonal to the actual objective of the experiment. Thus while the
semantics of the wordobjectiveare likely to continue to invite debate, drawing
the distinction between novelty on the one hand and traditional objectives on
the other is important because the purpose of scientific language is tofacilitate
drawing such distinctions rather than to obfuscate them. In fact, it could be
argued that one reason that non-objective search has received solittle attention
until now is that a number of different incentives for search have beenconflated
as being one and the same when they are in fact fundamentally different. Thus
language can help to extricate us from such misleading conflations.

The next section examines the larger implications of non-objective search.

8. Implications

The success of novelty search combined with the general tendency of sys-
tems that continually innovate to lack fixed objectives is that sometimes it is
beneficial toignore the objective rather than to seek it. Although this insight
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may at first appear strange or unsettling, the evidence suggests that the un-
derlying assumption causing this discomfort, i.e. that searching for something
is always the best way to find it, does not hold. That is, novelty search pro-
vides direct evidence that searching without knowledge of the objectivecan
sometimes provide an advantage.

It is important to note that while novelty search is a viable alternative to
objective-based search and has been shown to outperform it in non-trivial do-
mains, it is no panacea and also so far falls short of natural evolution. However,
as a new tool for EC and a working example of what can be gained from con-
sidering non-objective search, novelty search may inspire future research into
more powerful EAs that can achieve more by not directly trying to do so.

That is, acknowledging that the prevailing paradigm of objective-basedsearch
is not the only way nor always the best way to guide search opens our minds
to the possibilities of non-objective search, of which novelty search is only
one example. Other examples of non-objective search include natural evolu-
tion and the cultural evolutions of math, art, and technology. These systems
continually innovate and yield artifacts of increasing complexity though they
are not guided by progress towards a fixed objective. New innovationsin such
objective-less systems typically branch exploratively outwards from prior in-
novations. This dynamic contrasts starkly with the objective paradigm in EC
wherein evolution in any experiment almost always starts from an unstructured,
random population and then evolves narrowly to a particular goal artifact.

The problem is that we often attribute the creativity and complexity of nature
to optimizationof reproductive fitness by natural selection. Thus the optimiza-
tion process has become the key abstraction driving most EAs. However,natu-
ral evolution’s characteristic prolific creativity and accumulation of complexity
may be natural byproducts of diversity and open-ended innovation instead of
the struggle to optimize a particular metric (Gould, 1996; Lynch, 2007). That
is, the driving abstraction behind EC may rest upon the wrong bedrock prin-
ciple. However, alternative abstractions can easily be investigated while still
preserving the main components of EC and GP algorithms by simply changing
the selection criteria to be driven by something other than explicit objectives.

A narrow interpretation of this argument is that we might sometimes more
effectively achieve our objectives by searching for something other than them-
selves. However, the implication of this body of work is actually more fun-
damental: There may be a trade-off in search that has to date received little
attention yet that nevertheless explains why computational approaches seem
so qualitatively different from processes in nature. In particular, it maybe that
search can either be prodded toward a specific yet not-too-ambitious objective
(e.g. as with the traditional fitness function)or it can discover a multitude of
interesting artifacts, none of which are anticipated a priori or even necessarily
desired at all (e.g. as in nature). Thus, on the downside, perhaps it is not possi-
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ble topurposefullydrive search to our most ambitious objectives. However, on
the upside, perhaps artificial processescandiscover artifacts of unprecedented
scope and complexity, yet only if we relinquish the insistence that we must
define a priori what those discoveries should be. In effect, we mightsearch
without objectives. Who knows what we will find?

9. Conclusion

In conclusion, the reliance on objectives that pervades EC and GP may
not capture the essential dynamics of natural evolution. Indeed, this preva-
lent paradigm may be preventing us from realizing computationally the pro-
found creativity of natural evolution. That is, although natural evolutiondoes
not narrowly search for something in particular, that is how we as practition-
ers typically constrain evolution. Far from bearing a negative message, this
paper highlights the opportunity to explore the yet untamed wilderness of non-
objective search algorithms to create open-ended systems that yield a ratchet-
ing proliferation of complex novelty.
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