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Abstract

This paper presents a theory of how robots may learn
concepts by interacting with their environment in an
unsupervised way.  First, categories of activities are learned,
then abstractions over those categories result in concepts.
The meanings of concepts are discussed.  Robotic systems
that learn categories of activities and concepts are presented.

Introduction

If machines could acquire conceptual knowledge with the
same facility as humans, then AI would be much better off.
There's no denying the dream of a machine that knows
roughly what we know, organized roughly as we organize
it, with roughly the same values and motives as we have. It
makes sense, then, to ask how this knowledge is acquired
by humans and how might it be acquired by machines.

I focus on the origins of conceptual knowledge, the earliest
distinctions and classes, the first efforts to carve the world
at its joints.  One reason is just the desire to get to the
bottom of, or in this case the beginning of, anything.
Another is that the origin of concepts is hotly debated:
Some people think that neonates are born with moderately
sophisticated conceptual systems (e.g., 4,5,15), others
dispute this and seek an empiricist, or non-nativist, account
of development (e.g., 10,11).  I think one has to take a
minimalist stance and avoid innate knowledge in one’s
explanations of the acquisition of later knowledge. This
reluctance comes, in part, from years of slogging in AI,
where we must always provide a lot of knowledge for our
systems to do relatively little with.  I want to focus on the
first concepts because unless I do, I will have to provide
them by hand, which is difficult, and also makes me very
uncertain about the explanatory power of what follows.
The claim of this paper is that concepts can be learned
without supervision by abstracting over representations of
activities.  Piaget [12] insisted that concepts must arise out
of activities because simple action schemas develop before
conceptual thought, but the mechanisms he proposed to
explain concept acquisition were vague by the standards of
artificial intelligence.  I will present methods for learning
clusters of activities, implemented in robots and software
agents, and argue that these representations identify
categories and, with further processing, concepts.

Why Should Agents Learn Concepts?
Imagine yourself to be a mobile robot wandering around
the lab.  What concepts do you need? Some would suggest
that you need no concepts at all, only behaviors.  These
recognize aspects of your internal state and the world state,
and generate actions in response; for example, when you
detect an obstacle in your path, you change direction or
stop.  As described, the concept "obstacle" doesn't exist for
you, the robot.  It exists for the person who wrote a
function obstacle-in-path, not for you.  You do not
know that obstacles may sometimes be pushed aside,
although you often push them aside;  you do not know that
obstacles impede paths, although obstacles impede your
paths;  you do not even know what a path is, although you
trace one whenever you move.  You have no concepts, just
a bunch of behaviors.   And why should  you know
anything, if these routines work?  Why do you need
concepts like "obstacle" and "impede" and "path" at all?

The function obstacle-in-path was written by a
person who thought about all the situations you might
encounter and realized that some of them involve an
“obstacle” in your “path.”  Because this person
conceptualized your experiences, you have an appropriate
response to a common situation.  Your behavior is
organized around your programmer's conceptual structure.
This structure serves you well.  This is what concepts are
for:  They give you interpretations of your sensors, a basis
for judgments that situations are similar, and the
distinctions on which you decide what to do.  Concepts are
necessary even when they are implicit. If obstacle-in-
path produces intelligent behavior, the intelligence must
be attributed in no small part to the programmer who
dreamed up the concepts "obstacle" and "path."  I want
robots to dream up such concepts for themselves.

From Activities to Prototypes

Here is the problem to be solved:  An agent such as a robot
is “born” with a small set of physical activities but no
conceptual system.  As it interacts with its environment, it
forms categories, and by induction over category instances,
concepts.  How does this work?  What innate structures are
required? This section presents some implemented methods
that solve parts of the problem.
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How the Pioneer 1 Robot Learns Prototypes
The Pioneer 1 robot has two independent drive wheels, a
trailing caster, a two degree of freedom gripper, and
roughly forty sensors including five forward-pointing
sonars, two side-pointing sonars, a rudimentary vision
system, bump and stall sensors, and sensors that report the
state of the gripper.  The robot is controlled by a remote
computer, connected by radio modem.

The robot’s state is polled every 100msec., so a vector of
40 sensed values is collected ten times each second. These
vectors are ordered by time to yield a multivariate time
series.  Figure 1 shows four seconds of data from just four
of the Pioneer’s forty sensed values.  With a little practice,
one can see that this short time series represents the robot
moving past an object.  Prior to moving, the robot
establishes a coordinate frame with an x axis perpendicular
to its heading and a y axis parallel to its heading.  As it
begins to move, the robot measures its location in this
coordinate frame.  Note that the ROBOT-X line is almost
constant.  This means that the robot did not change its
location on a line perpendicular to its heading, that is, it did
not change its heading, during its move.  In contrast, the
ROBOT-Y line increases, indicating that the robot does
increase its distance along a line parallel to its original
heading.  Note especially the VIS-A-X  and VIS-A-Y  lines,
which represent the horizontal and vertical locations,
respectively, of the centroid of a patch of light on the
robot’s “retina,” a CCD camera.  VIS-A-X  decreases,
meaning that the object drifts to the left on the retina, while
VIS-A-Y  increases, meaning the object moves toward the
top of the retina.  Simultaneously, both series jump to
constant values.  These values are returned by the vision
system when nothing is in the field of view.  In sum, the
four-variable time series in Figure 1 represents the robot
moving in a straight line past an object on its left, which is
visible for roughly 1.8 seconds and then disappears from
the visual field.

Every time series that corresponds to moving past an object
has qualitatively the same structure as the one in Figure 1.
It follows that if we had a statistical technique to group the
robot’s experiences by the characteristic patterns in
multivariate time series (where the variables represent
sensor readings), then this technique would in effect learn a
taxonomy of the robot’s experiences.  We have developed
several such techniques, called, collectively, clustering by
dynamics [1,2]. One method, developed by Tim Oates in
our laboratory, is based on dynamic time warping:

1. A long multivariate time series is divided into segments,
each of which represents an episode such as moving
toward an object, avoiding an object, crashing into an
object, and so on. (Episode boundaries are inserted by
humans, but in other work we use a simple algorithm
that looks for simultaneous changes in multiple state
variables.)  We did not label the episodes in any way.

Figure 1. As the robot moves, an object approaches the periphery
of its field of view then passes out of sight.

2. A dynamic time warping algorithm compares every pair
of episodes and returns a number that represents the
degree of similarity between the time series in the pair.
Dynamic time warping “morphs” one multivariate time
series into another by stretching and compressing the
horizontal (temporal) axis of one series relative to the
other [14].  If two multivariate series are very similar,
relatively little stretching and compressing is required to
warp one series into the other.  A number that indicates
the remaining mismatch after the optimal warping is thus
a proxy for the similarity of two series.

3. Having found this similarity number for every pair of
episodes, it is straightforward to cluster episodes by
similarity.  An agglomerative algorithm merges clusters
until a simple stopping criterion is met.

4. Another algorithm finds the “central member” of each
cluster, called the cluster prototype after Rosch [13].

In a recent experiment involving over 150 episodes, we
first clustered the episodes by hand and then ran the
algorithm.  Then, for all pairs of episodes, we measured the
number of pairs that were classified as belonging to the
same (or different) clusters by the human and by the
algorithm.  Remarkably, the concordance between these
classifications exceeded 90% [1].

These clusters were learned largely without supervision
and constitute a primitive ontology of activities – the robot
learned some of the activities it can do in its environment.
What supervision or help did we provide?  We wrote the
programs that controlled the robot and made it do things.
We divided the time series into episodes (although this can
be done automatically).  We limited the number of
variables that the dynamic time warping code had to deal
with, as it cannot efficiently handle multivariate series of
forty state variables.  We did not label the episodes to tell
the learning algorithm which clusters of activities it should
consider.  In fact, the only guidance we provided to the
formation of clusters was a threshold statistic for adding an
episode to a cluster.  To reiterate, we did not anticipate,
hope for, or otherwise coerce the algorithms to learn
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particular clusters and prototypes.  The robot’s ontology of
activities is its own.

Prototypes from Delay Coordinate Embeddings
To cluster episodes, one needs to judge their similarity.
This function was accomplished by dynamic time warping
in the previous study.  Another way to do it is with delay
coordinate embedding [2].  Let an episode

  e X X Xi i t i t i t= − −, , ,, , ,τ K 1  be a time series of sensor X for

τ +1 time steps ending with an event at time t.  Clearly, ei

can be represented by a single point pi  in a space of τ +1-
dimensions, as each of   X X Xi t i t i t, , ,, , ,− −τ K 1  identifies the

location of pi  in one dimension.  This transformation of a
τ +1-step time series to a point in τ +1-dimensional space
is called a delay coordinate embedding.  The Euclidian
distance between two points pi  and p j  is a measure of

similarity of episodes e ei j and .

In one experiment [2] we implemented two simulated
agents, each of which adopts one of nine behaviors,
including crash, avoid, kiss, and so on. For instance, A
might try to avoid B while B tries to crash into A.  We ran
several episodes of pairs of behaviors. Each episode was
represented by a time series of the distance d between the
agents. An episode ended when the agents touched each
other or the distance between the agents exceeded a
threshold.  Delay coordinate embeddings were constructed
for each episode, the Euclidean distance p pi j−  was

calculated for each pair of episodes e ei j, , and these

distances were used as a similarity metric for
agglomerative clustering of episodes.

With very little training, this procedure came up with six
clusters.  The prototypes of these clusters, obtained by
averaging the time series within each cluster, are shown in
Figure 2. Prototypes 1, 2 and 3 involve one agent eluding
the other; the difference between the clusters is how close
the agents get to each other before moving apart.
Prototype 4 represents interactions in which the agents
repeatedly draw together and move apart over time, but
never touch – a kind of perpetual chase.  Prototype 5 is a
case in which the agents close on each other so quickly that
inertia carries them past each other – they overshoot one
another – then they change direction and eventually touch.
Prototype 6 is simple case in which the agents rapidly draw
together and touch.

Our clustering system was not instructed to cluster
episodes by their outcomes (e.g., touch, escape, etc.);
indeed, the clusters and their prototypes were constructed
entirely without supervision.  But time series are so
redundant that clustering by dynamics often produces
prototypes that have qualitatively different outcomes. As in
the previous study, we claim that the prototypes learned by
delay coordinate embedding constitute a primitive ontology

of activities.  Because the learning is unsupervised, the
ontology is not ours, but is acquired through experience.  In
fact, we were quite surprised to see the “overshoot contact”
prototype.  It is an emergent interaction of the agents that
we had never noticed.

Figure 2.  Six prototypes for agent interactions, learned without
supervision, and plotted as time series of the proximity between
the agents.

From Prototypes to Concepts

Each of the robot’s activities has roles. The robot is an
actor, it approaches an object, it pushes the object to a
destination, past another object on its left.  Roles are
predicates that describe the relationships between the
robot’s actions and objects in its environment.  Familiar
roles such as actor, action, object, subject, and instrument,
may be augmented with more specific roles such as “the
object on my left.”  General or specific, the idea is the
same:  A scene is described and presumably represented in
terms of the roles of its participants – the causal relations
that hold among the participants’ actions.

Roles are the key to having our robot learn an ontology
through interaction with its environment.  Just as we may
define “chair” in terms of interaction – a chair is something
we sit in – so might our robot ontology include objects that
fit between the grippers, objects that can be lifted, objects
that do not move, objects that are so large that they are not
entirely visible when the robot touches them, and so on.
Classes of objects follow directly from roles; indeed, for
each role played by an object (e.g., being picked up by the
robot) there is a class of objects that have played or could
play that role.  The same point holds for actions which play
roles in activities.  If the robot could perceive the roles
played by objects and actions, it could develop a
conceptual system, an ontology, an organization of objects
and actions into classes defined by experience.

Unfortunately, prototypes are monolithic representations of
activities, not denoting, compositional representations.  In
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Figure 1, for example, we see an instance of the robot’s
prototype pass-an-object-on-the-left, but the figure does
not individuate an object, or spatial relationships, or the
activity of passing. It is just four time series, four lists of
numbers. Suppose I removed the labels on the time series
in the figure, and the explanations of the series, would you
be able to tell that Figure 1 represents a robot passing an
object?  Of course not: The lines in Figure 1 do not identify
a robot or an object as participants in a prototype.  The
lines might be a prototype or an instance of one, but they
do not identify participants.   For prototypes to become
concepts, they have to denote things and relationships
explicitly.

To this end we have developed another approach to
clustering by dynamics that works not with sensor values
but with the output of a primitive perceptual system.  This
work, described in a companion paper to this one, takes
time series of propositions and clusters them.  For example,
the first ten time steps of an experience are shown below:

((STOP R) (IS-RED A))
((STOP R) (IS-RED A))
((APPROACH A R) (IS-RED A))
((STOP R) (IS-RED A))
((RECEDE A R) (STOP R) (IS-RED A))
((IS-RED A))
((MOVING-FORWARD R) (IS-RED A))
((MOVING-FORWARD R) (IS-RED A))
((MOVING-FORWARD R) (IS-RED A))
((MOVING-FORWARD R) (IS-RED A))

These propositions are produced automatically by the
robot’s perceptual system, and they describe the robot
approaching a red object, stopping, receding from the
object, and then moving forward but not approaching the
object (i.e., moving obliquely to it).

Our current work involves extracting concept definitions
from prototypes of experiences.  Much of the meaning of a
token, such as a word, or a sonar reading, is in the roles
played by the denotation of the token.  For example, the
red object denoted by the token A, above, plays the role of
something that the robot can approach.  This seems trivial
and obvious, but it is only a simple example of a general
and quite powerful way of learning definitions of objects.
The idea we are currently implementing is to first collect
objects that play roles in activities, and then inductively
extract the features of the objects that cause it to play the
roles it has in given activities.

Conclusion

The claim of this paper is that agents should grow their
own ontologies, unsupervised by us, by interacting with
their environments.  Success would also address a
longstanding problem in human development, namely, how
conceptual systems arise from exercising motor schemas.  I

have argued for the primacy of activities:  Concepts may
represent activities themselves or participants in the
activities.
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