
Robot Baby 2001

Paul R. Cohen1, Tim Oates2, Niall Adams3, Carole R. Beal4

1 Department of Computer Science. University of Massachusetts, Amherst

cohen@cs.umass.edu
2 Department of Computer Science. University of Maryland, Baltimore County

oates@cs.umbc.edu

3 Department of Mathematics. Imperial College, London

n.adams@ic.ac.uk
4 Department of Psychology, University of Massachusetts, Amherst

cbeal@psych.umass.edu

Abstract. In this paper we claim that meaningful representations can

be learned by programs, although today they are almost always designed

by skilled engineers. We discuss several kinds of meaning that repre-
sentations might have, and focus on a functional notion of meaning as

appropriate for programs to learn. Speci�cally, a representation is mean-

ingful if it incorporates an indicator of external conditions and if the
indicator relation informs action. We survey methods for inducing kinds

of representations we call structural abstractions. Prototypes of sensory

time series are one kind of structural abstraction, and though they are
not denoting or compositional, they do support planning. Deictic rep-

resentations of objects and prototype representations of words enable a

program to learn the denotational meanings of words. Finally, we discuss
two algorithms designed to �nd the macroscopic structure of episodes in

a domain-independent way.

1 Introduction

In arti�cial intelligence and other cognitive sciences it is taken for granted that

mental states are representational. Researchers di�er on whether representations

must be symbolic, but most agree that mental states have content | they are

about something and they mean something | irrespective of their form. Re-

searchers di�er too on whether the meanings of mental states have any causal

relationship to how and what we think, but most agree that these meanings

are (mostly) known to us as we think. Of formal representations in computer

programs, however, we would say something di�erent: Generally, the meanings

of representations have no inuence on the operations performed on them (e.g.,

a program concludes q because it knows p ! q and p, irrespective of what p

and q are about); yet the representations have meanings, known to us, the de-

signers and end-users of the programs, and the representations are provided to

the programs because of what they mean (e.g., if it was not relevant that the

patient has a fever, then the proposition febrile(patient) would not be pro-

vided to the program | programs are designed to operate in domains where

meaning matters.). Thus, irrespective of whether the contents of mental states

have any causal inuence on what and how we think, these contents clearly are

intended (by us) to inuence what and how our programs think. The meanings

of representations are not irrelevant but we have to provide them.

If programs could learn the meanings of representations it would save us

a great deal of e�ort. Most of the intellectual work in AI is done not by pro-

grams but by their creators, and virtually all the work involved in specifying

the meanings of representations is done by people, not programs (but see, e.g.,

[27, 22, 14]). This paper discusses kinds of meaning that programs might learn

and gives examples of such programs.

How do people and computers come to have contentful, i.e., meaningful,men-

tal states? As Dennett [10] points out, there are only three serious answers to the

question: Contents are learned, told, or innate. Lines cannot be drawn sharply

between these, in either human or arti�cial intelligence. Culture, including our

educational systems, blurs the distinction between learning and being told; and

it is impossible methodologically to be sure that the meanings of mental states

are innate, especially as some learning occurs in utero [9] and many studies of

infant knowledge happen weeks or months after birth.

One might think the distinctions between learning, being told, and innate

knowledge are clearer in arti�cial systems, but the role of engineers is rarely ac-

knowledged [8, 30, 12]. Most AI systems manipulate representations that mean

what engineers intend them to mean; the meanings of representations are exoge-

nous to the systems. It is less clear where the meanings of learned representations

reside, in the minds of engineers or the \minds of the machines" that run the

learning algorithms. We would not say that a linear regression algorithm knows

the meanings of data or of induced regression lines. Meanings are assigned by

data analysts or their client domain experts. Moreover, these people select data

for the algorithms with some prior idea of what they mean. Most work in ma-

chine learning, KDD, and AI and statistics are essentially data analysis, with

humans, not machines, assigning meanings to regularities found in the data.

We have nothing against data analysis, indeed we think that learning the

meanings of representations is data analysis, in particular, analysis of sensory

and perceptual time series. Our goal, though, is to have the machine do all of it:

select data, process it, and interpret the results; then iterate to resolve ambigui-

ties, test new hypotheses, re�ne estimates, and so on 5. The relationship between

domain experts, statistical consultants, and statistical algorithms is essentially

identical to the relationship between domain experts, AI researchers, and their

programs: In both cases the intermediary translates meaningful domain concepts

into representations that programs manipulate, and translates the results back

to the domain experts. We want to do away with the domain expert and the en-

gineers/statistical consultants, and have programs learn representions and their

meanings, autonomously.

5 An early e�ort in our laboratory to automate applied statistics was Rob St. Amant's
dissertation [26, 25]; while it succeeded in many respects, it had only weak notions

of the meaning of representations, so its automated data analysis had a formal,

syntactic feel (e.g., exploring high leverage points in regression analysis).

One impediment to learning the meanings of representations is the fuzziness

of commonsense notions of meaning. Suppose a regression algorithm induces a

strong relationship between two random variables x and y and represents it in

the conventional way: y = 1:31x � :03, R2 = :86, F = 108:3, p < :0001. One

meaning of this representation is provided by classical inferential statistics: x and

y appear linearly related and the relationship between these random variables

is very unlikely to be accidental. Note that this meaning is not accessible in any

sense to the regression algorithm, though it could be known, as it is conventional

and unambiguous. 6 Now, the statistician might know that x is daily temperature

and y is ice-cream sales, and so he or his client domain expert might assign

additional meaning to the representation, above. For instance, the statistician

might warn the domain expert that the assumptions of linear regression are not

well-satis�ed by the data. Ignoring these and other cautions, the domain expert

might even interpret the representation in causal terms (i.e., hot weather causes

people to buy ice-cream). Should he submit the result to an academic journal,

the reviews would probably criticize this semantic liberty and would in any case

declare the result as meaningless in the sense of being utterly unimportant and

unsurprising.

This little example illustrates at least �ve kinds of meaning for the represen-

tation y = 1:31x � :03, R2 = :86, F = 108:3, p < :0001. There is the formal

meaning, including the mathematical fact that 86 % of the variance in the ran-

dom variable y is explained by x. Note that this meaning has nothing to do with

the denotations of y and x, and it might be utter nonsense in the domain of

weather and ice-cream, but, of course, the formal meaning of the representation

is not about weather and ice cream, it is about random variables. Another kind

of meaning has to do with the model that makes y and x denote ice cream and

weather. When the statistician warns that the residuals of the regression have

structure, he is saying that a linear model might not summarize the relationship

between x and y as well as another kind of model. He makes no reference to the

denotations of x and y, but he might, as when he warns that ice cream sales are

not normally distributed. In both cases, the statistician is questioning whether

the domain (ice cream sales and weather) is faithfully represented by the model

(a linear function between random variables). He is questioning whether the \es-

sential features" of the domain are represented, and whether they are somehow

distorted by the regression procedure.

The domain expert will introduce a third kind of meaning: he will interpret

y = 1:31x� :03, R2 = :86, F = 108:3, p < :0001 as a statement about ice cream

sales. This is not to say that every aspect of the representation has an interpre-

tation in the domain|the expert might not assign a meaning to the coeÆcient

�:03|only that, to the expert, the representation is not a formal object but

a statement about his domain. We could call this kind of meaning the domain

semantics, or the functional semantics, to emphasize that the interpretation of a

6 Indeed, there is a sense in which stepwise regression algorithms know what F

statistics mean, as the values of these statistics directly a�ect the behavior of the

algorithms.

representation has some e�ect on what the domain expert does or thinks about.

Having found a relationship between ice cream sales and the weather, the

expert will feel elated, ambitious, or greedy, and this is a fourth, a�ective kind of

meaning. Let us suppose, however, that the relationship is not real, it is entirely

spurious (an artifact of a poor sampling procedure, say) and is contradicted by

solid results in the literature. In this case the representation is meaningless in

the sense that it does not inform anyone about how the world really works.

To which of these notions of meaning should a program that learns meanings

be held responsible? The semantics of classical statistics and regression analysis

in particular are sophisticated, and many humans perform adequate analyses

without really understanding either. More to the point, what good is an agent

that learns formal semantics in lieu of domain or functional semantics? The rela-

tionship between x and y can be learned (even without a statistician specifying

the form of the relationship), but so long as it is a formal relationship between

random variables, and the denotations of x and y are unknown to the learner, a

more knowledgeable agent will be required to translate the formal relationship

into a domain or functional one. The denotations of x and y might be learned,

though generally one needs some knowledge to bootstrap the process; for ex-

ample, when we say, \x denotes daily temperature," we call up considerable

amounts of common-sense knowledge to assign this statement meaning. 7 As to

a�ective meanings, we believe arti�cial agents will bene�t from them, but we do

not know how to provide them.

This leaves two notions of meaning, one based in the functional roles of rep-

resentations, the other related to the informativeness of representations. The

philosopher Fred Dretske wrestled these notions of meaning into a theory of

how meaning can have causal e�ects on behavior [11, 12]. Dretske's criteria for

a state being a meaningful representational state are: the state must indicate

some condition, have the function of indicating that condition, and have this

function assigned as the result of a learning process. The latter condition is con-

tentious [10, 8], but it will not concern us here as this paper is about learning

meaningful representations. The other conditions say that a reliable indicator re-

lationship must exist and be exploited by an agent for some purpose. Thus, the

relationship between mean daily temperature (the indicator) and ice-cream sales

(the indicated) is apt to be meaningful to ice-cream companies, just as the rela-

tionship between sonar readings and imminent collisions is meaningful to mobile

robots, because in each case an agent can do something with the relationship.

Learning meaningful representations, then, is tantamount to learning reliable re-

lationships between denoting tokens (e.g., random variables) and learning what

to do when the tokens take on particular values.

The minimumrequired of a representation by Dretske's theory is an indicator

relationship s I(S) between the external world state S and an internal state

7 Projects such as Cyc emphasize the denotational meanings of representations [17,
16]. Terms in Cyc are associated with axioms that say what the terms mean. It

took a collosal e�ort to get enough terms and axioms into Cyc to support the easy

acquisition of new terms and axioms.

s, and a function that exploits the indicator relationship through some kind of

action a, presumably changing the world state: f(s; a)! S. The problems are to

learn representations s � S and the functions f (the relationship � is discussed

below, but here means \abstraction").

These are familiar problems to researchers in the reinforcement learning com-

munity, and we think reinforcement learning is a way to learn meaningful rep-

resentations (with the reservations we discuss in [30]). We want to up the ante,

however, in two ways. First, the world is a dynamic place and we think it is

necessary and advantageous for s to represent how the world changes. Indeed,

most of our work is concerned with learning representations of dynamics.

Second, a policy of the form f(s; a) ! s manifests an intimate relationship

between representations s and the actions a conditioned on them: s contains

the \right" information to condition a. The right information is almost always

an abstraction of raw state information; indeed, two kinds of abstraction are

immediately apparent. Not all state information is causally relevant to action,

so one kind of abstraction involves selecting information in S to include in s (e.g.,

subsets or weighted combinations or projections of the information in S). The

other kind of abstraction involves the structure of states. Consider the sequence

aabacaabacaabacaabadaabac. Its structure can be described many ways,

perhaps most simply by saying, \the sequence aabax repeats �ve times, and

x =c in all but the fourth replication, when x =d." This might be the abstraction

an agent needs to act; for example, it might condition action on the distinction

between aabac and aabad, in which case the \right" representation of the

sequence above is something like this p1s1p1s1p1s1p1s2p1s1, where p and s denote

structural features of the original sequence, such as \pre�x" and \suÆx'. We call

representations that include such structural features structural abstractions.

To recap, representations s are meaningful if they are related to action by

a function f(s; a) ! S, but f can be stated more or less simply depending on

the abstraction s � S. One kind of abstraction involves selecting from the infor-

mation in S, the other is structural abstraction. The remainder of this paper is

concerned with learning structural abstractions.8 Note that, in Dretske's terms,

structural abstractions can be indicator functions but not all indicator functions

are structural abstractions. Because the world is dynamic, we are particularly

concerned with learning structural abstractions of time series.

2 Approach

In the spirit of dividing problems to conquer them we can view the problem of

learning meaningful representations as having two parts:

1. Learn representations s � S

8 Readers familiar with Arti�cial Intelligence will recognize the problem of learning
structural abstractions as what we call \getting the representation right," a creative

process that we reserve unto ourselves and to which, if we are honest, we must

attribute most of the performance of our programs.

2. Learn functions f(s; a)! S

This strategy is almost certainly wrong because, as we said, s is supposed to

inform actions a, so should be learned while trying to act. Researchers do not

always follow the best strategy (we don't, anyway) and the divide and conquer

strategy we did follow has produced an unexpected dividend: We now think it

is possible that some kinds of structural abstraction are generally useful, that is,

they inform large classes of actions. (Had we developed algorithms to learn s to

inform particular actions a we might have missed this possibility.) Also, some

kinds of actions, particularly those involving deictic acts like pointing or saying

the name of a referent, provide few constraints on representations.

Our approach, then, is to learn structural abstractions �rst and functions

relating representations and actions to future representations, second.

3 Structural Abstractions of Time Series and Sequences

As a robot wanders around its environment, it generates a sequence of values of

state variables. At each instant t we get a vector of values xt (our robot samples

its sensors at 10Hz, so we get ten such vectors each second). Suppose we have

a long sequence of such vectors X = x0;x1; : : :. Within X are subsequences xij
that, when subjected to processes of structural abstraction, give rise to episode

structures that are meaningful in the sense of informing action 9. The trick is

to �nd the subsequences xij and design the abstraction processes that produce

episode structures. We have developed numerous methods of this sort and survey

them briey, here.

3.1 Structural Abstraction for Continuous Multivariate Series

State variables such as translational velocity and sonar readings take continuous

values, in contrast to categorical variables such as \object present in the visual

�eld." Figure 1 shows four seconds of data from a Pioneer 1 robot as it moves

past an object. Prior to moving, the robot establishes a coordinate frame with

an x axis perpendicular to its heading and a y axis parallel to its heading. As

it begins to move, the robot measures its location in this coordinate frame.

Note that the robot-x line is almost constant. This means that the robot did

not change its heading as it moved. In contrast, the robot-y line increases,

indicating that the robot does increase its distance along a line parallel to its

original heading. Note especially the vis-a-x and vis-a-y lines, which represent

the horizontal and vertical locations, respectively, of the centroid of a patch of

light on the robots \retina," a CCD camera. vis-a-x decreases, meaning that

the object drifts to the left on the retina, while vis-a-y increases, meaning the

object moves toward the top of the retina. Simultaneously, both series jump to

9 Ideally, structural abstraction should be an on-line process that inuences action

continuously. In practice, most of our algorithms gather data in batches, form ab-

stractions, and use these to inform action in later episodes.

constant values. These values are returned by the vision system when nothing is

in the �eld of view.

VIS-A-Y

VIS-A-X

ROBOT -X

ROBOT -Y

Fig. 1. As the robot moves, an object approaches the periphery of its �eld of view then
passes out of sight.

Every time series that corresponds to moving past an object has qualitatively

the same structure as the one in Figure 1. It follows that if we had a statistical

technique to group the robots experiences by the characteristic patterns in mul-

tivariate time series (where the variables represent sensor readings), then this

technique would in e�ect learn a taxonomy of the robots experiences. Clustering

by dynamics [28] is such a technique:

1. A long multivariate time series is divided into segments, each of which rep-

resents an episode such as moving toward an object, avoiding an object,

crashing into an object, and so on. (Humans divide the series into episodes

by hand; more on this in section 5.) The episodes are not labeled in any way.

2. A dynamic time warping algorithm compares every pair of episodes and re-

turns a number that represents the degree of similarity between the time

series in the pair. Dynamic time warping is a technique for \morphing" one

multivariate time series into another by stretching and compressing the hor-

izontal (temporal) axis of one series relative to the other [13]. The algorithm

returns a degree of mismatch (conversely, similarity) between the series after

the best �t between them has been found.

3. Given similarity numbers for every pair of episodes, it is straightforward to

cluster episodes by their similarity.

4. Another algorithm �nds the \central member" of each cluster, which we call

the cluster prototype following Rosch [24].

Clustering by dynamics produces structural abstractions (prototypes) of time

series, the question is whether these abstractions can be meaningful in the sense

of informing action. In his PhD dissertation, Matt Schmill shows how to use

prototypes as planning operators. The �rst step is to learn rules of the form, \in

state i, action a leads to state j with probability p." These rules are learned by a

classical decision-tree induction algorithm, where features of states are decision

variables. Given such rules, the robot can plan by means-ends analysis. It plans

not to achieve world states speci�ed by exogenous engineers, as in conventional

generative planning, but to achieve world states which are preconditions for its

actions. Schmill calls this \planning to act," and it has the e�ect of gradually

increasing the size of the corpus of prototypes and things the robot can do.

The neat thing about this approach is that every action produces new data,

i.e., revises the set of prototypes. It follows that the robot should plan more

frequently and more reliably as it gains more experiences, and in recent exper-

iments, Schmill demonstrates this. Thus, Schmill's work shows that clustering

by dynamics yields structural abstractions of time series that are meaningful in

the sense of informing action.

There is also a strong possibility that prototypes of this kind are meaningful

in the sense of informing communicative actions. Oates, Schmill and Cohen [29]

report a very high degree of concordance between the clusters of episodes gener-

ated by the dynamic time warping method, above, and clusters generated by a

human judge. The prototypes produced by dynamic time warping are not weird

and unfamiliar to people, but seem to correspond to how humans themselves

categorize episodes. Were this not the case, communication would be hard, be-

cause the robot would have an ontology of episodes unfamiliar to people. Oates,

in particular, has been concerned with communication and language, and has

developed several methods for learning structural abstractions of time series that

correspond to words in speech and denotations of words in time series of other

sensors, as we shall see, shortly.

3.2 Structural Abstraction for Categorical Sequences

Ramoni, Sebastiani and we have developed Bayesian algorithms for clustering

activities by their dynamics [18]. In this work, dynamics are captured in �rst-

order markov chains, and so the method is best-suited to clustering sequences

of discrete symbols. The Bayesian Clustering by Dynamics (bcd) algorithm is

easily sketched: Given time series of tokens that represent states, construct a

transition probability table (i.e., a markov chain model) for each series, then

measure the similarity between each pair of tables using the Kullback-Liebler

(KL) distance, and �nally group similar tables into clusters. The bcd algorithm

is agglomerative, which means that initially, there is one cluster for each markov

chain, then markov chains are merged, iteratively, until a stopping criterion is

met. Merging two markov chains yields another markov chain. The stopping

criterion in bcd is that the posterior probability of the clustering is maximum.

Said in another way, bcd solves a Bayesian model selection problem where the

model it seeks is the most probable partition of the original markov chains given

the data and the priors (a partition is a division of a set into mutually exclusive

and exhaustive subsets). As the space of partitions is exponential, bcd uses

the KL distance as a heuristic to propose which markov chains to merge, but

only merges them if doing so improves the marginal likelihood of the resulting

partition. We have developed versions of bcd for series of a single state variable

and for series of vectors of state variables [18, 23].

The clusters found by bcd have never been used by the robot to inform

its actions, as in Schmill's experiments, so we cannot say they are meaningful

to the robot. It is worth mentioning that they have high concordance with the

clustering produced by dynamic time warping and with human clustering, when

applied to the series in the Oates et al. experiment, cited above.

3.3 A Critique of Sensory Prototypes

Clustering by dynamics, whether by dynamic time warping or Bayesian model

selection, takes a set of time series or sequences and returns a partition of the

set. Prototypes, or \average members,"may then be extracted from the resulting

subsets. While the general idea of clustering by dynamics is attractive (it does

produce meaningful structural abstractions), the methods described above have

two limitations. First, they require someone (or some algorithm) to divide a

time series into shorter series that contain instances of the structures we want

to �nd. For example, if we want to �nd classes of interactions with objects, we

must provide a set of series each of which contains one interaction with objects.

Neither technique can accept time series of numerous undi�erentiated activities

(e.g., produced by a robot roaming the lab for an hour).

A more serious problem concerns the kinds of structural abstraction pro-

duced by the methods. The dynamic time warping method produces \average

episodes," of which Figure 1 is an example, and bcd produces \average markov

chains," which are just probability transition matrices. Suppose we examine an

instance of each representation that corresponds to the robot rolling past a cup.

Can we �nd anything in either representation that denotes the cup? We can-

not. Consequently, these representations cannot inform actions that depend on

individuating the cup; for example, the robot could not respond correctly to the

directive, \Turn toward the cup." The abstractions produced by the algorithms

contain suÆcient structure to cluster the episodes, but still lack much of the

structure of the episodes. This is particularly true of the markov chain models,

in which the series is chopped up into one-step transitions and all global infor-

mation about the \shape" of the series is lost, but even the representation in

Fig. 1 does not individuate the objects in an episode.

If one is comfortable with a crude distinction between sensations and con-

cepts, then the structural abstractions produced by the methods described above

are entirely sensory [21]. They are abstractions of the dynamics of sensor values|

of how an episode \feels"|they do not represent concepts such as objects, ac-

tors, actions, spatial relationships, and the like. Fig. 1 represents the sensations

of moving past an object, so it is meaningful if the robot conditions actions on its

sensations (as it does in Matt Schmill's work) but it is not a representation of an

object, the act of moving, the distance to the object, or any other individuated

entity.

Nor for that matter do these abstractions make explicit other structural fea-

tures of episodes, such as the boundaries between sub-episodes or cycles among

states.

Oates has developed methods for learning structural abstractions of time

series that individuate words in speech and objects in a scene. Oates' methods

are described in the following section. We also have implemented algorithms for

�nding the boundaries in episodes and the hierarchical structure of episodes;

these are described in section 5.

4 Learning Word Meanings

Learning the meanings of words in speech clearly requires individuation of el-

ements in episodes. Suppose we wanted to talk to the robot about cups: We

would say, \there's a cup" when we see it looking at a cup; or, \a cup is on your

left," when a cup is outside its �eld of view; or, \point to the cup," when there

are several objects in view, and so on. To learn the meaning of the word \cup"

the robot must �rst individuate the word in the speech signal, then individuate

the object \cup" in other sensory series, associate the representations; and per-

haps estimate some properties of the object corresponding to the cup, such as

its color, or the fact that it participates as a target in a \turn toward" activity.

In his PhD dissertation, Oates discusses an algorithm called peruse that does

all these things [20].

To individuate objects in time series Oates relies on deictic markers| func-

tions that map from raw sensory data to representations of objects [4, 3, 1].

A simple deictic marker might construct a representation whenever the area of

colored region of the visual �eld exceeds a threshold. The representation might

include attributes such as the color, shape, and area, of the object, as well as

the intervals during which it is in view, and so on.

To individuate words in speech, Oates requires a corpus of speech in which

words occur multiple times (e.g., multiple sentences contain the word \cup").

Spoken words produce similar (but certainly not identical) patterns in the speech

signal, as one can see in Figure 2. (In fact, Oates' representation of the speech

signal is multivariate but the univariate series in Fig. 2 will serve to describe

his approach.) If one knew that a segment in Figure 2 corresponded to a word,

then one could �nd other segments like it, and construct a prototype or average

representation of these. For instance, if one knew that the segment labeled A

in Figure 2 corresponds to a word, then one could search for similar segments

in the other sentences, �nd A', and construct a prototype from them. These

problems are by no means trivial, as the boundaries of words are not helpfully

marked in speech. Oates treats the boundaries as hidden variables and invokes

the Expectation Maximization algorithm to learn a model of each word that

optimizes the placement of the boundaries. However, it is still necessary to be-

gin with a segment that probably corresponds to a word. To solve this problem,

Oates relies on versions of the boundary entropy heuristic and frequency heuris-

tics, discussed below. In brief, the entropy of the distribution of the \next tick"

spikes at episode (e.g., word) boundaries; and the patterns in windows that con-

tain boundaries tend to be less frequent than patterns in windows that do not.

These heuristics, combined with some methods for growing hypothesized word

segments, suÆce to bootstrap the process of individuating words in speech.

Fig. 2. Corresponding words in four sentences. Word boundaries are shown as boxes

around segments of the speech signal. Segments that correspond to the same word are

linked by connecting lines.

Given prototypical representations of words in speech, and representations

of objects and relations, Oates' algorithm learns associatively the denotations

of the words. Denotation is a common notion of meaning: The meaning of a

symbol is what it points to, refers to, selects from a set, etc. However, naive

implementations of denotation run into numerous diÆculties, especially when

one tries to learn denotations. One diÆculty is that the denotations of many

(perhaps most) words cannot be speci�ed as boolean combinations of properties

(this is sometimes called the problem of necessary and suÆcient conditions).

Consider the word \cup". With repeated exposure, one might learn that the

word denotes prismatic objects less than �ve inches tall. This is wrong because

it is a bad description of cups, and it is more seriously wrong because no such

description of cups can reliably divide the world into cups and non-cups (see,

e.g., [15, 5]).

Another diÆculty with naive notions of denotation is referential ambiguity.

Does the word \cup" refer to an object, the shape of the object, its color, the

actions one performs on it, the spatial relationship between it and another object,

or some other feature of the episode in which the word is uttered? How can an

algorithm learn the denotation of a word when so many denotations are logically

possible?

Let us illustrate Oates' approach to these problems with the word \square,"

which has a relatively easy denotation. Suppose one's representation of an object

includes its apparent height and width, and the ratio of these. An object will

appear square if the ratio is near 1.0. Said di�erently, the word \square" is more

likely to be uttered when the ratio is around 1.0 than otherwise. Let � be the

group of sensors that measures height, width and their ratio, and let x be the

value of the ratio. Let U be an utterance and W be a word in the utterance.

Oates de�nes the denotation of W as follows:

denote(W;�; x) = Pr(contains(U;W)jabout(U; �); x) (1)

The denotation of the word \square" is the probability that it is uttered given

that the utterance is about the ratio of height to width and the value of the ratio.

More plainly, when we say \square" we are talking about the ratio of height to

width and we are more likely to use the word when the value of the ratio is

close to 1.0. This formulation of denotation e�ectively dismisses the problem

of necessary and suÆcient conditions, and it brings the problem of referential

ambiguity into sharp focus, for when an algorithm tries to learn denotations it

does not have access to the quantities on the right hand side of Eq. 1, it has

access only to the words it hears:

hear(W;�; x) = Pr(contains(U;W)jx) (2)

The problem (for which Oates provides an algorithm) is to get denote(W;�; x)

from hear(W;�; x).

At this juncture, however, we have said enough to make the case that word

meanings can be learned from time series of sensor and speech data. We claim

that Oates' peruse algorithm constructs representations and learns their mean-

ings by itself. Although the deictic representations of objects are not learned,

the representations of words are learned and so are the associations between

features of the deictic representations and words. peruse learns \above" and

learns to associate the word with a spatial relationship. At no point does an

engineer implant representations in the system and provide them with interpre-

tations. Although peruse is a suite of statistical methods, it is about as far

from the data analysis paradigm with which we began this paper as one can

imagine. In that example, an analyst and his client domain expert select and

provide data to a linear regression algorithm because it means something to

them, and the algorithm computes a regression model that (presumably) means

something to them. Neither data nor model mean anything to the algorithm.

In contrast, peruse selects and processes speech data in such a way that the

resulting prototypes are likely to be individuated entities (more on this, below),

and it assigns meaning to these entities by �nding their denotations as described

earlier. Structural abstraction of representations and assignment of meaning are

all done by peruse.

The algorithm clearly learns meaningful representations, but are they mean-

ingful in the sense of informing action? As it happens, peruse builds word

representations suÆcient for a robot to respond to spoken commands and to

translate words between English, German and Mandarin Chinese. The denota-

tional meanings of the representations are therefore suÆcient to inform some

communicative acts.

5 Elucidating Episode Structure

Earlier we described our problem as learning structural abstractions of state

information, particularly abstractions of the dynamics of state variables, which

inform action. Section 3 introduced clustering by dynamics and sensory abstrac-

tions which did not individuate objects or the structure of a robot's activities.

The previous section showed how to individuate words and objects and learn

denotations. This section is concerned with the structure of activities.

Time series data are sampled at some frequency (10 Hz for our robots) but

the robot changes what it is doing more slowly. Of course, one can describe what

a robot is doing at any time scale (up to 10 Hz), but some descriptions are better

than others in ways we will describe shortly. First, an example. Figure 3 shows

three variables from a multivariate time series, each running for 1500 ticks, or

150 seconds. These series together tell a story: the robot approaches an object

and starts to orbit it; at two points (around tick 500 and again around tick 800)

the object disappears from view, and the robot's movement pattern changes in

response. At this relatively macroscopic scale, then, the robot changes its activity

half a dozen times, although, as one can see, its sensor values change with much

higher frequency.

500 1000 1500 500 1000 1500500 1000 1500

Fig. 3. Time series of translational velocity, rotational velocity, and area of a region in
the visual �eld.

By episodic structure we mean relatively macroscopic patterns in time series

that are meaningful in the sense of informing action. If Oates showed how to

individuate things we might denote with nouns, prepositions, and adjectives,

episodic structure individuates things we might denote with verbs.

As noted earlier, the right way to proceed might be to couple the problem of

learning episodic structure with the problem of learning how to act, but we have

approached the problems as if they were independent. This means we need a way

to assess whether a segment of a time series is apt to be meaningful|capable of

informing action|which is independent of the actions an agent might perform.

Said di�erently, we are looking for a particular kind of marker in time series,

one that says, \If you divide the series at these markers, then there is a good

chance that the segments between the markers will be meaningful in the sense

of informing action."

We have identi�ed four kinds of markers of episode structures.

Coincidences Random coincidences are rare, so coincidences often mark the

boundaries of episode structures. Figure 4 shows the same time series as in Fig-

ure 3, though the series have been smoothed and shifted vertically away from

each other on the vertical axis. Vertical lines have been added at some of the

points where two or more of the series change slope sharply. Now, if the series

were unrelated, then such an inection in one would be very unlikely to coincide

with an inection in another, for inections are rare. If rare events in two or

more series coincide, then the series are probably not unrelated. Moreover, the

points of coincidence are good markers of episode structures, as they are points

at which something causes changes in the series to coincide.

Boundary entropy Every unique subsequence in a series is characterized by

the distribution of subsequences that follow it; for example, the subsequence

\en" in this sentence repeats �ve times and is followed by tokens c, ", t and s.

This distribution has an entropy value. In general, every subsequence of length

has a boundary entropy, which is the entropy of the distribution of subsequences

that follow it. If a subsequence S is an episode, then the boundary entropies

of subsequences of S will have an interesting pro�le: They will start relatively

high, then sometimes drop, then peak at the last element of S. The reasons for

this are, �rst, that the predictability of elements within an episode increases as

the episode extends over time; and, second, that the element that immediately

follows an episode is relatively uncertain. Said di�erently, within episodes, we

know roughly what will happen, but at episode boundaries we become uncertain.

Frequency Episode structures are meaningful if they inform action. Rare struc-

tures might be informative in the information theoretic sense, have few opportu-

nities to inform action because they arise infrequently. Consequently, all human

and animal learning places a premium on frequency (and, by the way, learn-

ing curves have their characteristic shape). In general, episode structures are

common structures. However, not all common structures are episode structures.

Very often, the most frequent structures in a domain are the smallest or short-

est, while the meaningful structures|those that inform action|are longer. A

useful example of this phenomenon comes from word morphology. The following

subsequences are the 100 most frequently-occurring patterns in the �rst 10,000

characters of Orwell's book 1984, but many are not morphemes, that is, mean-

area

rotational
velocity

translational
velocity

500 1000 1500

Fig. 4. The series from Figure 3, smoothed and shifted apart on the vertical axis.

Vertical lines show points at which two or more of the series experience a signi�cant
change in slope.

ingful units:

th in the re an en as ed to ou it er of at ing was or st on ar and es ic el al om

ad ac is wh le ow ld ly ere he wi ab im ver be for had ent itwas with ir win gh
po se id ch ot ton ap str his ro li all et fr andthe ould min il ay un ut ur ve

whic dow which si pl am ul res that were ethe wins not winston sh oo up ack

ter ough from ce ag pos bl by tel ain

Even so, frequency provides a good marker for the boundaries of episode

structures. Suppose that the subsequences wx and yz are both both very common

and subsequence xy is rare; where would you place a boundary in the sequence

wxyz?

Changes in Probability Distributions Sequences can be viewed as the out-

puts of �nite state machines, and many researchers are interested in inducing

the machines that generate sequences. Our interest is slightly di�erent; we want

to know the boundaries of sequences. Another way to say this is we want to

place boundaries in such a way that the probability distributions to the left and

right of the boundaries are di�erent.

5.1 Algorithms

This section presents two algorithms for learning episode structures. The �rst is

based on the coincidence heuristic, above; the second relies on boundary entropy

and frequency. These algorithms are described in detail in [6, 7], respectively, and

some of the material in the following sections is excerpted from these papers.

We are working on an online version of bcd that implements the \change in

probability distribution" heuristic but the work is preliminary.

Fluents and Temporal Relationships The uent learning algorithm induces

episode structures from time series of binary vectors. A binary vector bt is a

simple representation of a set of logical propositions at time t: b[i]t = 1 means

proposition pi is true. If a proposition is true for all the discrete times in the range

m;n (i.e., b[i]m;n = 1) then the proposition is called a base uent. (States with

persistence are called uents by McCarthy [19].) In an experiment with a Pioneer

1 mobile robot, we collected a dataset of 22535 binary vectors of length 9. Sen-

sor readings such as translational and rotational velocity, the output of a \blob

vision" system, sonar values, and the states of gripper and bump sensors, were

inputs to a simple perceptual system that produced the following nine propo-

sitions: stop, rotate-right, rotate-left, move-forward, near-object,

push, touch, move-backward, stall.

Allen [2] gave a logic for relationships between the beginnings and ends of

uents. We use a nearly identical set of relationships:

sbeb X starts before Y, ends before Y; Allen's \overlap"

sweb Y starts with X, ends before X; Allen's \starts"

saew Y starts after X, ends with X; Allen's \�nishes"

saeb Y starts after X, ends before X; Allen's \during"

swew Y starts with X, ends with X; Allen's \equal"

se Y starts after X ends; amalgamating Allen's \meets" and \before"

In Allen's calculus, \meets" means the end of X coincides exactly with the be-

ginning of Y, while \before" means the former event precedes the latter by some

interval. In our work, the truth of a predicate such as se or sbeb depends on

whether start and end events happen within a window of brief duration. Said

di�erently, \starts with" means \starts within a few ticks of" and \starts before"

means \starts more than a few ticks before" The reason for this window is that

on a robot, it takes time for events to show up in sensor data and be processed

perceptually into propositions, so coinciding events will not necessarily produce

propositional representations at exactly the same time.

Let � 2[sbeb,sweb,saew,saeb,swew,se], and let f be a proposition (e.g.,

moving-forward). Composite uents have the form:

F f j �(f; f)

CF �(F; F)

That is, a uent F may be a proposition or a temporal relationship between

propositions, and a composite uent is a temporal relationship between uents.

A situation has many alternative uent representations, we want a method for

choosing some over others. The method will be statistical: We will only accept

�(F; F) as a representation if the constituent uents are statistically associated,

if they \go together."

Consider a composite uent like sbeb(brake,clutch): When I approach a stop

light in my standard transmission car, I start to brake, then depress the clutch

to stop the car stalling; later I release the brake to start accelerating, and then I

release the clutch. To see whether this uent| sbeb(brake,clutch)|is statisti-

cally signi�cant, we need two contingency tables, one for the relationship \start

braking then start to depress the clutch" and one for \end braking and then end

depressing the clutch":

a1 b1

c1

a2 b2

c2 d2d1

s(x=brake)

s(x!=brake)

e(x=brake)

e(x!=brake)

s(x=clutch)s(x!=clutch) e(x=clutch)e(x!=clutch)

Imagine some representative numbers in these tables: Only rarely do I start

something other than braking and then depress the clutch, so c1 is small. Only

rarely do I start braking and then start something other than depressing the

clutch (otherwise the car would stall), so b1 is also small. Clearly, a1 is relatively

large, and d1 bigger, still, so the �rst table has most of its frequencies on a

diagonal, and will produce a signi�cant �2 statistic. Similar arguments hold for

the second table. When both tables are signi�cant, we say sbeb(brake,clutch) is

a signi�cant composite uent.

Fluent learning algorithm The uent learning algorithm incrementally processes

a time series of binary vectors. At each tick, a bit in the vector bt is in one of

four states:

Still o�: bt�1 = 0 ^ bt = 0

Still on: bt�1 = 1 ^ bt = 1

Just o�: bt�1 = 1 ^ bt = 0

Just on: bt�1 = 0 ^ bt = 1

The fourth case is called opening; the third case closing. It is easy to test when

base uents (those corresponding to propositions) open and close, slightly more

complicated for composite uents such as sbeb(f1,f2), because of the ambiguity

about which uent opened. Suppose we see open(f1) and then open(f2). It's

unclear whether we have just observed open(sbeb(f1,f2)), open(saeb(f1,f2)),

or open(saew(f1,f2)). Only when we see whether f2 closes after, before, or with

f1 will we know which of the three composite uents opened with the opening

of f2.

The uent learning algorithm maintains contingency tables that count co-

occurrences of open and close events. We restrict the number of ticks, m, by

which one opening must happen after another: m must be bigger than a few

ticks, otherwise we treat the openings as simultaneous; and it must be smaller

than the length of a short-term memory.10 At each tick, the algorithm �rst

decides which simple and composite uents have closed. With this information,

it can disambiguatewhich composite uents opened at an earlier time (within the

bounds of short term memory). Then, it �nds out which simple and composite

uents have just opened, or might have opened. This done, it updates the open

and close contingency tables for all uents that have just closed. Next, it updates

the �2 statistic for each table and it adds the newly signi�cant composite uents

to the list of accepted uents.

Two uents learned by the algorithm are shown in Figure 5 (others are

discussed in [6]). These uents were never used by the robot for anything (besides

learning other uents) so they are not meaningful representations in the sense

of Section 1, but they illustrate the kind of structural abstractions produced

by the uent learning process. The �rst captures a strong regularity in how

the robot approaches an obstacle. Once the robot detects an object visually,

it moves toward it quite quickly, until the sonars detect the object. At that

point, the robot immediately stops, and then moves forward more slowly. Thus,

we expect to see saeb(near-object,stop), and we expect this uent to start

before move-forward, as shown in the �rst uent. The second uent shows

that the robot stops when it touches an object but remains touching the object

after the stop uent closes (sweb(touch,stop)) and this composite uent

starts before and ends before another composite uent in which the robot is

simultaneously moving forward and pushing the object. This uent describes

exactly how the robot pushes an object.

Fluent learning works for multivariate time series in which all the variables

are binary. It does not attend to the durations of uents, only the temporal

relationships between open and close events. This is an advantage in domains

where the same episode can take di�erent amounts of time, and a disadvantage

in domains where duration matters. Because it is a statistical technique, uent

learning �nds common patterns, not all patterns; it is easily biased to �nd more

or fewer patterns by adjusting the threshold value of the statistic and varying

the size of the uent short term memory. Fluent learning elucidates the hierar-

chical structure of episodes (i.e., episodes contain episodes) because uents are

themselves nested. We are not aware of any other algorithm that is unsupervised,

incremental, multivariate, and elucidates the hierarchical structure of episodes.

10 The short term memory has two kinds of justi�cation. First, animals do not learn

associations between events that occur far apart in time. Second, if every open event
could be paired with every other (and every close event) over a long duration, then the

uent learning system would have to maintain an enormous number of contingency

tables.

near-obstacle
move-forward
stop

touch
push
move-forward
stop

1.

2.

Fig. 5. Two composite uents. These were learned without supervision from a time

series of 22535 binary vectors of robot data.

The Voting Experts Algorithm The voting experts algorithm is designed to

�nd boundaries of substructures within episodes, places where one macroscopic

part of an episode gives way to another. It incorporates \experts" that attend to

boundary entropy and frequency, and is easily extensible to include experts that

attend to other characteristics of episode structures. Currently the algorithm

works with univariate sequences of categorical data. The algorithm simply moves

a window across a time series and asks, for each location in the window, whether

to \cut" the series at that location. Each expert casts a vote. Each location takes

n steps to traverse a window of size n, and is seen by the experts in n di�erent

contexts, and may accrue up to n votes from each expert. Given the results of

voting, it is a simple matter to cut the series at locations with high vote counts.

The algorithm has been tested extensively with sequences of letters in text:

Spaces, punctuation and capitalization are removed, and the algorithm is able

to recover word boundaries. It also performs adequately, though not brilliantly,

on sequences of robot states. Research in that domain continues.

Here are the steps of the algorithm:

Build a pre�x tree of depth n+1. Nodes at level i of an pre�x tree represent

ngrams of length i. The children of a node are the extensions of the ngram

represented by the node. For example, a b c a b d produces the following pre�x

tree of depth 2:

a (2) b (2) c (1) d (1)

ab (2) bc (1) bd (1) ca (1)

Every ngram of length 2 or less in the sequence a b c a b d is represented by

a node in this tree. The numbers in parentheses represent the frequencies of

the subsequences. For example, the subsequence a b occurs twice, and every

occurrence of a is followed by b.

For the �rst 10,000 characters in George Orwell's book 1984, a pre�x tree

of depth 7 includes 33774 nodes, of which 9109 are leaf nodes. That is, there

are over nine thousand unique subsequences of length 7 in this sample of text,

although the average frequency of these subsequences is 1.1; most occur exactly

once. The average frequencies of subsequences of length 1 to 7 are 384.4, 23.1,

3.9, 1.8, 1.3, 1.2, and 1.1.

Calculate boundary entropy. The boundary entropy of an ngram is the en-

tropy of the distribution of tokens that can extend the ngram. The entropy of

a distribution of a random variable x is just �
P

Pr(x) logPr(x). Boundary

entropy is easily calculated from the pre�x tree. For example, the node a has

entropy equal to zero because it has only one child whereas the entropy of node

b is 1.0 because it has two equiprobable children.

Standardize frequencies and boundary entropies. In most domains, there

is a systematic relationship between the length and frequency of patterns; in

general, short patterns are more common than long ones (e.g., on average, for

subsets of 10,000 characters from Orwell's text, 64 of the 100 most frequent

patterns are of length 2; 23 are of length 3, and so on). Our algorithm will

compare the frequencies and boundary entropies of ngrams of di�erent lengths,

but in all cases we will be comparing how unusual these frequencies and entropies

are, relative to other ngrams of the same length. To illustrate, consider the words

\a" and \an". In the �rst 10000 characters of Orwell's text, \a" occurs 743 times,

\an" 124 times, but \a" occurs only a little more frequently than other one-letter

ngrams, whereas \an" occurs much more often than other two-letter ngrams. In

this sense, \a" is ordinary, \an" is unusual. Although \a" is much more common

than \an" it is much less unusual relative to other ngrams of the same length.

To capture this notion, we standardize the frequencies and boundary entropies

of the ngrams. Standardized, the frequency of \a" is 1.1, whereas the frequency

of \an" is 20.4. We standardize boundary entropies in the same way, and for the

same reason.

Score potential segment boundaries. In a sequence of length k there are

k � 1 places to draw boundaries between segments, and, thus, there are 2k�1

ways to divide the sequence into segments. Our algorithm is greedy in the sense

that it considers just k � 1, not 2k�1, ways to divide the sequence. It consid-

ers each possible boundary in order, starting at the beginning of the sequence.

The algorithm passes a window of length n over the sequence, halting at each

possible boundary. All of the locations within the window are considered, and

each garners zero or one vote from each expert. Because we have two experts,

for boundary-entropy and frequency, respectively, each possible boundary may

garner up to 2n votes. This is illustrated in Figure 6. A window of length 3 is

passed along the sequence itwasacold.

Initially, the window covers itw. The entropy and frequency experts each de-

cide where they could best insert a boundary within the window. The boundary

entropy expert votes for the location that produces the ngram with the highest

standardized boundary entropy, and the frequency expert places a boundary so

as to maximize the sum of the standardized frequencies of the ngrams to the

left and the right of the boundary. In this example, the entropy expert favors

the boundary between t and w, while the frequency expert favors the boundary

between w and whatever comes next. Then the window moves one location to

the right and the process repeats. This time, both experts decide to place the

boundary between t and w. The window moves again and both experts decide

to place the boundary after s, the last token in the window. Note that each

potential boundary location (e.g., between t and w) is seen n times for a window

of size n, but it is considered in a slightly di�erent context each time the window

moves. The �rst time the experts consider the boundary between w and a, they

are looking at the window itw, and the last time, they are looking at was.

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

i t w a s a c o l d . . .

0 0 3 1 0 2

Fig. 6. The operation of the voting experts algorithm.

In this way, each boundary gets up to 2n votes, or n = 3 votes from each of

two experts. The wa boundary gets one vote, the tw boundary, three votes, and

the sa boundary, two votes.

Segment the sequence. Each potential boundary in a sequence accrues votes,

as described above, and now we must evaluate the boundaries in terms of the

votes and decide where to segment the sequence. Our method is a familiar \zero

crossing" rule: If a potential boundary has a locally maximum number of votes,

split the sequence at that boundary. In the example above, this rule causes the

sequence itwasacold to be split after it and was. We confess to one embellish-

ment on the rule: The number of votes for a boundary must exceed a threshold,

as well as be a local maximum. We found that the algorithm splits too often

without this quali�cation. In the experiments reported below, the threshold was

always set to n, the window size. This means that a location must garner half

the available votes (for two voting experts) and be a local maximum to qualify

for splitting the sequence.

The algorithm performs well at a challenging task, illustrated below. In this

block of text|the �rst 200 characters in Orwell's 1984|all spaces and punctu-

ation have been excised, and all letters made capital; and to foil your ability to

recognize words, the letters have been recoded in a simple way (each letter is

replaced by its neighbor to the right in the alphabet, and Z by A):

H S V Z R Z A Q H F G S B N K C C Z X H M Z O Q H K Z M C S G D B K N B J R V D Q D R S Q

H J H M F S G H Q S D D M V H M R S N M R L H S G G H R B G H M M T Y Y K D C H M S N G

H R A Q D Z R S H M Z M D E E N Q S S N D R B Z O D S G D U H K D V H M C R K H O O D C

P T H B J K X S G Q N T F G S G D F K Z R R C N N Q R N E U H B S N Q X L Z M R H N M R S

G N T F G M N S P T H B J K X D M N T F G S

Suppose you had a block of text several thousand characters long to study at

leisure. Could you place boundaries where they should go, that is, in locations

that correspond to words in the original text? (You will agree that the original

text is no more meaningful to the voting experts algorithm than the text above

is to you, so the problem we pose to you is no di�erent than the one solved by

the algorithm.)

To evaluate the algorithmwe designed several performance measures. The hit

rate is the number of boundaries in the text that were indicated by the algorithm,

and the false positive rate is the number of boundaries indicated by the algorithm

that were not boundaries in the text. The exact word rate is the proportion of

words for which the algorithm found both boundaries; the dangling and lost

rates are the proportions of words for which the algorithm identi�es only one, or

neither, boundary, respectively. We ran the algorithm on corpora of Roma-ji text

and a segment of Franz Kafka's The Castle in the original German. Roma-ji is a

transliteration of Japanese into roman characters. The corpus was a set of Anime

lyrics, comprising 19163 roman characters. For comparison purposes we selected

the �rst 19163 characters of Kafka's text and the same number of characters

from Orwell's text. We stripped away spaces, puncuation and capitalization and

the algorithm induced word boundaries. Here are the results:

Hit rate F. P. rate Exact Dangling Lost

English .71 .28 .49 .44 .07

German .79 .31 .61 .35 .04

Roma-ji .64 .34 .37 .53 .10

Clearly, the algorithm is not biased to do well on English, in particular,

as it actually performs best on Kafka's text, losing only 4% of the words and

identifying 61% exactly. The algorithm performs less well with the Roma-ji text;

it identi�es fewer boundaries accurately (i.e., places 34% of its boundaries within

words) and identi�es fewer words exactly. The explanation for these results has

to do with the lengths of words in the corpora. We know that the algorithm

loses disproportionately many short words. Words of length 2 make up 32% of

the Roma-ji corpus, 17% of the Orwell corpus, and 10% of the Kafka corpus,

so it is not surprising that the algorithm performs worst on the Roma-ji corpus

and best on the Kafka corpus.

As noted earlier, the algorithm performs less well with time series of robot

states. The problem seems to be that episode substructures are quite long (over

six seconds or 60 discrete ticks of data, on average, compared with Orwell's av-

erage word length, around 5.) The voting experts algorithm can �nd episode

structures that are longer than the depth of its pre�x tree, but recall that the

frequency of ngrams drops with their length, so most long ngrams occur only

once. This means the frequency and boundary entropy experts have no distribu-

tions to work with, and even if they did, they would have diÆculty estimating

the distributions with any accuracy from such small numbers.

Still, it is remarkable that two very general heuristic methods can segment

text into words with such accuracy. Our results lead us to speculate that fre-

quency and boundary entropy are general markers of episode substructures, a

claim we are in the process of testing in other domains. Recall that Oates used

these heuristics to bootstrap the process of �nding words in the speech signal.

6 Conclusion

The central claim of this paper is that programs can learn representations and

their meanings. We adopted Dretske's de�nition that a representation is mean-

ingful if it reliably indicates something about the external world and the indicator

relationship is exploited to inform action. These criteria place few constraints on

what is represented, how it is represented, and how representations inform ac-

tion, yet these questions lie at the heart of AI engineering design, and answering

them well requires considerable engineering skill. Moreover, these criteria admit

representations that are meaningful in the given sense to an engineer but not

to a program. This is one reason Dretske [12] required that the function of the

indicator relationship be learned, to ensure that meaning is endogenous in the

learning agent. Dretske's requirement leads to some philosophical problems [10]

and we do not think it can survive as a criterion for contentful mental states [8].

However, we want programs to learn the meanings of representations not as a

condition in a philosophical account of representation, meaning and belief, but as

a practical move beyond current AI engineering practice, in which all meanings

are exogenous; and as a demonstration of how symbolic representations might

develop in infant humans.

What is the status of our claim that programs can learn representations and

their meanings? As our adopted notion of meaning does not constrain what

is represented, how it is represented, and how representations inform action,

we have considerable freedom in how we gather evidence relevant to the claim.

In fact, we imposed additional constraints on learned representations in our

empirical work: They should be grounded in sensor data from a robot; the data

should have a temporal aspect and time or the ordinal sequence of things should

be an explicit part of the learned representations; and the representations should

not merely inform action, but should inform two essentially human intellectual

accomplishments, language and planning. We have demonstrated that a robot

can learn the meanings of words, and construct simple plans, and that both

these abilities depend on representations and meanings learned by the robot. In

general, we have speci�ed how things are to be represented (e.g., as transition

probability matrices, sequences of means and variances, multivariate time series,

uents, etc.) but the contents of the representations (i.e., what is represented)

and the relationship between the contents and actions have been learned.

Acknowledgments

The authors wish to thank the many graduate students who have worked on the Robot

Baby project, particularly Marc Atkin, Brendan Burns, Anyuan Guo, Brent Heeringa,

Gary King, Laura Firiou, and Matt Schmill. We thank Mary Litch, Clayton Morrison,

Marco Ramoni and Paola Sebastiani for their lively contributions to the ideas herein.

David Westbrook deserves special thanks from all the members of the Experimental

Knowledge Systems Laboratory for his many contributions.

This work was supported by DARPA under contract(s) DARPA / USASMDC-

DASG60 - 99 - C -0074 and DARPA / AFRLF30602-00-1-0529, and by a Visiting

Fellowship Research Grant number GR/N24193 to support Paul Cohen from the En-

gineering and Physical Sciences Research Council (UK).

References

1. Philip E. Agre and David Chapman. Pengi: An implementation of a theory of

activity. In Proceedings of the Sixth National Conference on Arti�cial Intelligence,

pages 268{272, Seattle, Washington, 1987. American Association for Arti�cial In-
telligence.

2. James F. Allen. An interval based representation of temporal knowledge. In Pro-

ceedings of the Seventh International Joint Conference on Arti�cial Intelligence,
pages 221{226, San Mateo, CA, 1981. Morgan Kaufmann Publishers, Inc.

3. Dana H. Ballard, Mary M. Hayhoe, and Polly K. Pook. Deictic codes for the

embodiment of cognition. Computer Science Department, University of Rochester.
4. D.H. Ballard. Reference frames for animate vision. In Proceedings of the Eleventh

International Joint Conference on Arti�cial Intelligenc. Morgan Kaufmann Pub-

lishers, Inc., 1989.

5. Paul Bloom. How Children Learn the Meanings of Words. MIT Press, 2000.

6. Paul Cohen. Fluent learning: Elucidating the structure of episodes. In Proceedings

of Fourth Symposium on Intelligent Data Analysis. Springer, 2001.

7. Paul Cohen and Niall Adams. An algorithm for segmenting categorical time series

into meaningful episodes. In Proceedings of Fourth Symposium on Intelligent Data

Analysis. Springer, 2001.
8. Paul R. Cohen and Mary Litch. What are contentful mental states? dretske's the-

ory of mental content viewed in the light of robot learning and planning algorithms.

In Proceedings of the Sixteenth National Conference on Arti�cial Intelligence, 1999.

9. Bndicte de Boysson-Bardies. How Language Comes to Children. MIT Press, 2001.
10. Daniel Dennett. Do it yourself understanding. In Daniel Dennett, editor, Brain-

children, Essays on Designing Minds. MIT Press and Penguin, 1998.

11. Fred Dretske. Knowledge and the Flow of Information. Cambridge University

Press, 1981. Reprinted by CSLI Publications, Stanford University.

12. Fred Dretske. Explaining Behavior: Reasons in a World of Causes. MIT Press,

1988.
13. Joseph B. Kruskall and Mark Liberman. The symmetric time warping problem:

From continuous to discrete. In Time Warps, String Edits and Macromolecules:

The Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.
14. B. Kuipers. The spatial semantic hierarchy. Arti�cial Intelligence, 119:191{233,

2000.

15. George Lako�. Women, Fire, and Dangerous Things. University of Chicago Press,
1984.

16. D. B. Lenat. Cyc: Towards programs with common sense. Communications of the

ACM, 33(8), 1990.

17. D. B. Lenat and R. V. Guha. Building large knowledge-based systems: Represen-

tation and inference in the Cyc project. Addison Wesley, 1990.

18. Paola Sebastiani Marco Ramoni and Paul Cohen. Bayesian clustering by dynam-

ics. Machine Learning, to appear(to appear):to appear, 2001.
19. John McCarthy. Situations, actions and causal laws. Stanford Arti�cial Intelli-

gence Project: Memo 2, also, http://wwwformal.stanford.edu/jmc/mcchay69/ mc-

chay69.htm, 1963.
20. J. T. Oates. Grounding Knowledge in Sensors: Unsupervised Learning for Lan-

guage and Planning. PhD thesis, Department of Computer Science, University of

Massachusetts, 2001.
21. Tim Oates Paul R. Cohen, Marc S. Atkin and Carole R. Beal. NEO: Learning con-

ceptual knowledge by sensorimotor interaction with an environment. In Proceed-

ings of the First International Conference on Autonomous Agents, pages 170{177,
1997.

22. David Pierce and Benjamin Kuipers. Map learning with uninterpreted sensors and

e�ectors. Arti�cial Intelligence Journal, 92:169{229, 1997.
23. Marco Ramoni, Paola Sebastiani, and Paul Cohen. Multivariate clustering by

dynamics. In Proceedings of the Seventeenth National Conference on AI, pages

633{638. AAAI Press/The MIT Press, 2000.
24. E. Rosch and C. B. Mervis. Family resemblances: Studies in the internal structure

of categories. Cognitive Psychology, 7:573{605, 1975.

25. Robert St. Amant and Paul R. Cohen. Intelligent Support for Exploratory Data
Analysis. The Journal of Computational and Graphical Statistics, 1998.

26. Robert St. Amant and Paul R. Cohen. Interaction With a Mixed-Initiative System

for Exploratory Data Analysis. Knowledge-Based Systems, 10(5):265{273, 1998.

27. Luc Steels. The Talking Heads Experiment: Volume I. Words and Meanings. Lab-

oratorium, Antwerpen, 1999. This is a museum catalog but is in preparation as a

book.

28. Paul Cohen Tim Oates, Matthew Schmill. Identifying qualitatively di�erent out-

comes of actions: Gaining autonomy through learning. In Proceedings Fourth In-

ternational Conference on Autonomous Agents, pp 110-111. ACM, 2000.
29. Paul Cohen Tim Oates, Matthew Schmill. A method for clustering the experience

of a mobile robot that accords with human judgments. In Proceedings of Seven-

teenth National Conference, pp. 846-851. AAAI Press/The MIT Press, 2000.

30. Paul Utgo� and Paul R. Cohen. Applicability of reinforcement learning. In The

Methodology of Applying Machine leraning Problem De�nition, Task Decompostion

and Technique Selection Workshop, ICML-98, pages 37{43, 1998.

This article was processed using the LATEX macro package with LLNCS style

