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Abstract

 

Hebbian learning is a biologically plausible and ecologically valid learning mechanism. In Hebbian learning, ‘units that fire
together, wire together’. Such learning may occur at the neural level in terms of long-term potentiation (LTP) and long-term
depression (LTD). Many features of Hebbian learning are relevant to developmental theorizing, including its self-organizing
nature and its ability to extract statistical regularities from the environment. Hebbian learning mechanisms may also play an
important role in critical periods during development, and in a number of other developmental phenomena.

 

Introduction

 

Hebbian learning algorithms are highly relevant for
investigating development. As elaborated below, such
algorithms are biologically plausible and ecologically
valid. Further, Hebbian learning algorithms can account
for a wide range of behaviors and changes during devel-
opment. These include critical periods, development of
cortical receptive fields, learning of statistical regularities
in the environment, development of object knowledge,
learning of phonemes, and development of flexible
behaviors (Blair, Intrator, Shouval & Cooper, 1998;
McClelland, Thomas, McCandliss & Fiez, 1999; Mor-
ton & Munakata, 2002a; O’Reilly & Johnson, 2002).

Note that Hebbian learning algorithms do not rep-
resent a 

 

new

 

 alternative to backpropagation. Hebbian
learning algorithms existed prior to the advent of back-
prop, and were ultimately supplanted by backprop in
many domains due to backprop’s greater power to mas-
ter complex tasks. However, the basic mechanisms of
Hebbian learning are important in their own right.
Moreover, Hebbian-like mechanisms play a role in more
powerful learning algorithms that address the biological
implausibility of backprop.

 

Overview of Hebbian learning

 

Biological basis of Hebbian learning

 

Donald Hebb was the first to suggest that the ‘efficiency’
of a given neuron, in contributing to the firing of
another, could increase as that cell is repeatedly involved

in the activation of the second (Hebb, 1949). Thus, the
basic tenet of Hebbian learning in neural networks is
that ‘units that fire together, wire together’. This idea is
consistent with the neural mechanisms of long-term
potentiation (LTP) (Bliss & Lomo, 1973) and long-term
depression (LTD) (e.g. Artola, Brocher & Singer, 1990).
LTP and LTD influence the extent to which activity in a
sending neuron leads to depolarization of a receiving
neuron, by influencing the efficacy of synapses, or junc-
tions between neurons. LTP is a long-lasting poten-
tiation (increase) of synaptic efficacy, while LTD is a
long-lasting depression (weakening) of synaptic efficacy.

LTP and LTD likely rely on calcium ions entering
postsynaptic dendrites through NMDA channels. LTP
may be understood in terms of simultaneous presynaptic
and postsynaptic activation. Presynaptic activation causes
the release of the excitatory neurotransmitter glutamate,
which can then bind with and open postsynaptic NMDA
receptors. Postsynaptic activation causes magnesium ions
to move out of the opening of NMDA receptor channels,
which they would otherwise block. Calcium ions can then
enter the postsynaptic neuron, where they are involved
in a series of molecular changes that ultimately increase
overall synaptic efficacy. Both presynaptic and post-
synaptic activation are thus required for this process.
Neurons that fire together could wire together through
these increases in synaptic efficacy. LTD may occur when
a smaller concentration of calcium enters the postsynaptic
neuron (Artola 

 

et al.

 

, 1990; Bear & Malenka, 1994; Lisman,
1994). This process might reflect a lack of coordinated
activity between presynaptic and postsynaptic neurons.
Neurons that do not fire together would not wire together
due to these decreases in synaptic efficacy.
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Ecological validity of Hebbian learning

 

In addition to being biologically plausible, the mechan-
isms underlying Hebbian learning are ecologically valid.
These mechanisms rely only on inputs coming into the
system to produce patterns of activity. Learning proceeds
on the basis of these resulting patterns of activity. Thus,
such models can learn without needing to produce par-
ticular responses, without any explicit tasks or directed
attempts to learn, and without requiring teaching signals.

 

Network implementation of Hebbian learning

 

Hebbian learning is implemented in neural network
models through changes in the strength of connection
weights between units. The strength of a connection
weight determines the efficacy of  a sending unit in
activating a receiving unit, and thus captures this aspect
of synaptic efficacy. In Hebbian learning, weights change
as a function of units’ activity levels. Through such
learning, weights come to reflect statistical regularities in
the environment, with networks self-organizing so that
different units learn to represent different environmental
regularities. The mathematical basis for such learning is
described below.

A basic Hebbian learning rule takes the following form:
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where 
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 denotes the change in weight from unit 
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 to
unit 
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 denote the activation levels of units 

 

i

 

 and
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 respectively, and 

 

ε

 

 denotes the learning rate – how
quickly the weights change in response to unit activa-
tions.
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 The activation level of a given unit typically varies
between 0 and 1, and is computed as a nonlinear func-
tion of  the activations of  other units and the strength
of their connections to the unit. Equation 1 captures the
basic notion of Hebbian learning that units that fire
together become strongly connected, because when 
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 are simultaneously large, the weight increase will also
be large. The weight value at any given time 

 

t

 

 can then
be computed as follows: 
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That is, the weight from unit 

 

i

 

 to unit 

 

j

 

 at any given time

 

t

 

 is the weight value from the previous time step plus the
change in weight resulting from the activity of units 

 

i

 

and 

 

j

 

.

Although Equation 1 captures some aspects of the
notion of Hebbian learning, there is a key problem with
this basic form of the equation: Weights can increase,
but they cannot decrease. This is problematic for two
reasons. First, over successive time steps, learning
according to this rule will drive the weights within a
network to become infinitely large. Such learning would
be computationally problematic and biologically im-
plausible. Second, because the weights cannot decrease
according to the basic equation, it fails to capture the
known biological mechanism of LTD. Both problems
can be addressed by normalizing the weight updates
with an equation like the following (see also Oja, 1982): 
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This equation subtracts the weight value from the send-
ing unit activation, which allows 

 

∆

 

w

 

ij

 

 to be negative.
Weights can thus decrease, addressing the problems of
infinite growth and a missing LTD mechanism in
Equation 1. Equation 3 leads to a form of soft weight
bounding, where increases to a weight become less likely
as the weight becomes quite large, and decreases to the
weight become less likely as the weight becomes quite
small. This same pattern is observed in LTP/LTD.

In addition to providing a computationally useful and
biologically plausible form of learning, Hebbian learning
rules lead units to represent correlations in the environ-
ment. For example, a form of Hebbian learning like that
in Equation 3 performs principal components analysis
on the correlations between inputs (Oja, 1982). Equation
3 also leads connection weights to represent the condi-
tional probability that a sending unit was active given
that the receiving unit was active (O’Reilly & Munakata,
2000; Rumelhart & Zipser, 1986), or: 
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Thus, whenever a given receiving unit (

 

j

 

) is active, if  a
sending unit (

 

i

 

) also tends to be active (i.e. the condi-
tional probability of 

 

a

 

i

 

 given 

 

a

 

j

 

 is high – near 1), the
weight will similarly be high. In contrast, whenever a
given receiving unit is active, if  a sending unit tends not
to be active (i.e. the conditional probability of 

 

a

 

i

 

 given 

 

a

 

j

 

is low – near 0), the weight will similarly be low. In this
way, Hebbian learning yields weights that reflect condi-
tional probabilities of activities, and in turn, yields units
that represent correlations in the environment.

The self-organizing nature of  Hebbian networks,
supported through differences in starting weights and
inhibitory competition among units, allows different
units to represent different correlations in the environment.
A given unit might start with a set of connections that
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terms are functions of time, but the time terms are
omitted to simplify the presentation.
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give it a slight advantage in responding to a certain kind
of correlation in the environment (e.g. bars of light in a
vertical orientation). Hebbian learning would increase
the connections to this unit from relevant sending units,
so the unit would become increasingly responsive to this
correlation. And Hebbian learning would decrease the
connections to this unit from irrelevant sending units,
so the unit would become less responsive to other cor-
relations in the environment (e.g. bars of  light in a
horizontal orientation). Inhibitory competition among
the units would lead other units to be less responsive
to the correlation represented by the first unit. These
other units could then tune their weights to respond to
other correlations in the environment. In this way,
Hebbian models can self-organize so that units special-
ize in representing distinct statistical regularities in
the environment.

Many different types of networks use Hebbian-style
learning (e.g. Bienenstock, Cooper & Munro, 1982;
Kohonen, 1984; Miller, 1994). In the Kohonen network
(Kohonen, 1984), a network is presented with a particu-
lar stimulus, and the ‘winner’ unit (the one with the most
input) is activated, along with its neighboring units, with
activation decreasing with distance from the winner.
This kind of activation pattern simulates the clusters of
activity that result in systems when connections are
locally excitatory but globally inhibitory (Konen & Von
Der Malsburg, 1994). With Hebbian learning in such a
network, weights change as a function of the simultane-
ous activity of units; because neighboring units become
activated together, their weights change in similar ways,
such that units learn to respond to similar inputs as
their neighbors. This yields topographic maps like those
in the brain, where groups of neighboring neurons
respond similarly to particular stimuli (e.g. Blasdel &
Salama, 1986; Livingstone & Hubel, 1988; Merzenich &
Kaas, 1980). As elaborated below, Kohonen networks
have also been used to explore critical period effects in
language perception.

 

Features of Hebbian learning relevant to 
development

 

Many features of Hebbian learning are relevant to devel-
opmental theory and data, such as the ability to extract
statistical regularities from the environment. Infants
are very good at learning such regularities from relat-
ively brief  exposures to auditory or visual stimuli
(Aslin, Saffran & Newport, 1998; Kirkham, Slemmer &
Johnson, 2002; Maye, Werker & Gerken, 2002; Saffran,
Johnson, Aslin & Newport, 1999). These statistical
learning abilities are general across adults (Fiser &

Aslin, 2001; Saffran 

 

et al.

 

, 1999) and other species
(Hauser, Newport & Aslin, 2001). Hebbian learning can
support such statistical learning. For example, when
networks are presented with images of natural scenes,
Hebbian learning allows them to develop representa-
tions that capture important statistical correlations
present in the images, namely, the regular presence of
edges in the images (e.g. Blair 

 

et al.

 

, 1998; O’Reilly &
Munakata, 2000). The resulting representations include
many important properties of cortical receptive fields,
such as edge detectors varying in size, position and ori-
entation. Hebbian learning also allows models to extract
statistical regularities of linguistic inputs, for example,
the extent to which words co-occur in the environment
(O’Reilly & Munakata, 2000). This co-occurrence in-
formation is remarkably useful for capturing semantic
information about words (Landauer & Dumais, 1997).
Note that statistical learning is not unique to Hebbian
models. It is a general ability explored across a range of
neural network models (e.g. Altmann & Dienes, 1999;
Christiansen & Curtin, 1999; Lee & Seung, 1999;
Rogers & McClelland, in press; Seidenberg & Elman,
1999).

However, Hebbian learning may be particularly
relevant for certain kinds of statistical learning (as well
as other kinds of learning) that appear to occur incid-
entally, without any explicit task or directed attempt to
learn. Thus, another relevant feature of Hebbian learn-
ing for development is its automatic, self-organizing
nature. This kind of learning can proceed simply in
response to an array of inputs from the environment,
without any consideration of what outputs should be
produced in response to those inputs. In contrast, in
error-driven algorithms such as backprop, learning
requires a network’s responses to be compared to target
responses. Such error-driven algorithms can be recon-
ceptualized in terms of  networks producing outputs
that are predictions about what will occur next in the
environment, with subsequent inputs providing target
information (McClelland, 1994; Munakata, McClelland,
Johnson & Siegler, 1997); this obviates the need for
producing outputs and comparing them to an explicit
training signal. This reconceptualization of error-driven
algorithms may broaden their relevance to a range of
developmental domains. Nonetheless, Hebbian learning
may provide a closer match to the kinds of learning
shown by infants in certain cases, such as statistical
learning tasks. For example, rather than infants forming
predictions and learning from their errors based on
brief  exposures to arbitrary and rapid streams of phon-
emes or visual sequences, it may be more plausible that
Hebbian type learning mechanisms automatically
extract statistical regularities from such stimuli.
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Application: critical periods

 

Why are there critical periods (or sensitive periods) in
development, when a system seems to be much more
responsive to environmental input than at later ages? For
example, people are generally much better at learning
language (and in particular, syntax) before puberty than
after (Johnson & Newport, 1989; Newport, 1990). Also,
infants learn the phonemes they are exposed to within
the first months of life, while older children and adults
have more difficulty with this task (Kuhl, Williams, Lac-
erda, Stevens & Lindblom, 1992; Werker & Tees, 1983).
Such critical periods are not limited to language, nor to
humans. For example, they are also observed in the ef-
fects of visual deprivation in cats (Hubel & Weisel, 1970),
macaques (Horton & Hocking, 1997) and humans
(Maurer & Lewis, 2001), and in the imprinting behavior
of chicks (Bolhuis & Bateson, 1990).

Hebbian mechanisms may play an important role
in such critical periods. As connections change to
strengthen certain neural responses to stimuli, this can
reduce the possibility of other responses, which can
impair learning.

Here, we focus on a model demonstrating how such
Hebbian mechanisms can lead ‘young’ networks to
develop appropriate representations for phonemes in the
environment, while ‘old’ networks fail to do so (McClel-
land 

 

et al.

 

, 1999; see also Guenther & Gjaja, 1996). This
model (Figure 1) uses a variant of the Kohonen network
(Kohonen, 1982) and the normalized Hebbian learning

algorithm (Equation 3) described above. Networks were
presented with phonemes represented as patterns of
activity on the input layer. Some patterns were well sep-
arated (Figure 2a), corresponding to easily distinguished
phonemes. Other patterns were overlapping (Figure 2b),
corresponding to difficult to distinguish phonemes like
/ l / and /r/. And other patterns were blended versions of
overlapping patterns (Figure 2c), corresponding to single
phonemes like the Japanese phoneme that includes / l /
and /r/ sounds. One group of networks was ‘raised’ in an
English-language environment, with the well-separated
and overlapping patterns. A second group of networks
was raised in a Japanese-language environment, with
the well-separated and blended patterns, and was later
placed in the English-language environment. The net-
works demonstrated a critical period in learning to
distinguish overlapping input patterns (like /r/ and / l / ).
Young models represented such inputs as distinct pat-
terns on the representation layer, while older models
instead represented such inputs as a single pattern on
the representation layer. This corresponds to young Eng-
lish learners hearing /r/ and / l / as distinct sounds, while
older English learners (in particular, those who learned
Japanese as their first language) cannot hear the differ-
ence between /r/ and / l / sounds.

How did young networks learn to appropriately rep-
resent the phonemes in their environments, and why did
older networks fail to do so? Different inputs tended to
activate different combinations of perceptual units. Heb-
bian learning strengthened connections between input
units and the perceptual units they activated, leading
networks to appropriately represent the phonemes in
their ‘native’ environments. For networks raised with

Figure 1 Model used to explore critical periods in phoneme 
perception (adapted from McClelland et al., 1999). 

Figure 2 Sample input patterns presented to the phoneme 
model (adapted from McClelland et al., 1999): (a) distinct 
phonemes, (b) overlapping phonemes, (c) a single central 
phoneme and (d) exaggerated phonemes.



 

Hebbian learning and development 145

 

© Blackwell Publishing Ltd. 2004

 

separate /l/ and /r/ inputs, this led to separate perceptual
representations for these two inputs. For networks raised
with a single blended sound, Hebbian learning led to
strong connections from relevant input units to the sin-
gle perceptual representation. When these networks were
then exposed to separate, but overlapping, /l/ and /r/
sounds, these inputs tended to activate the single percep-
tual representation. Hebbian learning served to maintain
this tendency to represent the distinct inputs as a single
sound, by strengthening the connections between the
input units representing the distinct sounds and the
shared perceptual representation units. As a result,
even with extended training on the separate /l/ and /r/
sounds, the networks that first learned the single blended
sound were unable to activate distinct perceptual repres-
entations for the separate input sounds.

Note that the critical periods in the model were not
determined by any maturational changes. That is,
the fundamental mechanism of plasticity (i.e. Hebbian
learning) was intact as networks ‘aged’. Older models
failed to learn distinct phonemes because they learned
based on inappropriate (blended) perceptual repres-
entations, not because their learning mechanism was
impaired.

This Hebbian framework for critical periods thus
suggested a way to improve learning of  overlapping
phonemes after the critical period (McCandliss, Fiez,
Protopapas, Conway & McClelland, 2002; see also Tallal,
Miller, Bedi, Byma, Wang, Nagaraja, Schreiner, Jenkins
& Merzenich, 1996). Exaggerated /l/ and /r/ sounds (Fig-
ure 2d) might elicit distinct perceptual representations.
Hebbian learning could then strengthen the connections
supporting such distinct representations, increasing the
likelihood that /l/ and /r/ inputs would activate distinct
perceptual representations. The degree of exaggeration
of the /l/ and /r/ sounds could then be reduced gradually,
maintaining distinct representations for the two inputs
until they fell within the natural range. In contrast, sim-
ple repeated exposure to overlapping stimuli should not
improve performance, because Hebbian learning would
only strengthen the tendency to hear those phonemes as
a single sound. These predictions from the Hebbian
model about how to improve performance have been
confirmed in adults who learned Japanese as their first
language (McCandliss 

 

et al.

 

, 2002).
Hebbian mechanisms can account for critical periods

in the imprinting behavior of chicks in a similar way
(O’Reilly & Johnson, 2002). Chicks tend to imprint on
the first object they see after hatching, preferring this
object over other objects (Bolhuis & Bateson, 1990). A
Hebbian model simulated this critical period, based on
units becoming recruited and tuned to an imprinting
stimulus through repeated exposure to it. After sufficient

exposure, a majority of units became selective for the
imprinting stimulus, and no amount of exposure to a
different stimulus could shift this preference (O’Reilly &
Johnson, 2002). The model also simulated the sensitivity
of critical periods to factors such as the length of a
chick’s exposure to the first object experienced and the
length of subsequent exposure to a second object. The
longer the network’s exposure to an object, the more
units that became tuned to the object based on Hebbian
learning, and the more difficult it became for those units
to represent other objects.

Although Hebbian models have thus simulated a vari-
ety of aspects of critical periods, Hebbian mechanisms
alone may not be sufficient to explain the full range of
behaviors observed in critical periods. For example,
error feedback can significantly improve performance,
which Hebbian mechanisms cannot readily simulate.
Japanese speakers improved their discrimination of /r/
and /l/ sounds when they were provided with error
feedback, with training on either exaggerated or typical
/l/ and /r/ stimuli (McCandliss 

 

et al.

 

, 2002). Such find-
ings suggest the importance of error-driven learning
mechanisms. In fact, error-driven learning models have
been used to investigate critical period effects, in word
learning, reading and grammar (Ellis & Lambon-Ralph,
2000; Elman, 1993; Marchman, 1994; Rohde & Plaut,
1999; Zevin & Seidenberg, 2002). In addition, although
the current model demonstrates that critical periods
may arise without maturational changes, maturational
changes may contribute and their effects on learning
have been explored in models (e.g. Shrager & Johnson,
1996). However, it is important to note that apparently
maturational changes can be triggered by learning mech-
anisms (Munakata & McClelland, 2003). For example,
the NMDA receptor, crucial for changes in synaptic
efficacy, decreases in responsiveness across development
(Carmignoto & Vicini, 1992). Such changes in respons-
iveness, however, are experience-dependent and can be
reversed if  experience is withheld (Quinlan, Olstein &
Bear, 1999).

Interestingly, the same Hebbian mechanisms that lead
to critical periods could lead a system to get ‘stuck’ on
a much smaller time scale. In particular, infants and
children often 

 

perseverate

 

, repeating prior behaviors
when they are no longer appropriate (Aguiar & Baillar-
geon, 2000; Piaget, 1954; Zelazo, Frye & Rapus, 1996;
Morton & Munakata, 2002b). For example, after infants
search for a toy that is presented and then hidden, they
tend to perseverate in searching for the toy in that loca-
tion, even after watching as the toy is hidden in a new
location (Diamond, 1985; Piaget, 1954). Similarly, after
3-year-olds sort cards according to one rule (e.g. by their
shape), they tend to perseverate with this rule even after
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they are told they should sort by a new rule (e.g. accord-
ing to color; Zelazo 

 

et al.

 

, 1996). Neural network models
have demonstrated how such perseveration could arise
from Hebbian learning mechanisms, because they tend
to strengthen whatever response is made to a stimulus
(Munakata, 1998; Morton & Munakata, 2002a; Stedron,
Munakata & Sahni, 2002). Relative to the learning that
occurs during critical periods, these perseverative tend-
encies might be easier to overcome because they result
from a relatively small re-weighting of representations
rather than a large-scale structuring of representations.
Again, Hebbian mechanisms are not the only way to
account for such behaviors (e.g. Dehaene & Changeux,
1989). Hebbian mechanisms may represent one of the
most basic ways to account for such behaviors, given
that feedback can seem to have no effect on children’s
perseveration (Diamond, 1983; Smith, Thelen, Titzer &
McLin, 1999). However, error-driven mechanisms may
also be required to account for cases where children
respond to feedback by perseverating less (Yerys &
Munakata, 2002).

 

Conclusions

 

In sum, Hebbian learning algorithms are biologically
plausible, ecologically valid and powerful enough to
account for a range of behaviors across development. At
the same time, a complete account will likely require a
more powerful error-driven learning mechanism as well.
The most well-known option, backpropagation, is not
ideal (Schlesinger & Parisi, this issue). However, it is
important not to throw out the error-driven learning
baby with the backpropagation bathwater. More biolo-
gically plausible error-driven learning mechanisms have
been developed since backprop (e.g. Hinton & McClel-
land, 1988; O’Reilly, 1996). These algorithms estimate
error signals from locally available activation values,
with resulting weight changes computed in part based
on the simultaneous activations of units, as in Hebbian
learning. And the ecological validity of teaching signals
in error-driven learning algorithms has been addressed
to some degree (e.g. McClelland, 1994). Thus, Hebbian
and error-driven algorithms may be integrated into a
unified framework (O’Reilly, 1998, 2001). This type of
unified framework can be more general than either
Hebbian or error-driving learning algorithms alone, in
simulating a range of  behaviors across perception,
attention, memory, language and higher-level cognition
(O’Reilly & Munakata, 2000). Further integration of
learning algorithms, capitalizing on the strengths of each
in a biologically plausible manner, will likely play a key
role in future progress in the modeling of development.
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