
Scaling Life-long Off-policy Learning

Adam White, Joseph Modayil, and Richard S. Sutton

Reinforcement Learning and Artificial Intelligence Laboratory
Department of Computing Science, University of Alberta

June 28, 2012

Abstract

We pursue a life-long learning approach to artificial intelligence that
makes extensive use of reinforcement learning algorithms. We build on
our prior work with general value functions (GVFs) and the Horde archi-
tecture. GVFs have been shown able to represent a wide variety of facts
about the world’s dynamics that may be useful to a long-lived agent (Sut-
ton et al. 2011). We have also previously shown scaling—that thousands
of on-policy GVFs can be learned accurately in real-time on a mobile robot
(Modayil, White & Sutton 2011). That work was limited in that it learned
about only one policy at a time, whereas the greatest potential benefits of
life-long learning come from learning about many policies in parallel, as we
explore in this paper. Many new challenges arise in this off-policy learning
setting. To deal with convergence and efficiency challenges, we utilize the
recently introduced GTD(λ) algorithm. We show that GTD(λ) with tile
coding can simultaneously learn hundreds of predictions for five simple
target policies while following a single random behavior policy, assessing
accuracy with interspersed on-policy tests. To escape the need for the
tests, which preclude further scaling, we introduce and empirically vali-
date two online estimators of the off-policy objective (MSPBE). Finally,
we use the more efficient of the two estimators to demonstrate off-policy
learning at scale—the learning of value functions for one thousand policies
in real time on a physical robot. This ability constitutes a significant step
towards scaling life-long off-policy learning.

1 Introduction

Life-long learning is an approach to artificial intelligence based on learning from
a long-stream of sensorimotor interaction generated by an agent interacting
with its environment, Life-long learning emphasizes continual learning by an
autonomous agent over long periods of time, perhaps months or years. This
big data problem requires algorithms that scale efficiently to learn a multitude
of diverse facts about the large stream of sensorimotor data. We purse a novel

1

ar
X

iv
:1

20
6.

62
62

v1
 [

cs
.A

I]
 2

7
Ju

n
20

12

approach to knowledge acquisition and verification based on algorithms from
reinforcement learning and a life-time of sensorimotor interaction of a mobile
robot.

General value functions (GVFs) provide an expressive language for represent-
ing sensorimotor knowledge about a long-lived agent’s interaction with the world
(Sutton et al. 2011). Knowledge is represented as approximate value functions
with a reward function, an outcome function and a pseudo-termination function
conditioned on a policy. GVFs provide a semantics for experiential knowledge
that is grounded in the sensorimotor data and verifiable by the agent, without
human intervention—essential for scalability.

In recent computational studies (Modayil, White & Sutton 2011) have shown
that predictions represented as GVFs can be learned at a massive scale with
a high degree of accuracy. Under on-policy sampling, a mobile robot learned
thousands of predictions about future sensor readings and state variables at
several time scales operating at a 100 ms time step. These predictions were
shown to be accurate compared to the optimal off-line solution.

Previous work focused on a limited form of prediction, learning the conse-
quences of a single policy. The greatest potential benefit of life-long learning
comes from learning about many policies in parallel, using off-policy learning.
Parallel learning introduces a new dimension of scaling not considered in typi-
cal sequential life-long learning systems and has yet to be demonstrated at scale
and in real time on a robot.

Many new challenges arise in this off-policy learning setting. Scaling life-long
learning in this way requires efficient learning methods that are robust under
off-policy sampling. We use recently developed gradient temporal-difference
learning method, GTD(λ), with linear function approximation, to learn GVFs
on a robot. Gradient TD methods are the only learning methods that scale
linearly in the size of the feature set, require constant computation time per
step, do not require memory or a forgetting process, and are therefore the only
methods available for off-policy life-long learning at scale on a mobile robot.
Arguably, the computational constraints of this big-data problem make batch
and least-squares approaches inappropriate for life-long learning, while recent
work in machine learning has highlighted the value of simple online learning
methods for big data problems (see Hsu et al., 2011).

Evaluating off-policy learning at scale poses an additional challenge: deter-
mining prediction accuracy for policies that are never executed by the robot.
We first show that our robot can learn hundreds of predictions about several
policies, with interspersed on-policy tests. However, these tests require inter-
rupting learning, placing an upper bound on the number of policies the robot
can learn about. We propose two efficiently computable, online measures of off-
policy learning progress based on the off-policy objection function (MSPBE).
Using these online measures, we demonstrate learning a thousand GVFs about
a thousand unique target policies in real time on a robot. Our results represent
a significant step towards scaling life-long learning.

2

2 On-policy and off-policy prediction with value
functions

To begin, we consider how the problem of prediction is conventionally formulated
in reinforcement learning. The interaction between an agent and its environment
is modelled as a discrete-time dynamical system with function approximation.
On each discrete time step t, the agent observes a feature vector φt ∈ Φ = Rn,
that partially characterizes the current state of the environment. Note that
the agent has no access to the underlying environment state space S, or to
the current state st ∈ S; the observed feature vector, φt, is computed from
information available to the agent and thus is only implicitly a function of the
environmental state, φt = φ(st). At each time step, the agent takes an action
at ∈ A, and the environment transitions into a new state producing a new
feature vector, φt+1.

In conventional reinforcement learning, we seek to predict at each time the
total future discounted reward, where reward rt ∈ R is a special signal received
from the environment. More formally, we seek to learn a value function V :
S → R, conditional on the agent following a particular policy. The time scale
of the prediction is controlled by a discount factor γ ∈ [0, 1). With these terms
defined, the precise quantity being predicted, called the return gt ∈ R, is

gt =

∞∑
k=0

γkrt+k+1,

and the value function is the expected value of the return,

V (s) = Eπ

[∞∑
k=0

γkrt+k+1

∣∣∣st = s

]
,

where the expectation is conditional on the actions (after t) being selected ac-
cording to a particular policy π : Φ×A → [0, 1]. As is common in reinforcement
learning, we estimate V with a linear approximation, Vθ(s) = θ>φ(s) ≈ V (s),
where θ ∈ Rn.

In the most common on-policy setting, the policy that conditions the value
function, π, is also the policy used to select actions and generate the training
data. In general, however, these two policies may be different. The policy that
conditions the value function is called the target policy because it is the target
of the learning process, and in this paper we will uniformly denote it as π. The
policy that generates actions and behaviour is called the behaviour policy, and in
this paper we will denote it as b : Φ×A → [0, 1]. The most common setting, in
which the two policies are the same, is called on-policy learning, and the setting
in which they are different is called off-policy learning.

Conventional algorithms such as TD(λ) and Q-learning can be applied with
function approximation in an on-policy setting, but may become unstable in
an off-policy setting. Fewer algorithms work reliably in the off-policy setting.
One such algorithm is GTD(λ), a gradient-TD algorithm designed to learn from

3

off-policy sampling with function approximation (Maei, 2011). GTD(λ) is an
incremental prediction algorithm, similar to TD(λ) (Sutton, 1988), except with
an additional secondary set of learned weights w, and an additional step size
parameter αw. The algorithm retains the computational advantages of TD(λ):
its computational complexity is O(n) per step, and it can operate online and
in real time. Unlike TD(λ), GTD(λ) is guaranteed to converge under off-policy
sampling and with function approximation (linear and non-linear). The follow-
ing pseudocode specifies the GTD(λ) algorithm.

Initialize w0 and e0 to zero and θ0 arbitrarily.
for each time step t, given observed sample φt, at, φt+1, and rt+1 do
δt ← rt+1 + γθ>t φt+1 − θ>t φt
ρt ← π(at|φt)

b(at|φt)

et ← ρt(φt + γλet−1)
θt+1 ← θt + αv(δtet − γ(1− λ)(e>t wt)φt+1)
wt+1 ← wt + αw(δtet − (φ>t wt)φt)

end for

The GTD(λ), algorithm minimizes the λ-weighted mean-square projected
Bellman error

MSPBE(θ,Φ) = ||Vθ −ΠΦT
λ,γ
π Vθ||2D (1)

where Φ is the matrix of all possible feature vectors φ, ΠΦ is a projection matrix
that projects the value function onto the space representable by Φ, Tλ,γπ is the
λ-weighted Bellman operator for the target policy π and discount factor γ, and
D is a diagonal matrix whose diagonal entries correspond to the state visitation
frequency under the behaviour policy b.

3 An architecture for large-scale, real-time off-
policy learning on robots

In addition to learning about multiple policies, our approach is to learn multiple
things about each policy. Both of these cases can be captured with the notion of
general value functions. We envision an architecture in which many predictive
questions are posed and answered in a generalized form of value function. Each
such function, denoted vi : S → R, predicts the expected discounted sum of the
future readings of some sensor. The ith value function pertains to the sensor

readings r
(i)
t , the policy π(i), and the time scale γ(i):

vi(s) = Eπ(i)

[∞∑
k=0

(γ(i))kr
(i)
t+k+1

∣∣∣st = s

]
.

Off-policy methods can be used to learn approximate answers v
(i)
θ to predic-

tive questions in the form of such value functions. Questions about what will
happen to robot if it follows a behaviour different from its current behaviour, for

4

Senorimotor
Data Predictions

PSR

/

Non-linear
sparse

re-coder

/ /∫

Figure 1: The Horde architecture for large-scale off-policy learning. Horde con-
sists of a large set of independent instances of the GTD(λ) algorithm (specified
by triangles), updating and making predictions in parallel from a shared set of
features. The features are typically a sparse encoding of the raw sensorimotor
information and the predictions from the previous time step. The whole system
can be operated in parallel and in real time.

example, ‘what would be the effect on the rotational velocity, if my future ac-
tions consisted of clockwise rotation’. Policy-contingent questions substantially
broaden the knowledge that can be acquired by the system and dramatically
increases the scale of learning—millions of distinct predictive questions can be
easily constructed from the space of policies, sensors and time scales.

Figure 1 provides a graphical depiction of this parallel learning architecture.
This architecture, called Horde by Sutton et al. (2011), has several desirable
characteristics. Horde can run in real time, due to the linear computational
complexity of GTD(λ). The architecture is potentially scalable because of the
distributed nature of off-policy learning, but no experiments were performed to
evaluate its ability to learn at scale in practice. The system is modular: the
question specification, behaviour policy and the function approximation archi-
tecture are completely independent. As depicted in Figure 1, the predictions
can be used as input to the function approximator. This enables the use of pre-
dictive state information (Littman et al., 2002) and learning of compositional
predictions, similar to a TD network (Sutton and Tanner, 2005).

4 Large-scale off-policy prediction on a robot

The first question we consider is whether the Horde architecture supports large-
scale off-policy prediction in real time on a physical robot. All our evaluations
were performed on a custom-built holonomic mobile robot (see Figure 2). The
robot has a diverse set of 53 sensors for detecting external entities (ambient
light, heat, infrared light, magnetic fields, and infrared reflectance) and also its
internal status (battery voltages, acceleration, rotational velocity, motor veloc-
ities, motor currents, motor temperatures, and motor voltages). The robot can
dock autonomously with its charging station and can run continually for twelve

5

hours without recharging.

Figure 2: The mobile robot can drive into walls without harm and operate for
hours without recharging.

The raw sensorimotor vector was transformed into features, φt, by tile cod-
ing. This produced a binary vector, φt ∈ {0, 1}n, with a constant number of
1 features. The tile coder was comprised of many overlapping tilings of single
sensors and pairs of sensors. The tile coding scheme produced a sparse feature
vector with k = 6065 components with 457 features that were ones, including
one bias feature whose value was always 1. More details of the feature repre-
sentation are given in previous work (Modayil, White & Sutton 2011).

Conducting a fair evaluation presents a challenge for off-policy predictions
on a robot; the most direct way to evaluate a prediction about a policy is to
follow that policy for a period of time and measure the return. This direct
on-policy test excursion is interspersed into a baseline off-policy behaviour used
for learning. We followed this procedure to evaluate the predictions learned
off-policy on the robot, with learning updates being suspended during the test
excursions.

To generate behaviour data, the robot was confined to a small two meter
square pen, executing one of five actions: A = {forward, reverse, rotate clock-
wise, rotate counter clockwise, stop}. A new action was selected for execution
every 100ms. For the baseline learning behaviour, at each time step a random
action was selected with a probability of 0.5, otherwise the last executed action
was repeated. Normal execution was interrupted probabilistically to run a test
excursion; on average an interruption occurred every 5 seconds. A test excur-
sion consisted of selecting one of five constant action policies and following it for
five seconds. After a test excursion was completed, the robot spent 2 seconds
moving to the centre of the pen and then continued its random behaviour policy.
The robot ran for 7.3 hours, visiting all portions of the pen many times. This
produced 261,681 samples with half of the time spent on test excursions.

We used Horde to learn answers to 795 predictive questions from the ex-
perience generated by the behaviour described above. Each question vi, was
formed by combining a γ(i) ∈ {0.0, 0.5, 0.8}, a constant action policy π(i) from
{π(·, forward) = 1, π(·, reverse) = 1, . . . , π(·, stop) = 1}, and a prediction tar-

6

get r(i) from one of the 53 sensors. Each question was of the form: at the
current time t, what will be the expected discounted sum of the future values
of r(i) if the robot follows π(i), with a constant pseudo-termination probability
of 1 − γ(i)?. To ease comparison of the predictions across sensors with differ-
ent output ranges, the values from each sensor were scaled to the maximum
and minimum values in their specifications, so that the observed sensor values
were bounded between [0,1]. Each time-step resulted in updates to exactly 159
GTD(λ) learners in parallel (corresponding to the policies that matched the
action selected by the behaviour policy). Each question used identical learning
parameters: αθ = 0.1/457 (457 is the number of active features), αw = 0.001αθ,
and λ = 0.9.

The total computation time for a cycle under our conditions was 45ms, well
within the 100ms duty cycle of the robot. The entire architecture was run
on a 2.4GHz dual-core laptop with 4GB of RAM connected to the robot by a
dedicated wireless link.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

N
M

SR
E

On-policy Tests
Figure 3: This graph presents the first major result: the first demonstration
of learning hundreds policy-contingent predictions at 10 Hz on a consumer lap-
top. The x-axis is the number of relevant test excursions observed for each
question. The black heavy stroke line shows the average error over the entire
set of questions, and the return error has the typical exponential learning pro-
file. The return errors are normalized by the variance in the return for each
question, yielding the percentage of variance unexplained. Several individual
curves exhibit non-monotonic shape due to discrepancies between the samples
observed under the test excursions and during learning—difficult to avoid while
evaluating performance online with individual test excursions.

With the architecture in place to update many off-policy predictions in real
time on a robot, we the evaluated on-policy test performance. More precisely,
on each test execution, for each of the 159 questions pertaining to the selected
test policy, we compared the prediction at the beginning of the test, v̂i(φt), with
the truncated sample return gathered during the test excursion:

ĝit =

50∑
k=0

(γ(i))kr
(i)
t+k+1.

7

Finally, each prediction error was normalized by the sample variance of each ĝit
over all starting configurations observed (computed off-line), yielding a normal-
ized mean squared return error (NMSRE)1 :

NMSREit = (v̂i − ĝi)2/Var[ĝi]. (2)

The NMSRE represents the percentage of the variance in the returns that re-
mains unexplained by the predictor. For the questions whose sample returns
are constant and thus have a zero sample variance, we define the NMSRE to be
one.

Figure 3 illustrates our main result: accurate off-policy predictions can be
learned, in real time, on a physical robot at scale. These predictions were learned
from a randomized behaviour policy with a shared feature representation using
identical parallel instances of GTD(λ). Note that no question-specific tuning of
learning parameters or features was needed. Another significant result is that
no divergence was observed for any question. Note the average of the NMSRE
for all the questions finished below 1.0: a substantial portion of the variance
in the returns is being explained by the predictions. The learning parameters
were important—divergence was observed on earlier runs with more aggressive
settings (both larger values of αθ and smaller values of αw), thus demonstrating
that convergence in this off-policy setting is not trivial.

5 An online measure of off-policy learning
progress

The accuracy of the predictions learned in the previous experiment was eval-
uated with the return error observed during on-policy test excursions. These
tests consume considerable wall-clock time, because for each sample the system
must follow the target policy long enough to capture most of the probability
mass of the infinite sample return and multiple samples are required to estimate
the NMSRE. Interspersing on-policy tests to evaluate learning progress places
a low limit on both the number of target policies and on the time-scale given
by γ.

There are other subtle deficiencies with on-policy tests. The experimenter
must choose a testing regime and frequency. Depending on how often tests are
executed, there is a trade-off for how often the NMSRE is updated. Changes
in the environment and novel robot experiences can cause inaccurate NMSRE
estimates if the majority of time-steps are used for training. Testing with greater
frequency ensures the estimated NMSRE closely matches current prediction
quality, but slows learning.

In the function approximation setting, we propose instead to estimate the
MSPBE. The GTD(λ) algorithm does not minimize the NMSRE, which mea-

1 We use x to denote the exponential trace (also called the exponentially weighted average)
of samples of xt; this is computed for a fixed time constant τ by x ≡ trace(x, t) = 1

τ
xt + (1 −

1
τ

)trace(x, t− 1).

8

sures prediction accuracy relative to sample returns, ignoring function approx-
imation error. For an arbitrary question the NMSRE will never go to zero,
though it does provide an indication of the quality of the feature representation.
The GTD(λ) algorithm instead minimizes the MSPBE. Under some common
technical assumptions, the MSPBE will converge to a zero error. The MSPBE
can be estimated in real time during learning, and it provides an up-to-date
measure of performance without sacrificing valuable robot data for evaluation.

Using the derivation given by Sutton et al. (2009), we can rewrite this error
in terms of expectations:

MSPBE(θ) = ||vθ −ΠTvθ||2B (3)

= ||Π(vθ − Tvθ)||2B (4)

= (Π(vθ − Tvθ))>B(Π(vθ − Tvθ)) (5)

= (vθ − Tvθ)>Π>BΠ(vθ − Tvθ) (6)

= (vθ − Tvθ)>B>Φ(Φ>BΦ)−1Φ>B(vθ − Tvθ) (7)

= (Φ>B(Tvθ − vθ))>(Φ>BΦ)−1Φ>B(Tvθ − vθ) (8)

= Eb[δφ]>Eb[φφ>]−1Eb[δφ] (9)

The GTD(λ) algorithm uses a second set of modifiable weights, w, to form
a quasi-stationary estimate of the last two terms, namely the product of the
inverse feature covariance matrix with the expected TD-update. This leads to
the following linear-complexity approximation of the MSPBE:

MSPBE(θ) ≈ (Eb[δφ])>w. (10)

The expected TD-update term, Eb[δφ], can be approximated with samples of
δtet (switching from the forward view to backward view), where et is the el-
igibility trace vector. Additionally, the prediction error can be non-zero on
samples where the target policy does not agree with the behaviour policy,

π(i)(φt, a) 6= b(φt, a). The importance sampling ratio, π(i)(φ,a)
b(φ,a) , can be used

to account for these effects. This leads to two natural incremental algorithms
for sampling the current MSPBE:

MSPBEt,vector = δe
>
wt, (11)

and
MSPBEt,scalar = δe>w. (12)

Here, the exponential traces for both MSPBEt,vector and MSPBEt,scalar are

updated on each time step proportionally to π(i)(φ,a)
b(φ,a) . The first measure is

a more accurate approximation of Equation 10, but the second requires only
storing a single real-valued scalar.

The first step in evaluating our online estimates of the MSPBE, is to compare
them with the exact values of the MSPBE on a simulation domain. We used a
simple 7 state Markov chain with an absorbing state on each end, deterministic

9

 0

 0.05

 0.1

 0.15

 0.2

 0 100 200 300 400 500 600 700 800 900 1000

RM
SP
BE

Episodes

MSPBE

Sample
MSPBE

MSPBEvec

MSPBEscalar

 0

 0.05

 0.1

 0.15

 0.2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

RM
SP
BE

Episodes

MSPBE

Sample
MSPBEMSPBEvec

MSPBEscalar

Figure 4: Comparison of the online estimates of the MSPBE and the true
and sample MSPBE on a simple Markov chain. The left figure figure shows
that the measures provide a good estimate of MSPBE matching the profile and
magnitude on this simple domain. The right figure compares how the online
estimates react to a major change during learning. After 1000 episodes the
primary weight vector θ was set to random values in [0, 1]. Again, the online
estimates track the true and sample MSPBE closely.

transitions and episodes beginning in the middle of the chain. Transitioning
into the right-side terminal state produced a reward of 1.0, all other transitions
incurred 0 reward. We used the inverted feature representation of Sutton et al
(2009).

To determine the validity of our new measures we compared the vector and
scalar MSPBE estimates with the true MSPBE (Equation 4) and the expensive
sample estimate of the MSPBE (Equation 9). The computation of the true
MSPBE requires complete knowledge of the chain MDP. The sample MSPBE
requires an incremental estimate of the expected feature covariance matrix and
a inverse operation. The sample MSPBE represents the best possible sample-
based estimate of the MSPBE; our online measures can not be expected to track
the true MSPBE better than the sample MSPBE. In this experiment we used a
single instance of GTD with αθ = 0.05, αw = 0.1 and λ = 0.0 and results were
averaged over 100 independent runs. The target policy selected the move-right
action with probability 0.95 and a behaviour policy that selected move-right
with probability 0.2.

Figure 4 (left) illustrates the results of the chain experiment comparison:
both our online measures provide an accurate estimate of the MSPBE on a sim-
ple chain domain. Figure 4 (right) compares the effect of a change in the world
during learning. After 1000 episodes the θ weights were set to random values
in [0, 1]. The secondary weights w, and traces used in computing the online
estimates were not reset. The results depicted in Figure 4 (right) illustrate that
the online estimates, sample MSPBE and the true MSPBE all react similarly
to the change.

To evaluate the online MSPBE estimates on the robot, we compare aggregate
error curves, averaged over all questions, on tasks where the robot experiences a

10

significant change, similarly to the chain experiment. The robot was run exactly
as before, with a subset of the predictions learned (γ = 0.8), for six hours. This
time, the learned weight vector of each question θ(i), was set to zero after 40000
time steps. This change effectively reinitializes each question and effects the
accuracy of all the predictions. In this experiment, we recorded the NMSRE,
MSPBEt,vector and MSPBEt,scalar on every time step for 265 questions, except
during test excursions. Note that the NMSRE is only updated after a test
completes, while the MSPBE measures are updated on every non-test time-
step.

Figure 5 compares the convergence profile and reaction to change of the
three error measures in terms of training time. As in the chain experiments, all
three measures react quickly to the change. Note that both MSPBE estimates
are initially at zero, as the vector w takes time to adapt to a useful value.
Finally, note that the MSPBEt,vector and MSPBEt,scalar exhibit very similar
trends, indicating that the Bellman error can be estimated with minimal storage
requirements.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 25 50 75 100 125 150
 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

N
M
SR
E

RM
SP
BE

Minutes

RMSPBEvec
RMSPBEscalar

NMSRE

Figure 5: This figure compares the NMSRE, with two estimates of the MSPBE,
averaging performance over 265 predictive questions. This figure illustrates sev-
eral important points that validate the MSPBE as a useful error measure. The
MSPBE measures as computed off-policy have the same shape as the NMSRE
which requires an on-policy excursion in the behaviour. The MSPBE estimates
converge more slowly than the NMSRE indicating that although test perfor-
mance is not improving, learning is still occurring. The MSPBE estimates react
more slowly to the change because the secondary weights w where not also reset;
their incorrect values affect the estimates of the MSPBE long after the change.
The MSPBE measures react quickly to a change in the environment. This ex-
periment shows that the scalar estimate of the MSPBE performs almost identi-
cally to the vector version. This graph illustrates a significant result: off-policy
learning progress can be efficiently estimated online, without time consuming
on-policy tests. Additionally that the NMSRE requires twice as twice as much
wall-clock time as the MSPBE estimates.

11

6 Large-scale off-policy prediction, with many
target policies

Free from the limitations of physically performing test excursions to evaluate
predictions, we can learn about a much larger set of questions. In this section,
we consider scaling the number of target policies and prediction time scales
(magnitude of γ).

To increase the space of target policies, and still maintain a small set of
finite actions, we consider discrete-action linearly parametrized Gibbs policy
distributions:

πu(a) =
exp(−u>Ψa)∑

a′∈A exp(−u>Ψa′)

where u is a vector of policy parameters. The feature vector for each action,
Ψa ∈ Rn|A|, has a copy of φt as a subvector in an otherwise zero vector; and for
each action the copy is offset by n so that a 6= a′ =⇒ Ψ>a Ψa′ = 0. Random
policies are generated by selecting 60 components of u at random and assigning
each a value independently drawn from the uniform distribution over [0, 1].

In this final experiment, we tested how well our architecture scales in the
number of target policies. The robot’s behaviour was the same as before, but
now learning was enabled on every step of the 7 hours experience. The questions
were formed by sampling γ values from {0.0, 0.5, 0.8, 0.95}, reward from the full
set of sensors with 1000 randomly generated policies. The value of γ = 0.95
corresponds to a 2 second prediction and would require over 30 seconds to
accurately evaluate using the NMSRE. The 1000 questions, evaluated according
to MSPBEt,scalar, were learned with a cycle time of 85ms on a 4-core desktop
computer with 16 G of Ram; satisfying our real-time requirement of 100ms.

Figure 6 presents the results of this experiment, namely that learning the
temporally-extended consequences of many (untestibly many) different behaviours
is possible in real time. The learning progress is measured by the MSPBE, which
by the results in the previous section will be strongly coupled to on-policy pre-
diction errors. Note that the ability to monitor learning progress across so many
different behaviours is only possible due to the availability of the MSPBE. By
acquiring many predictions about many different courses of behaviour, the robot
can acquire detailed partial models of the dynamics of its environmental inter-
action.

7 Related Work

Many of the ideas in this paper have precursors in the literature. The idea of
policy-contingent predictions was developed along with the options framework
for temporal abstraction (Sutton, Precup & Singh, 1999). Learning off-policy
under function approximation was developed by importance sampling (Precup
et al., 2006) in an approach that runs online, but can exhibit exponentially slow
learning progress. Learning about many different policies can also support active

12

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 100 200 300

R
M
SP
B
E

Minutes

Figure 6: Scaling off-policy learning to 1000 robot policies. The estimated
mean squared projected Bellman error for off-policy predictions for 1000 dis-
tinct randomly generated policies. The heavy stroke black line denotes the
average estimated error over the full set of questions. The curves provide a
clear indication of learning progress for each prediction. This result provides a
clear demonstration of the significance of estimating the MSPBE incrementally
during learning. Massively scaling the number of policies on which to condition
predictions is only possible with an online performance measure.

exploration, an idea that has been explored in related work on curiosity-based
learning (Singh et al., 2005).

The idea of building models from data has been explored, but not in the
off-policy real-time setting. Thrun and Mitchell (1995) showed learning of sen-
sor models offline. Many Bayesian approaches for online state estimation in
robotics (e.g., Thrun et al., 2005) process a vast volume of observations in real
time, but they do not learn system dynamics online. A Kalman filter (Kalman,
1965) can be viewed as learning an adaptive model of dynamics online, but it
is only appropriate for small models with well-understood dynamics. Atkeson
and Schaal (1997) showed learning of small one-time-step models. Kober and
Peters (2011) showed on-policy episodic learning on a robot.

A recent online spectral approach (Boots, Siddiqi & Gordon, 2011) finds
small predictive state models for robotics. They use a sophisticated incremental
method for making multiple action-conditional predictions, but it is unclear
if this approach can operate under real-time constraints. The previous work
that introduced the Horde architecture (Sutton et al., 2011) also demonstrated
parallel off-policy learning on a robot. Their work was suggestive but did not
demonstrate that the approach scaled in practice. Each experiment required
a unique parameter set, function approximation scheme, and behaviour policy;
this overhead is not practical for learning thousands of predictions. This paper
shows that a large set of diverse, policy-contingent predictions can be learned
using a shared feature set, common learning parameters, and data generated by
a single random behaviour policy.

13

8 Conclusions and future work

We provided the first demonstrations of large scale off-policy learning on a
robot. We have shown that gradient TD methods can be used to learn hundreds
of temporally-extended policy-contingent predictions from off-policy sampling.
To achieve this goal required resolution of several challenges unique to the off-
policy setting. Most significantly we have developed on online estimate of off-
policy learning progress based on the Bellman error that does not increase the
computational complexity of the horde architecture, can be sampled without
interrupting learning and has good correspondence with the traditional mean
squared prediction error. The addition of policy contingent, what-if, questions
dramatically increases the scope and scale of questions that can be learned
by horde providing further evidence of the significance of horde for life-long
learning.

Our experiments, while on a robot, are limited but there are several im-
mediate directions for future work. The questions learned here are predictive
questions about a policy, general value functions can also support learning con-
trol policies using greedy-gq (Maei 2011) a control variant of GTD(λ) with the
same linear complexity. Predictive accuracy improvements should be achieved
by employing adaptive behaviour policies (e.g., curiosity) and more powerful
function approximators, while significantly increased scaling (more predictions
and larger feature vectors) can be obtained with more computational resources.

9 References

Atkeson, C. G., Schaal, S. (1997). Robot learning from demonstration. In Proc.
14th Int. Conf. on Machine Learning, pp. 12–20.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function
approximation. In Proc. 12th Int. Conf. on Machine Learning, pp. 30–37.

Boots, B., Siddiqi, S., Gordon, G. (2011). An online spectral learning algorithm
for partially observable nonlinear dynamical systems. In Proc. Conf. of the
Association for the Advancement of Artificial Intelligence.

Hsu, D., Karampatziakis, N., Langford, J., Smola, A. J. (2011). Parallel Online
Learning. In The Computing Research Repository.

Kalman, R. E. (1960). A new approach to linear filtering and prediction prob-
lems. Trans. ASME, Journal of Basic Engineering 82:35–45.

Kober, J., Peters, J. (2011). Policy search for motor primitives in robotics.
Machine Learning 84:171–203.

Kolter, J. Z. (2011). The fixed points of off-policy TD. In Advances in Neural
Information Processing Systems 24.

Littman, M. L., Sutton, R. S., Singh, S. (2002). Predictive representations of
state. In Advances in Neural Information Processing Systems 14, pp. 1555–
1561.

Maei, H. R. (2011). Gradient Temporal-Difference Learning Algorithms. PhD

14

thesis, University of Alberta.

Modayil, J., White, A., Sutton, R. S. (2012). Multi-timescale Nexting in a Re-
inforcement Learning Robot. Proc. 12th Int. Conf. on Adaptive Behaviour.

Precup, D., Sutton, R. S., Paduraru, C., Koop, A., Singh, S. (2006). Off-policy
learning with recognizers. In Advances in Neural Information Processing
Systems 18.

Quadrianto, N., Smola, A., Caetano, T., Vishwanathan, S. V. N., Petterson, J.
(2010). Multitask learning without label correspondences. In Advances in
Neural Information Processing Systems 23, pp. 1957–1965.

Singh S., Barto, A. G., Chentanez, N. (2005). Intrinsically motivated reinforce-
ment learning. In Advances in Neural Information Processing Systems 17,
pp. 1281–1288.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.
Machine Learning 3:9–44.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press.

Sutton, R. S., Precup D., Singh, S. (1999). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence 112:181–211.

Sutton, R. S., Tanner, B. (2005). Temporal-difference networks. In Advances
in Neural Information Processing Systems 17, pp. 1377–1384.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, Cs.,
Wiewiora, E. (2009). Fast gradient-descent methods for temporal-difference
learning with linear function approximation. In Proc. 26th Int. Conf. on
Machine Learning.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A.,
Precup, D. (2011). Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction. Proc. 10th Int. Conf.
on Autonomous Agents and Multiagent Systems.

Talvitie, E., Singh, S. (2011). Learning to make predictions in partially observ-
able environments without a generative model. Journal of Artificial Intelli-
gence Research 42:353–392.

Thrun, S., Burgard, W., Fox, D. (2005). Probabilistic Robotics. MIT Press.

Thrun, S., Mitchell, T. (1995). Lifelong robot learning. Robotics and Au-
tonomous Systems.

15

	1 Introduction
	2 On-policy and off-policy prediction with value functions
	3 An architecture for large-scale, real-time off-policy learning on robots
	4 Large-scale off-policy prediction on a robot
	5 An online measure of off-policy learning progress
	6 Large-scale off-policy prediction, with many target policies
	7 Related Work
	8 Conclusions and future work
	9 References

