
A Developmental Model for the Evolution of Complete
Autonomous Agents

Frank Dellaert 1 and Randall D. Beer 2

1 Dept. of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
2 Dept. of Computer Engineering and Science, Dept. of Biology

Case Western Reserve University, Cleveland, OH 44106
2 Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501

e-mail: dellaert@cs.cmu.edu, beer@alpha.ces.cwru.edu

Abstract

Development is an important, powerful and integral
element of biological evolution. In this paper we present
two models of development that can be used to evolve
functional autonomous agents, complete with bodies and
neural control systems. The first and most complex model
is more biologically defensible in its details. It has been
used to hand-design a genome for the development of
complete agents capable of executing a simple avoidance
task. These agents were then incrementally improved
through evolution. The second model is simpler and uses
a random Boolean network model for the genome and cell
state that is somewhat more removed from the biological
realm, making it easier to analyze and more amenable to
artificial evolution. Using this model, we have success-
fully evolved complete agents from scratch that are
capable of following curved lines.

1. Introduction

In this paper we present a model of development that has
been used to evolve functional autonomous agents, complete
with a morphological structure and a neural control system.
Earlier work that involved a more biologically defensible
but more complex model is contrasted with a new and
simplified approach that performs surprisingly better.

Development is an important and integral part of biolog-
ical evolution. Genetic changes are not directly manifested
in phenotypic changes, as is often assumed both in popula-
tion genetics and in most autonomous agent work involving
evolution. Rather, a complex developmental machinery
mediates between genetic information and phenotype, and
this has many consequences. It provides a certain robustness
by filtering out genetic changes (i.e. some genetic changes
make little or no difference to the final phenotype; there is
an equifinality to development). It also provides a natural
way to try out a spectrum of mutations, i.e. the same type of
genetic mutation can produce anything from no effect to a
very large effect in the phenotype, depending on when the
affected gene acts during development. Furthermore, devel-
opment provides a compact genetic encoding of complex
phenotypes, allows incremental building of complex
organisms, and supports symmetry and modular designs.

For these reasons, there is a growing interest in modeling
development (Lyndenmayer and Prusinkiewicz 1989;
Wilson 1989; Mjolsness, Sharp and Reinitz 1991; deBoer,

Fracchia and Prusinkiewicz 1992; Fleischer and Barr 1994;
Kitano 1994). Many ongoing efforts aimed at including
simple developmental models in evolutionary simulations
can be found in the literature (Belew 1993; Cangelosi, Parisi
and Nolfi 1993; Gruau and Whitley 1993; DeGaris 1994;
Kodjabachian and Meyer 1994; Nolfi, Miglino and Parisi
1994; Sims 1994; Jakobi 1995).

Much of the latter work has focused on modeling neural
development, however. But biological bodies and nervous
systems co-evolve. Body morphology and nervous systems
can constrain and shape one another. Somatic and genetic
factors can interact, and this occurs not only during devel-
opment, but on an evolutionary scale as well. Problems
posed by evolution can be solved by a combination of body
and neural changes. Allowing both body and nervous
system to co-evolve can provide a smoother and more
incremental path for substantial changes.

Also, most of this work is highly abstracted from biolog-
ical development (e.g. using grammars). While there are
good reasons for this (familiarity, simplicity, computational
speed, emphasis on performance not biology, etc.), too little
is currently understood about development to know what are
the right abstractions to make. Development completely
transforms the structure of the space that is being searched.
If we're lucky, this transformation will allow us to evolve
interesting agents more easily. But if we're unlucky, we
could actually make the search problem harder. Because so
little is currently understood about the overall 'logic' of de-
velopment, it is important that we explore many different
levels of abstraction to get a sense of the tradeoffs involved.
An important aspect of this exploration should be to explore
developmental models that are more biologically realistic in
their basic structure than the highly abstract models that
have currently been explored. That is the aim of this paper.

In the next section we give a brief overview of the gen-
eral approach that we have adapted to model a developmen-
tal process for autonomous agents. It is common to both
models we discuss in the paper. Section 3 presents a biolog-
ically defensible model of development, complete with a
mechanism for the emergence of a nervous system inspired
by axonal growth cones. The expressiveness of the model is
demonstrated by means of a hand-designed genome, able to
direct the development of a functional and complete agent
that can execute a simple task in a simulated world. In
Section 4, we discuss a simplified model that addresses
some of the problems of the earlier model, and show that it
can be used to evolve functional agents from scratch. We

Figure 1: Starting with an 'egg cell' the developmental simulation yields a multicellular square as the adult organism.

show the example of an agent evolved to execute a line fol-
lowing task. Section 5 discusses some of the lessons we
learned from this work, and suggests some avenues for
further research.

2. Overview of the Developmental Model

In nature it is the performance of an adult organism in its
environment that will determine whether its genetic material
is propagated. However, in sharp contrast with the model
usually assumed in the genetic algorithm literature, genes do
not directly specify the traits of an animal. Rather, they
specify the developmental sequence by which an animal
grows out of a single egg cell to a fully developed pheno-
type. It is only after this process is complete that specific
traits or behavior can be selected for or against1.

For reasons specified in the introduction and elsewhere
(Dellaert and Beer 1994a; Dellaert 1995), we believe that
using a developmental model in conjunction with the ge-
netic algorithm (GA) can help us to better evolve au-
tonomous agents. Thus, we have tried to implement this in
simulation, where a genetic algorithm will supply us with
some genetic material, the genotype, that is then transformed
by a developmental model into a fully grown organism, the
phenotype. It is the performance of the phenotype that will
determine whether its genotype is selected inside the GA.

In particular, we have implemented a model of devel-
opment for simple simulated organisms that start out as a
single cell but 'grow' into multicellular organisms. An ex-
ample of one such developmental sequence is shown in
figure 1. The fully developed agent will then be evaluated
on how well it performs a simple task in a simulated world.

In contrast to the complex nature of real biological cells
that are able to move and change their shape, our simulated
cells are modeled as simple, rigid two-dimensional squares.
This choice allowed us to implement cell-division in a par-
ticularly efficient way, keeping the computational cost of
the simulation acceptable. Indeed, after two rounds of divi-
sions, the resulting cells are again square cells. Our imple-
mentation does allow for more complex cell models to be
substituted in place of the square cell model should that
need arise in the future.

A range of different cell types coexist in any full-grown
biological organism. This is so even though each cell pos-
sesses the same identical copy of the genome, a sequence of
DNA unique to that particular animal. Yet, not all the cells
have the same characteristics or behavior. Although the cells

1This is not entirely true: there will also exist mutations that
prevent an organism from developing to maturity.

contain identical genes, different subsets of genes are ex-
pressed in different cells, giving them different properties.

In our model we have implemented a similar arrange-
ment: each cell has an identical copy of a simulated genome
inside it, but the subset of the 'genes' active at any given
moment determines what type of cell it is and how the cell
will behave during development. Exactly how this is im-
plemented is at the core of both models we will present, and
will be discussed in detail below.

During biological development, however, the subset of
genes expressed in each cell is not static but rather in
constant flux. The cell responds to its environment and to
the instructions coded in its genome by changing its com-
position continuously, until it has differentiated fully into
one of the 'adult' cell types. In turn, the instructions given by
the genome are a function of the state of the cell. Thus, cell
state and genome comprise an interwoven dynamical sys-
tem, a genetic regulatory network, and it is the collective
unfolding of the dynamics of many such systems -one for
each cell- that constitutes development. On a higher level of
abstraction, development can be seen as the sequence of
events by which the cells in the body differentiate to
perform the various functions inside the animal.

The heart of our developmental model is formed by
exactly one such genome-state dynamical system that lives
inside each of our model cells. The active subset of model
genes inside a cell will be regarded as the cell state, and the
possible state transitions from that state are governed by
both the genome, the current state and the environment in
which the cell finds itself. Qualitatively, this picture is
similar to what we see in biological cells, albeit quite
simplified in the details. Our developmental simulation can
now similarly be viewed as the sequence of events by which
the state of the cells differentiate from the initial 'egg cell'
state -and from one another- to form a particular cell type ar-
rangement that will suit a particular task.

As explained in the introduction, we are interested in
having both a morphological component, i.e. the develop-
ment of the physical extent of a simulated organism, and a
neural component, i.e. how the nervous system of an organ-
ism develops. Together, these components should form a
complete autonomous agent. To this end, we have associ-
ated certain simulated cell types with particular functions,
e.g. sensors, interneurons, or actuators. We then also provide
a model of how these control components get wired up in a
working neural network i.e. the neural developmental com-
ponent of the model.

This high level specification of the model needs to be
complemented with quite a few implementation issues and
choices to make it work. We need to specify which states
will lead to cells dividing. Since we have chosen to update

all the cell states synchronously, we need to break the sym-
metry after the first division to get interesting dynamical
behavior. Some mechanism of intercellular communication
must be implemented to make it possible for cells to influ-
ence each other's state. Meaning must be assigned to the
different possible genes, so that we can interpret state as cell
type. And finally, the detailed mechanism for neural devel-
opment needs to fully specified.

In the following we will present two different implemen-
tations of the developmental model: a complex one and a
simple one. The complex model is more biologically defen-
sible, but suffers from its complexity. The simple model is
further removed from biological reality in its implementa-
tion details, but has the advantage that it is computationally
more tractable and easier to analyze. We will discuss both
models in the next sections.

3. A Complex Model

The first implementation actually models simplified genome
and cytoplasm entities inside each cell, and even has model
'proteins' that are produced by the genome and are collected
inside the 'cytoplasm'. The set of proteins in each cell de-
termines what kind of events the cell reacts to and which
signals it emits while the developmental sequence unfolds.
In addition, there is an elaborate model of neural develop-
ment based on a growth-cone model that detects the pres-
ence of proteins in the cells and grows accordingly.

Genome-cytoplasm Model

In the complex model, each cell contains a 'cytoplasm' and a
'genome'. The cytoplasm contains 'proteins', and the proteins
present in each cell determine its capabilities, i.e. cells with
a different set of proteins can be thought of as having a
different cell type. In this regard our model proteins can be
thought of as having a similar role as biological proteins.
We represent each model protein by a unique integer, and
implemented the cytoplasm as a set of integers.

99

28

76 33

Input Tags

Boolean Function
e.g. "33 = (99 & ~76) | 28"

Product
Tag(s)

f

Figure 2: An artificial genome consists of artificial 'operons',
one of which is shown here.

The genome consists of a set of 'operons', an example of
which is shown in figure 2. As can be seen, each operon is
made up of a set of input tags, a Boolean function and a set
of output tags. In each time step of the simulation, the input
tags determine the input to the Boolean function, and if the
output of the Boolean function is evaluated to TRUE, the
protein corresponding to the output tag is injected into the
cytoplasm. An input tag will give a 1 to the Boolean func-
tion if its corresponding protein is present, and 0 otherwise.

Cell

CytoplasmGenome

Figure 3: Schematic summary of the cytoplasm-genome model.

Thus, the content of the cytoplasm can be seen as the
state of the cell or its cell type, and the genome will deter-
mine how this state will change over time. It is the interplay
between genome and cytoplasm determines how the cell's
cell type changes over time. This interplay is summarized
graphically in figure 3.

Development

With the description of the cell's internals in the previous
section, we can explain how the developmental simulation
will proceed. The organism starts out as a single cell, with
its genome given by the GA. The cytoplasm is initially the
empty set. Then, for a constant number of iterations, all cells
in the organism go through a simulated cell cycle in parallel.
This 'cell cycle' consists of two phases. (1) During
'interphase' the cytoplasm is updated by evaluating all the
operons in the genome, as explained above. (2) During
mitosis, each cell checks for the presence of a special
protein (which we will denote tDividing, where the leading t
stands for 'protein tag') and divides if found.

The simulation ensures that the first cell always goes
through division by injecting the tDivision protein into the
cell's cytoplasm prior to starting the cell cycle. Thus, after
the first division we end up with two cells, each with identi-
cal cytoplasm and genome that it inherited from their parent
cell. This presents a problem: since all the cells obey the
same deterministic rules set out above, the remainder of the
simulation will yield identical cell types at each time step,
and no interesting organisms will emerge.

Therefore we add two additional mechanisms, symmetry
breaking and intercellular communication, to ensure that the
developmental process exhibits interesting dynamics.
Symmetry breaking happens just after the first division
event and is implemented by injecting a special protein in
only one of the first two daughter cells. This needs to hap-
pen only once: from now on these cells' descendants will
also differ, as their dynamical trajectories start from differ-
ent initial conditions. Cell communication, on the other
hand, can happen at every cell cycle, and consists of a
mechanism that allows one cell to cause the introduction of

a protein into another cell. This is modeled after the biologi-
cal mechanism of induction, and involves proteins that rep-
resent morphogens, receptors and intracellular messenger
proteins. The implementation details can be found in
(Dellaert and Beer 1994a-b; Dellaert 1995).

perimeter midline

Figure 4: Two special receptors can lead to the differentiation
of cells at the perimeter and adjacent to the midline of the organ-
ism, respectively.

The model for intercellular communication is also used
to introduce two supplementary features that establish a
perimeter and midline on the organism that can be detected
by the cells, which can lead to local differentiation of cells
as seen in figure 4.

A Detailed Neural Developmental Model

Figure 5: The different axon-element states.

When the development of the agent morphology has settled
into a configuration in which divisions no longer occur (but
the cell state can still continue to evolve) a control architec-
ture or 'nervous system' develops on top of the arrangement
of cells. This happens because specialized cells, i.e. those
that express a specific protein (tAxon), will send out axons
that will innervate other cells, and as such establish a neural
network architecture. Only cells expressing the tTarget pro-
tein will be innervated, and axons will only grow on top of
cells that express tCAM proteins. This is modeled directly
after one postulated mechanism in biological development,
in which neurons emit growth cones that can detect the

presence of certain molecules (Cellular Adhesion Molecules
or CAMs) on the surface of cells and adjust their direction
of growth accordingly.

The central feature of this model is the 'growth cone'
model, illustrated in figure 5. The black rectangle represents
a growth cone. It is linked back to the cell from which the
axon originated by 'link' elements, and it sends out 'flanks'
that sample the neighborhood ahead by means of 'spikes'.
The flank whose spikes detect more tCAM proteins will be
promoted to a growth cone in the next time step, with the
axon splitting in different directions in case of a tie. This
fairly intricate finite state model is modeled on the workings
of a real biological growth cone, albeit quite simplified.

After the process of axon growth is complete, a dynami-
cal neural network (Beer and Gallagher 1992) is instantiated
that connects sensor, interneuron and actuator cells accord-
ing to the connections made during the neural developmen-
tal phase. Time constants and biases of the organism are
global and are specified separately in the genome.

Thus, emergence and placement of sensor and actuator
cells needs to be coordinated with appropriate neural devel-
opmental events to lead to interesting behavior. Sensor cells
that did not send out an axon or actuators that were not
innervated will have no effect on the agents' behavior.

A Braitenberg Hate Vehicle

Figure 6: The behavior of the hand-designed Braitenberg Hate
Vehicle in a simulated world.

In order to explore the expressiveness of our developmental
model, we have hand-designed a genome capable of direct-
ing the development of both the body and nervous system of
a simple Braitenberg-style “Hate Vehicle”. This agent exe-
cutes a simple avoidance task in a simulated world. Figure 6
shows the adult form of the hand-designed organism and its
behavior on the task; sensors are at the frontal side of the
organism (on the right in the figure), and a simple network
relays their activation to patches of actuator cells (on the
left). Figure 7 shows the expression domains of the different

proteins in the final developmental stage of the organism. A
complete analysis of the developmental sequence is beyond
the scope of this paper, but can be found in (Dellaert 1995).

Figure 7: The different 'protein expression domains' in the adult
organism. Each square in the matrix shows in which cells each
of the 35 proteins is present. For example, the bottom right inset
where the tAxon protein is expressed, and corresponds to the
cells in figure 6 that send out an axon.

It is a demonstration of the power of our model that the
initial genetic specification can direct the simultaneous de-
velopment of both morphology and nervous system, leading
to a complete autonomous agent. We want to stress that only
the genome has been manually specified (i.e. a set of fully
specified operons) and that all subsequent development
follows from the model without intervention. Note also that
no learning takes place in the agent. All the behavior it
exhibits is solely a function of its evolved architecture.

Figure 8: The behavior of the incrementally evolved agent in a
simulated world.

Figure 9: The consecutive steps in the development of the
incrementally evolved agent. See text for an explanation.

Although we were unable to evolve such an agent from
scratch, we were able to significantly improve its perfor-
mance through incremental evolution. We started out with
the hand-designed genome as a primer for the genetic algo-
rithm, and used a performance function to evaluate each
agent's aptness for the avoidance task. The result was an
agent that was markedly better at executing the task, as
shown in Figure 8. The consecutive steps in the develop-
ment of this incrementally evolved agent are shown in
figure 9. In this figure, the big black dots represent axon-
emitting cells, whereas the smaller black squares represent
innervation of target cells. Time goes from top left to bottom
right, the last square representing the adult organism.

Lessons Learned

Alas, the expressiveness of the developmental model as il-
lustrated in the previous paragraphs is also its downfall.
There is a vast space of possible genomes with their associ-
ated phenotypes. Many of the protein expression domains
need to be tightly coordinated with one another to have a
working nervous system emerge. Thus, both the size and
structure of the search space make the problem hard.
Although the Braitenberg example convinces us that viable
organisms (with respect to the task) exist, it does not give us
a path to them starting from random genotypes. Although
we were able to incrementally evolve better performing
agents starting with the hand-designed genome (see also
Dellaert and Beer 1994b), we have not been able to obtain
convincing results when starting evolution from scratch. In
addition, the sheer complexity of the model makes it quite
hard and error-prone to implement. To cope with both these
problems, we have experimented with a drastically simpli-
fied model.

4. A Simplified Model

The simplified model uses a random Boolean network
(RBN) as an abstraction for the genome, where the state of
each cell is equal to the state of its RBN. The topology and
rules of the RBN are the same for each cell and can be re-
garded as the genetic specification of the organism. The
model for neural development has been simplified consider-
ably, and is now based on the range and position of the
interacting cells. In this section we will discuss each of these
aspects in more detail.

The Random Boolean Network Model

1

2

3

2 3 1
0 0 0
0 1 0
1 0 0
1 1 1

1 3 2
0 0 0
0 1 1
1 0 1
1 1 1

1 2 3
0 0 0
0 1 1
1 0 1
1 1 1

2 <- 1 OR 3

3 <- 1 OR 2

1 <- 2 AND 3

Figure 10: A simple RBN. Boolean functions are specified as
truth tables. Example from (Kauffman 1993).

When we first started this work, we used a simpler
model than the genome-cytoplasm model sketched above,
based on random Boolean networks. RBNs were first
thought of as an abstraction for genetic regulatory networks
by (Kauffman 1969; Kauffman 1993) and extended by
(Jackson, Johnson and Nash 1986) to systems of multiple,
communicating networks as needed in the context of
development.

A random Boolean network can be represented by a
graph, for example the simple RBN of figure 10. In an N
node network, each node is defined by K incoming edges,
defining a pseudo-neighborhood, and a particular Boolean
function2. The edges can be recurrent, i.e. nodes can connect
to themselves. In addition, each node has an associated state
variable assuming a value of 0 or 1. Each node syn-
chronously updates its state in discrete time steps, and the
state of a node at time t+1 is the value of the Boolean
function using the state of the input nodes at time t.

Figure 11: The phase portrait of a random Boolean network
with N=7 and K=3. See text for an explanation.

An RBN can then be used as an abstraction of the gene-
tic regulatory network inside a cell. The state of the cell can
be equated to the state of the RBN, and each node can be
seen as equivalent to a particular 'protein', although we will
not use that terminology here. The topology and the

2The 'random' refers to the fact that each node can have a different
Boolean function and pseudo-neighborhood, in contrast to cellular
automata which represent a special case of RBNs.

particular Boolean functions that specify the RBN will then
determine how the state evolves over time, and thus corre-
spond to the 'genome' of the complex model. The incoming
edges for each node indicate which other nodes influence its
state, and can be seen to correspond to the input tags of an
operon in the earlier model. If we complement this with a
mechanism for intercellular communication, allowing for
edges to occur between cells, we have a very similar picture
to the more complex model sketched above.

One nice additional property of RBNs, however, is that
their dynamics can be made explicit using phase portraits
(Wuensche 1993; Wuensche 1994). This provides us with a
powerful tool to analyze the dynamics of development
(Dellaert 1995). An example is shown in figure 11. In the
figure, each small circle represents one of the 128 states of
the 7-node RBN, and the edges between them represent state
transitions. The transitions always occur in the direction of
the state attractors, in this case state cycles respectively with
period 5 and 2.

Development

The developmental simulation unfolds similarly as with the
more complex model. Each cell contains an identical copy
of the RBN, but the state of the RBN can vary between
cells. Instead of a given protein signaling division, a cell
will now divide if a prespecified bit in the state vector is set.
This bit is set in the 'egg cell' to ensure at least one division
event. Symmetry breaking occurs by deterministically per-
turbing the state (by flipping one bit) of one of the daughter
cells resulting from this first division. Intercellular commu-
nication is accomplished by calculating neighborhood state
vectors that serve as external inputs to the intracell RBNs,
perturbing their phase portrait. Details can be found in
(Dellaert and Beer 1994a); the final result is a developmen-
tal sequence that is qualitatively similar to the ones obtained
by the more complex model, but at a considerably reduced
computational cost.

Simplified Neural Developmental

To cope with the problems that arose when using the com-
plex model described above, we have implemented a much
simplified neural developmental model.

As in the earlier model, the final differentiation of a cell
determines whether it will send out an axon or not, and/or
whether it is a target for innervation. This is done simply by
associating a prespecified node of the RBN with these re-
spective properties. In addition, three bits in the RBN state
vector determine whether the cell will be a sensor, an actua-
tor or an interneuron, and one bit specifies whether any
innervation will be inhibitory or excitatory.

The development of the neural network is simple and
straightforward: each cell that has the 'axon bit' set will in-
nervate all target cells (with the 'target bit' set) within its
range. The constants specifying the connection strength and
the range at which cells innervate each other are evolved to-
gether with the genome, and are identical for all cells.

Thus, unlike before, the developmental process does not
need to specify elaborate pathways of CAM molecules on
which the axons can grow, but merely needs to make sure

that it places cells that need to be connected within each
other's range. In addition, it can adjust the architecture by
specifying for each cell individually the sign of the connec-
tion and the cell type. The range and weight factors can be
co-evolved with the placement of the cells to obtain the
desired behavior.

A Line Follower

Using this simpler model, we have not only evolved agents
that execute the earlier avoidance task quite well, but have
also succeeded in evolving agents that perform more diffi-
cult tasks, in this case following a line made up of circular
segments.

Figure 12: The outline of the line following agent as it executes
the task. The agent moves from left to right.

In this experiment, each agent in a genetic algorithm
population (Steady state GA with tournament selection,
population size 100, mutation rate 2.5%, crossover rate
100%, tournament size 7, run for 10000 evaluations) was
put into a simulated world and evaluated on how well it
could follow the curve sketched in figure 12, made up of
two semicircles. In the neural developmental phase, standard
static neurons were used instead of the dynamical neurons
of before.

Figure 13: The developmental sequence, from the two cell stage
onwards, of the line-following agent.

The evaluation function used was the integrated squared
error to an ideal position along the curve. This can be easily

calculated since the velocity of each agent is kept constant:
only the steering angle varies. The response of each sensor
cell in the agent is a Gaussian function of its closest distance
to the line. The output of the actuators is averaged for each
side, added together and multiplied by a constant factor to
become a steering output. In the following paragraph we
describe the structure of one such agent, the best of one
particular run of the GA, whose behavior in the simulated
world is shown in figure 12.

The developmental sequence of the evolved agent is
shown in figure 13. In this figure, the dark cells represent
sensors while the lighter ones are the actuators. As you can
see, development unfolds asymmetrically as not all cells di-
vide an equal number of times. Also, you can see that the
sensor cell type is being induced by the perimeter (as shown
before in figure 4). No interneuron type cells were present.

Figure 14: The innervation of actuators by sensors in detail.
Only the bottom half of the agent is shown.

Figure 15: The activation of each neuron/cell during the execu-
tion of the task. Time is on the x-axis of each cell, the bottom
and top of the cell represent an activation of 0 and 1

If we look at the detailed innervation of the cells, we get
the picture sketched in figure 14, where all the connections
turned out to be excitatory. This makes sense when you con-
sider how movement is implemented. By this innervation,
the agent steers in the direction where it can sense the line.
Note that this particular innervation depends on the range
factor: with a bigger innervation range more cells would be

innervated. With this picture in mind, it is easy to under-
stand figure 15, which shows the activation of each neu-
ron/cell during the execution of the task. You can see that
the actuators not innervated by any sensors remain inactive
throughout the whole task.

When evaluating the evolved line-followers on novel li-
nes of different curvatures, their control strategy turned out
to be unstable. They were able to follow the line for a while,
but they eventually overshot and lost track of the line. Given
that they have not been presented with different types of
lines during the time that they were evolved it is reasonable
that they experience these problems. We are investigating
whether we can evolve dynamically stable controllers by
exposing them to many different line-following tasks during
evolution.

5. Discussion

In this paper we have tried to incorporate a developmental
model in the artificial evolution of complete autonomous
agents, i.e. with a 'body' and a 'nervous system'. We pre-
sented two models that operated at different levels of ab-
straction from the biological phenomenon of development,
although we feel that both possess many of the properties
that are at the core of development, most notably the dy-
namic interplay between genome and cell state. In addition,
they are both able, albeit in quite different ways, to account
for the emergence of a nervous system on top of a developed
multicellular body arrangement.

The first and most complex model is more biologically
defensible in its details. It represents an initial attempt at ex-
tending our earlier work (Dellaert and Beer 1994a) to
include neural development. We were able to demonstrate
its expressiveness by showing that it can account for the de-
velopment of agents complete with a neural control
architecture, capable of executing a simple avoidance task
in simulation. We were also able to incrementally evolve
better agents starting from that hand-designed agent.

The second and simplified model was adopted in the
hope that we could use it to evolve agents from scratch. It
used a model for the genome and cell state that was some-
what more removed from the biological example, random
Boolean networks. These have the advantage of being com-
putationally cheaper and they lend themselves to analysis
using tools from dynamical systems theory. In addition, the
second model used a considerably simplified model for neu-
ral development. We have used it successfully to evolve
agents from scratch that can execute simple tasks. The line-
following agent was presented as an example.

We believe that both models can be useful in future
research. Both can conceivably be used in the quest to un-
derstand more about the logic of development. In the case of
the RBN model (and possibly also for the genome-cyto-
plasm model), it is possible to use analysis tools like phase
portraits to visualize what is going on during the simulated
developmental process. We might one day be able to use the
abstractions that are explored here to visualize the dynami-
cal trajectories being traversed by cells in actual biological
development. In addition, we can try and understand more
by trying to synthesize observable aspects of development

using these models. Some of this has already been explored
in (Dellaert 1995). We have, among other things, examined
the use of phase portraits to visualize the dynamics of inter-
connected RBNs (as used in our model for intercellular
communication), and we have tried to synthesize pattern
formation mechanisms like those found underlying the
development of compound insect eyes.

In the domain of autonomous agents, we would like to
see whether more complex tasks are within reach of the
model. A first simple extension would be to evolve line fol-
lowers with a stable controller for any type of line, given
some smoothness constraint. We have also experimented
with introducing learning into the process. If an agent is ca-
pable of learning during its lifetime, we might benefit from
the Baldwin effect to speed up evolution (Whitley, Gordon
and Mathias 1994). Finally, it would be of interest to inves-
tigate the behavior of the model under selection of an im-
plicit fitness function, i.e. where agents are placed in a world
in which their only task is to outsmart their peers. Here, we
expect the complexity of the simulated world to be reflected
in the complexity of the agents, and perhaps this brings out
the potential of a developmental model better than using ex-
plicitly designed fitness functions.

Development is an important, powerful and integral ele-
ment of biological evolution. It is our hope that explorations
such as those we have presented here will contribute to its
understanding, both in its own right and as an element of
autonomous agent research.

Acknowledgments

Special thanks to James Thomas, Katrien Hemelsoet, and
Shumeet Baluja for their helpful comments. This work was
supported in part by grant N00014-90-J-1545 from the
Office of Naval Research.

References

Beer, R.D. and J.C. Gallagher. 1992. Evolving dynamical
neural networks for adaptive behavior. Adaptive Behavior
1:91-122.

Belew, R.K. 1993. Interposing an Ontogenic Model between
Genetic Algorithms and Neural Networks. In Advances in
Neural Information Processing Systems (NIPS) 5, edited
by Hanson, S.J., J.D. Cowan, andC.L. Giles. Morgan
Kauffman: San Mateo.

Cangelosi, A., D. Parisi, and S. Nolfi. 1993. Cell Division
and Migration in a 'Genotype' for Neural Networks,
Technical PCIA-93, Institute of Psychology, C.N.R.-
Rome.

de Boer, M.J.M., F.D. Fracchia, and P. Prusinkiewicz. 1992.
Analysis and Simulation of the Development of Cellular
Layers. In Artificial Life II, edited by Langton, C.G., et al.
Addison-Wesley: Reading, MA.

De Garis, H. 1994. CAM-Brain: the genetic programming of
an artificial brain which grows/evolves at electronic
speeds in a cellular automata machine. In Proceedings of
the First IEEE Conference on Evolutionary Computation,
IEEE: New York.

Dellaert, F. 1995. Toward a Biologically Defensible Model
of Development, Masters Thesis, Case Western Reserve
University.

Dellaert, F. and R.D. Beer. 1994a. Toward an Evolvable
Model of Development for Autonomous Agent Synthesis.
In Artificial Life IV, Proceedings of the Fourth
International Workshop on the Synthesis and Simulation
of Living Systems, edited by Brooks, R. and P. Maes. MIT
Press: Cambridge, MA.

Dellaert, F. and R.D. Beer. 1994b. Co-evolving Body and
Brain in Autonomous Agents using a Developmental
Model, Technical Report CES-94-16, Dept. of Computer
Engineering and Science, Case Western Reserve
University.

Fleischer, K. and A.H. Barr. 1994. A Simulation Testbed for
the Study of Multicellular Development: The Multiple
Mechanisms of Morphogenesis. In Artificial Life III,
edited by Langton, C.G. Addison-Wesley: Reading, MA.

Gruau, F. and D. Whitley. 1993. The cellular development
of neural networks: the interaction of learning and
evolution, Research 93-04, Laboratoire de l'Informatique
du Parallélisme, Ecole Normale Supérieure de Lyon.

Jackson, E.R., D. Johnson, and W.G. Nash. 1986. Gene
Networks in Development. J. theor. Biol. 379-396.

Jakobi, N. 1995. Harnessing Morphogenesis, Technical
Report School of Cognitive and Computing Sciences,
University of Sussex.

Kauffman, S. 1969. Metabolic Stability and Epigenesis in
Randomly Constructed Genetic Nets. J. theor. Biol. 437-
467.

Kauffman, S.A. 1993. The Origins of Order. Oxford
University Press: New York.

Kitano, H. 1994. Evolution of Metabolism for
Morphogenesis. In Artificial Life IV, Proceedings of the
Fourth International Workshop on the Synthesis and
Simulation of Living Systems, edited by Brooks, R. and P.
Maes. MIT Press: Cambridge, MA.

Kodjabachian, J. and J.-A. Meyer. 1994. Development,
Learning and Evolution in Animats. In Proceedings of
PerAc '94: From Perception to Action, Lausanne, edited
by Gaussier, P.;.N., J.-D. IEEE Comput. Soc. Press: Los
Alamitos, CA.

Lyndenmayer, A. and P. Prusinkiewicz. 1989.
Developmental Models of Multicellular Organisms: A
Computer Graphics Perspective. In Artificial Life, edited
by Langton, C.G. Addison-Wesley: Reading, MA.

Mjolsness, E., D.H. Sharp, and J. Reinitz. 1991. A
Connectionist Model of Development. J. theor. Biol. 429-
453.

Nolfi, S., O. Miglino, and D. Parisi. 1994. Phenotypic
Plasticity in Evolving Neural Networks. In First
Conference From Perception to Action, edited by
Lausanne (pp.

Sims, K. 1994. Evolving 3D Morphology and Behavior by
Competition. In Artificial Life IV, Proceedings of the
Fourth International Workshop on the Synthesis and

Simulation of Living Systems, edited by Brooks, R. and P.
Maes. MIT Press: Cambridge, MA.

Whitley, D., V.S. Gordon, and K. Mathias. 1994.
Lamarckian evolution, the Baldwin effect and function
optimization. In Parallel Problem Solving from Nature -
PPSN III, edited by Davidor, Y., H.-P. Schwefel, andR.
Manner. Springer-Verlag: Berlin, Germany.

Wilson, S.W. 1989. The Genetic Algorithm and Simulated
Evolution. In Artificial Life, edited by Langton, C.G.
Addison-Wesley: Reading, MA.

Wuensche, A. 1993. Memory, Far from Equilibrium. In
Proceedings, Self-Organization and Life: From Simple
Rules to Global Complexity, European Conference on
Artificial Life (ECAL-93), edited by Brussels, Belgium
(pp. 1150-1159).

Wuensche, A. 1994. The Ghost in the Machine: Basins of
Attraction of Random Boolean Networks. In Artificial
Life III, edited by Langton, C.G. Addison-Wesley:
Reading, MA.

