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Abstract

All natural cognitive systems, and, in particular, our own, gradually forget previously
learned information. Consequently, plausible models of human cognition should exhibit
similar patterns of gradual forgetting old information as new information is acquired.
Only rarely (see Box 3) does new learning in natural cognitive systems completely
disrupt or erase previously learned information. In other words, natural cognitive systems
do not, in general, forget catastrophically.  Unfortunately, however, this is precisely what
occurs under certain circumstances in distributed connectionist networks.  It turns out that
the very features that give these networks their much-touted abilities to generalize, to
function in the presence of degraded input, etc., are the root cause of catastrophic
forgetting.  The challenge is how to keep the advantages of distributed connectionist
networks while avoiding the problem of catastrophic forgetting.  In this article, we
examine the causes, consequences and numerous solutions to the problem of catastrophic
forgetting in neural networks. We consider how the brain might have overcome this
problem and explore the consequences of this solution.

Introduction
By the end of the 1980’s many of the early problems with connectionist networks,

such as their difficulties with sequence-learning and the profoundly stimulus-response nature
of supervised learning algorithms such as error backpropagation had been largely solved.
However, as these problems were being solved, another was discovered by McCloskey and
Cohen1 and Ratcliff2. They suggested that there might be a fundamental limitation to this type
of distributed architecture, in the same way that Minsky and Papert3 had shown twenty years
before that there were certain fundamental limitations to what a perceptron4,5 could do. They
observed that under certain conditions, the process of learning a new set of patterns suddenly
and completely erased a network’s knowledge of what it had already learned. They referred
to this phenomenon as catastrophic interference (or catastrophic forgetting) and suggested
that the underlying reason for this difficulty was the very thing — a single set of shared
weights — that gave the networks their remarkable abilities to generalize and degrade
gracefully.

Catastrophic interference is a radical manifestation of a more general problem for
connectionist models of memory — in fact, for any model of memory —, the so-called
“stability-plasticity” problem.6,7  The problem is how to design a system that is
simultaneously sensitive to, but not radically disrupted by, new input.

In this article we will focus primarily on a particular, widely used class of distributed
neural network architectures — namely, those with a single set of shared (or partially shared)
multiplicative weights. While this defines a very broad class of networks, this definition is
certainly not exhaustive.  In the remainder of this article we will discuss the numerous
attempts over the last decade to solve this problem within the context of this type of network.
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Catastrophic interference versus gradual interference

First, we need to make clear the distinction between what McCloskey & Cohen1 call “the
mere occurrence of interference” and “catastrophic interference.”  Barnes and Underwood8

conducted a series of experiments that measured the extent of retroactive interference in
human learning. They first had subjects first learn a set of paired associates (A-B) consisting
of a nonsense syllable and an adjective (e.g. dax with regal, etc.) and then asked them to
learn a new set of paired associates (A-C) consisting of the same nonsense syllables
associated with a new set of adjectives. They were able to determine that the forgetting curve
for the A-B associate pairs produced by interference from the learning of the new A-C pairs
was relatively gradual. By contrast, McCloskey and Cohen1 showed that, at least under
certain circumstances, forgetting in a standard backpropagation network was anything but
gradual. In one set of experiments, a standard backpropagation network9 thoroughly learned a
set of “one’s addition facts” (i.e., the 17 sums 1+1 through 9+1 and 1+2 through 1+9). Then
the network learned the 17 “two’s addition facts” (i.e., 2+1 through 2+9 and 1+2 through
9+2). Recall performance on the originally learned one’s facts plummeted as soon as the
network began learning the new two’s addition facts. Within 1-5 two’s learning trials, the
number of correct responses on the one’s facts had dropped from 100% to 20%. In five more
learning trials, the one’s knowledge was at 1%, by 15 trials, no correct answers from the
previous one’s problems could be produced by the network. The network had
“catastrophically” forgotten its one’s sums. In a subsequent experiment that attempted to
more closely match the original Barnes and Underwood paradigm, they again found the same
catastrophic, rather than gradual, forgetting in the neural network they tested.

Ratcliff2 tested a series of error-backpropagation models on a number of similar tasks,
for vectors of different sizes and for networks of various types, and also found that well-
learned information can be catastrophically forgotten by new learning.

These two papers are generally given credit for bringing the problem of catastrophic
interference to the attention of the connectionist community. One might wonder why, if the
problem of catastrophic interference was as serious as these authors claimed, it had taken
more than five years to come to light. McCloskey and Cohen1 answered this as follows:
“Disruption of old knowledge by new learning is a recognized feature of connectionist
models with distributed representations. (e.g., [2, 10, 11, 12, 13]). However, the interference
is sometimes described as if it were mild and/or readily avoided (see, e.g., [11], pp. 81-82).
Perhaps for this reason, the interference phenomenon has received surprisingly little
attention...”

The conclusions of these two papers raised a number of important theoretical as well
as practical concerns — namely:  Is this problem inherent in all distributed architectures? Can
distributed architectures be designed that avoid the problem?  If human brains are anything
like connectionist models, why is there no evidence of this kind of forgetting in humans?
Can this kind of forgetting be observed in animals with a less highly evolved brain
organization? And finally will distributed connectionist networks remain unable to perform
true sequential learning?14  In other words, humans tend to learn one pattern, then another,
then another, etc., and even though some of the earlier patterns may be seen again, this is not
necessary for them to be retained in memory. As new patterns are learned, forgetting of old,
unrepeated patterns occurs gradually over time. However, for any network subject to
catastrophic interference, learning cannot occur in this manner, since the new learning will
effectively erase previous learning.

Measuring catastrophic interference

The two initial studies on catastrophic interference1, 2 relied on an “exact recognition”
measure of forgetting. In other words, after the network had learned a set of binary patterns
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and then was trained on a second set of patterns, its recognition performance on the first set
was tested by presenting each old input pattern to the network and seeing how close it came
to its originally learned associate. If all of the output nodes were not within 0.5 of the original
associate (i.e., could not correctly generalize to the original associate), then the network was
said to have “forgotten” the original pattern. Hetherington and Seidenberg15 introduced a
“savings” measure of forgetting based on a relearning measure first proposed by
Ebbinghaus16. To measure how completely the network had lost the original associations,
they measured the amount of time it required to relearn the original data. They showed that it
was often the case that a network that seems, on the basis of exact-recognition criterion, to
have completely forgotten its originally learned associations, can be retrained very quickly to
recall those associations. Unfortunately, later work showed that not all catastrophic forgetting
is of this "shallow" sort. Most discussions of catastrophic forgetting now include both of
these measures.

Early attempts to solve the problem

As early as 1990, various solutions were suggested to the problem. Kortge17 claimed that the
problem was not one inherent in distributed connectionist architectures, but rather was due to
the backpropagation learning rule. He developed a variation of the backpropagation algorithm
using what he called “novelty vectors” that produced a decrease in catastrophic interference.
The idea is that “when the network makes an error, we would like to blame just those active
units which were ‘responsible’ for the error — blaming any others leads to excess
interference with other patterns’ output.”  When a new pattern was to be learned by his auto-
associative network, it was fed through the network, which produced some pattern on output.
The difference between this pattern and the intended output (i.e., the pattern itself, since the
task of the network was to produce on output what it had seen on input) was what he called a
novelty vector (the bigger the differences, the more “novel” the pattern). His new weight-
change algorithm weighted the standard backpropagation delta parameter based on activation
values from this novelty vector. The bigger the novelty activation, the bigger the
corresponding weight change.

The effect of Kortge’s learning rule was to reduce the amount of overlap between
input representations of the new patterns to be learned and previously learned patterns.
French18, 19 suggested that, in general, catastrophic forgetting was largely a consequence of
the overlap of internal distributed representations and that reducing this overlap would reduce
catastrophic interference. He argued for the necessity of “semi-distributed” representations
that would remain distributed enough to retain many of the advantages of fully distributed
representations, but were not so fully distributed as to overlap with all other representations
and cause catastrophic interference. Explicitly decreasing representational overlap by creating
“sparse vectors” (i.e., internal representations in which only a few nodes were active, and
most were not active) served as the basis for French’s activation sharpening algorithm.18, 19

An extra step is added to the standard backpropagation learning algorithm in which
activations patterns at the hidden layer are “sharpened,” i.e., the activation level of the most
active hidden node(s) is increased slightly for each pattern, while the other nodes’ activations
are decreased. This technique had the effect of “sparsifying” the hidden-layer representations
and significantly reduced catastrophic forgetting as long as there were not too many patterns
to be learned.

Brousse and Smolensky20 acknowledged that catastrophic interference was, indeed, a
problem, but they attempted to show that in combinatorially structured domains, such as
language and fact learning, neural networks are able to largely overcome the problem. McRae
& Hetherington21 came to a similar conclusion and demonstrated that for domains in which
patterns have a high degree of internal structure, when a network is pre-trained on random
samples from that domain, catastrophic interference disappears from future learning. The
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intuitive interpretation of this is that when a domain is quite regular, learning a random
sample of exemplars from that domain will be enough to “capture” the regularities of the
domain. Subsequently, when new exemplars are presented to the network, they will tend to
be very much like previously-learned exemplars and will not interfere with them. It has also
been shown (Brander, R., 1998. Unpublished Master’s thesis, University of Queensland,
Australia) that in combinatorial domains, especially when sparse internal coding was
achieved, there is a significant reduction of catastrophic interference. However, the price paid
for the sparse coding in these domains is poorer generalization to new exemplars and poorer
overall ability to discriminate.22, 23, 24

Reducing representational overlap

In one way or another, almost all of the early techniques relied on reducing representational
overlap. Some attempted to use orthogonal recoding of inputs.17, 25, 26 These techniques used
bi-polar feature coding (i.e., -1/1 on each feature input instead of the most standard 0/1
encoding), which made orthogonalization at the input layer easier. One problem with these
techniques remains how to determine, in general, how this orthogonal coding on input can be
done.

Alternately, internal representational overlap was reduced by attempting to
orthogonalize the hidden-layer activation patterns.18, 24, 27, 28, 29, 30, 31  It turned out that internal
orthogonalization of representations could be made to emerge automatically by pre-training.21

These models all develop, in one way or another, semi-distributed (i.e., not fully distributed)
internal representations within a single network. Because these representations overlap with
one another less than fully distributed representations, catastrophic interference is reduced. In
some cases, for example, in Sloman & Rumelhart31, what amount to localist representations
emerge directly from the architecture to avoid the problem. Predictably, in all cases, this
reduces catastrophic interference.

Arguably, the two most interesting examples in this latter group are CALM28 and
ALCOVE29, 30. CALM28 is an explicitly modular connectionist architecture. A CALM
network is made up of three distinct type of competing nodes, excitatory (R-nodes),
inhibitory (V-nodes) and arousal nodes (A-nodes). When new input arrives, the system is so
designed as to trigger “an elaborative search among nodes that mostly have not yet been
committed to other representations.”28  This is reminiscent of the ART family of
architectures32, 7 in which a similar notion of representational assignment of new patterns is
used. In ART, as in CALM, new input does not, in general, interfere with old input because it
is “recognized” as being new and is “assigned” to a new node or set of nodes. In other words,
a series of “top-down” connections ensure that only similar patterns are directed to the same
node. Once again, new, unfamiliar input is separated from old, familiar patterns, thus
allowing catastrophic interference to be avoided.  One of the central claims of this line of
research is that the key to solving catastrophic forgetting lies with the type of synaptic
transfer function used by the model.33 In this view, the problem of catastrophic forgetting
arises from the use of multiplicative path-weights, a very widely accepted part of neural
network design. For a more complete discussion of the role of synaptic transfer functions in
catastrophic forgetting in the ART family of networks, see [33].

ALCOVE29, 30 is a three-layer feed-forward network in which the activation of a node
in the hidden layer depends (according to an inverse exponential function) on that node’s
distance from the input stimulus. The hidden layer can be regarded as a "covering" of the
input layer. The inverse exponential activation function has the effect of producing a
localized receptive field around each hidden node, causing it to respond only to a limited part
of the input field. This kind of topological localization does not exist in standard
backpropagation networks. The architecture of ALCOVE is such that the representation of
new inputs, especially of new inputs that are not close to already-learned patterns, will not
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overlap significantly with old representations. This means that the set of weights that
produced the old representations will remain largely unaffected by new input.

Representations in ALCOVE, depending on how finely the inverse-distance activation
function is tuned, can vary from being somewhat distributed to highly local. When they are
semi-distributed, this confers on the system its ability to generalize. When the width of the
receptive fields at each node is increased, thereby making each representation more
distributed and causing greater overlap among representations, the amount of interference
among representations does increases. In other words, if the receptive field of the an input
becomes restricted enough, the ALCOVE network becomes, for all intents and purposes, a
localist network, thereby avoiding catastrophic interference from new input.

Distributed models that are sensitive and stable in the presence of new information

Certain models that rely on distributed, overlapping representations do not seem to
forget catastrophically in the presence of new information. In particular, the class of
convolution-correlation models, such as CHARM34 and TODAM35, and Sparse Distributed
Memory (SDM)36 can learn new information in a sequential manner and can, in addition,
generalize on new input. The performance of these models on previously learned information
declines gradually, rather than falling off abruptly, when learning new patterns. While,
strictly speaking, convolution-correlation models and SDM are not “connectionist” models,
the former are readily shown to be isomorphic to sigma-pi connectionist models and SDM is
isomorphic to a Hopfield network.37 While there are critical storage limits to this type of
memory (and therefore, in Hopfield networks as well) beyond which memory retrieval
becomes abruptly impossible, below this limit SDM’s internal representations precisely fit
the bill of being semi-distributed. Their sparseness ensures a low degree of overlap, while
their distributedness ensures that generalization will be maintained. In CHARM and
TODAM, the input vectors consist of a large number of features that are bi-modally coded,
with an expected mean over all features of 0. This coding is critical and ensures a significant
degree of orthogonality on input, which as we have seen26, in general, decreases catastrophic
forgetting.

Rehearsal of prior learning

Connectionist learning, especially in feedforward backpropagation networks, is a very
contrived kind of learning. All of the patterns to be learned must be presented concurrently
and repeatedly until the weights of the network gradually converge to an appropriate set of
values. Real human learning, on the other hand, is largely sequential, even if it is true that
many old items are refreshed continually in memory (“rehearsed”) because we encounter
them over and over. A number of authors2, 15, 28, 38 have studied various “rehearsal” schemes
to alleviate catastrophic interference.. In this paradigm, learning is not truly sequential, rather,
a number of the previously learned items are explicitly mixed in (“rehearsed”) along with the
new patterns to be learned. Numerous methods of choosing which of the previously learned
items are to be mixed with the new patterns were studied and, as expected, all were found to
decrease the severity of catastrophic forgetting.

In 1995, Robins38 made a significant contribution to the field by introducing his
“pseudopattern” technique (see Box 2) for doing rehearsal when none of the original patterns
were available. This technique, combined with the notion of separate processing areas in the
brain39 led to the development of dual-network models discussed below40, 41.

Separating new learning from old learning

French18, 19 suggested that to alleviate catastrophic forgetting in distributed networks
dynamical separation of their internal representations during learning was necessary.
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McClelland, McNaughton, & O’Reilly39 went even further and suggested that nature’s way of
implementing this obligatory separation was the evolution of two separate areas of the brain,
the hippocampus and the neocortex. They justified the brain’s bi-modal architecture as
follows:

"The sequential acquisition of new data is incompatible with the gradual discovery of
structure and can lead to catastrophic interference with what has previously been
learned. In light of these observations, we suggest that the neocortex may be
optimized for the gradual discovery of the shared structure of events and experiences,
and that the hippocampal system is there to provide a mechanism for rapid acquisition
of new information without interference with previously discovered regularities. After
this initial acquisition, the hippocampal system serves as a teacher to the neocortex..."

The earliest attempt at implementing a dual-net architecture in order to decrease catastrophic
interference was a model called Jumpnet42. This model consisted of a standard connectionist
network (the “processing” network) coupled with a “control” network that modulated the
weights of the processing network. While this type of dual network was shown to reduce
catastrophic interference in certain cases, it was not clear that it could effectively handle the
type of problem most likely to cause catastrophic forgetting — namely, learning new patterns
whose inputs are very similar to that of previously learned patterns, but whose outputs are
quite different.

French40 and Ans & Roussett41 independently developed dual-network architectures
based on the principle of two separate pattern-processing areas, one for early-processing, the
other for long-term storage. In both models, the early-processing and storage areas are in
continual communication, transferring information back and forth by means of
pseudopatterns38. Both models exhibit gradual forgetting and, consequently, plausible
sequence learning. In French’s pseudo-recurrent network40, the pseudopattern transfer
mechanism leads to a gradual “compression” (i.e., fewer active nodes) of internal
representations in the long-term storage area. It has been shown43 that the representational
compression inherent in this kind of dual-network system, designed to reduce catastrophic
interference, would produce certain patterns of category-specific deficits actually observed in
amnesiacs. It has been shown that in human list-learning, adding new items to the list
decreases recall of earlier items in the list.44, 45 By contrast, strengthening of particular items,
(for example, by repeating them) does not produce decreased recall of the unstrengthened
items (i.e., there is no so-called list-strength effect).46  The pseudo-recurrent architecture, like
humans, exhibits a plausible list-length effect and the absence of a list-strength effect, a
dissociation that gives many current connectionist models problems.

Other techniques for alleviating catastrophic forgetting in neural networks

A number of other techniques have been developed to address the problem of catastrophic
interference. Notably, Chappell & Humphreys47 combined an auto-associative architecture
with sparse representations to successfully reduce the level of catastrophic interference. Like
the dual-network architectures, their architecture also exhibits a list-length and no list-
strength effect. Hinton & Plaut12 were able to reduce interference in new learning by using
two different kinds of weights instead of one. One set changed rapidly, but decayed to zero
rapidly (“fast” weights); the other was hard to change, but decayed only slowly back to zero
(“slow” weights). The weight used in the learning algorithm was a combination of slow and
fast weights. This technique, although frequently cited, has not yet been thoroughly explored,
although it is likely that there are storage capacity limitations to this type of solution. In other
words, while it can be used to mitigate the influence of one or two new patterns on previously
learned patterns, is the technique sufficiently powerful to permit true sequential learning
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similar to that in dual-network architectures?  Another more recent dual-weight
architectures48 employs two sets of independent weights and taxonomically falls somewhere
between dual-network models40, 41 and single-network, dual-weight architectures12. Cascade-
correlation49 has also been tried as a means of alleviating catastrophic interference with some
success50.

Conclusion

For nearly a decade researchers have been studying the problem of catastrophic interference
in connectionist networks. Modeling true sequential learning of the kind that we humans do
requires appropriate solutions of this problem to be found. Recent research seems to indicate
that one possible solution to the problem is two separate, permanently interacting processing
areas, one for new information, the other for long-term storage of previously learning
information. Even though it is far from obvious that this is the only way to handle the
problem of catastrophic forgetting, certain authors have argued that this is how the human
brain evolved to deal with the problem.

Outstanding questions

Do all models that exhibit gradual forgetting rather than catastrophic forgetting necessarily
rely on some form of representational separation?

Are dual-network systems really necessary for the brain to overcome the problem of
catastrophic forgetting?

How does episodic memory fit into this picture?

Does the pseudopattern mechanism proposed by Robins really have a neural correlate?  If so,
are neural pseudopatterns produced, say, during REM sleep?  And are they really as random
as the pseudopatterns used in present dual-network connectionist models or has the brain
evolved a better way of doing “rehearsal” in the absence of real input from the environment?

How close can we get to the ideal of good generalization, good discrimination, immunity to
catastrophic interference and good episodic memory in a single, distributed system?

What types of animals are subject to catastrophic interference and under what circumstances?
Are there circumstances under which humans do experience catastrophic forgetting?
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Box 1.  Why the problem of catastrophic interference is so hard

When a distributed network has learns to recognize an initial set of patterns, this means that it
has found a point in weight-space, Wintial, for which the network can recognize all of the
patterns it has seen. If the network now learns a new set of patterns, even if the new set is
small, it will move to a new solution point in weight-space, Wnew, corresponding to a set of
weights that allows the network to recognize the new patterns.  Catastrophic forgettinga,b

occurs when the new weight vector is completely inappropriate as a solution for the originally
learned patterns.

Now, if the “topography” of weight-space were predictable and varied smoothly from
one point to the next, catastrophic forgetting would not be a problem.  In fact, as McCloskey
and Cohena point out, from the outset everyone working with distributed networks knew that
new information would adversely affect already-learned information, but no one realized just
how bad it would be.

It turns out that weight-space is not exactly a network-friendly place. The very
existence of catastrophic forgetting suggested the presence of “weight cliffs,” i.e., areas
where moving even small distances over the weight-landscape would radically disrupt prior
learning.  A paper by Kolen & Pollackc clearly confirmed these intuitions. They showed that
even extremely small changes in the initial weights of a network could have immense effects
on convergence times, even for an extremely simple network (2-2-1) and an extremely simple
problem (XOR).  It is immediately obvious why this would imply that a move from Wintial to
Wnew could have catastrophic effects on the previously learned knowledge, both in terms of
the exact-recognition and retraining-time criteria for forgetting.

         

(Reprinted with permission, Complex Systems Publications)

These three figures show variations in convergence times for a 2-2-1 feedforward
backpropagation network learning XOR.  Two of the nine weights (i.e., six connection
weights and three bias weights) are varied, one along the x-axis, the other along the y-axis.
In the leftmost figure, the increments are of size 0.1 and the weights range from –10 to 10.  In
other words, 40,000 initial weight combinations were examined.  The second and third
figures also examine 40,000 combinations of the two weights, but “zoom in” on the area in
the square from the previous figure. White indicates the fastest convergence; black indicates
no convergence within 200 epochs.
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Box 2.  Approximating reality with "pseudopatterns"

Mixing previously learned items ("rehearsal") with the new items to be learned has
been shown to be an effective way to transform catastrophic forgetting into everyday gradual
forgettinga,b,c,d. But what if the old patterns are unavailable for rehearsal?  Robinsd developed
a technique that significantly decreased catastrophic interference, even in cases where the
previously learned patterns were not available for re-presentation to the network.  Robins'
idea was as simple as it was effective.

After a network has learned a series of patterns, its weights encode a function, f,
defined by those patterns.  Now, if the original patterns are no longer available, how can we
discover what f might have looked like, even approximately?  Robins’ solution was to
“bombard” the network inputs with random patterns (“pseudo-inputs”) and observe the
outputs generated by these random inputs. Each random input î that was fed through the
network produced an output ô. The association (î, ô) formed what Robins called a
“pseudopattern” (designated below by ψ)  because, of course, the network had never
previously actually seen the input î. These pseudopatterns approximate the originally learned
function, f, and can be  interleaved with the new patterns to be learned to prevent
catastrophic forgetting of the original patterns. So, just as rehearsing on previously learned
patterns prevents a network from forgetting those patterns, rehearsing on pseudopatterns that
approximate the function defined by the originally learned patterns also prevents catastrophic
forgetting of the original patterns (although, of course, it doesn’t work as well as rehearsing
on the original patterns). Frean & Robinse have developed some of the mathematics
underlying the use of pseudopatterns to alleviate forgetting. The pseudopattern technique has
also been successfully extended to Hopfield networksf.  Robinsg explored the possibility of
pseudopatterns as a means by which memory consolidation occurs.  This technique has also
been used successfully as the means of information transfer between storage areas in dual-
network memory modelsh,i.

One important question in this area is how best to optimize the pseudopatterns used to
recover information.  Are there ways to improve "quality" of the pseudopatterns so that they
better reflect the originally learned regularities in the environment?
==================================================================

Original Patterns

P1: I 1 O1

P2: I 2 O2

P3: I 3 O3

P4: I 4 O4

...
PN: I N ON

This set of inputs This network has
and outputs defines now learned f
a function f

We now want the network to learn a set of New Patterns, without forgetting the
previously learned information.  BUT we discover that the Original Patterns are no
longer available, and therefore cannot be interleaved with the New Patterns to be
learned.

Question: Can we create Substitute Patterns to replace the Original Patterns?

A neural network N
learns all of the
patterns (i.e., learns
to correctly associate
all input/output
pairs I i and Oi
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Answer: Yes,  by generating a series of random input patterns, Î i , each of which is fed
through the network to produce an output Ôi, as follows:

ψ1:  Î 1 Ô1

ψ2:  Î 2 Ô2

ψ3:  Î 3 Ô3

ψ4:  Î 4 Ô4

...
ψM: Î M ÔM

This set of pseudopatternsd {ψ1, ψ2, . . ., ψM} approximates the originally learned
function f.

These pseudopatterns will be interleaved with the New Patterns and the network will
learn the whole set of pseudopatterns along with the New Patterns, thereby significantly
reducing catastrophic forgetting of the originally learned information.
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Box 3. Catastrophic interference in animals

In humans, new learning interferes with old, but the old information is forgotten
gradually, rather than catastrophically.a  McClelland, McNaughton, O'Reillyb suggest that this
may be due to our hippocampal-neocortical separation. But does catastrophic interference
affect other animals and under what conditions?  One likely candidate seems to be the
learning — and catastrophic forgetting — of information related to time in the rat.

In their natural environment, animals are very capable predictors of important events
like periodical food availability, which plausibly involves an ability to represent time. In the
laboratory, researchers have developed several techniques to study timing processes. In the
peak procedurec rats learn to press a lever to receive food after a certain fixed duration.
During each trial, the rate of lever-presses per second is recorded. The moment of maximum
lever-pressing is called the peak timed and reflects the moment at which the animal
maximally expects the food.

The observation of steady-state behavior following training has long been used to
understand the mechanisms underlying timing abilitiesd,e,f. Recently it has also been used to
study the acquisition of a new temporal representationg,h,i.

We will compare two scenarios.  In the first sequential learning experiment, the
animal will first learn a 40-second duration and then an 8-second duration (transition 40-8
(1)).  Once the new 8-second duration is learned, the criterion is switched back to the original
40-second duration (transition 8-40 (2)).  In both cases, the learning of the new duration can
be described in terms of a moving peak time.  Crucially, the second transition is no faster
than the first.  In short, there is no evidences of savings from the initial 40-second learning.
One reasonable interpretation of this result is that new 8-second learning completely
(catastrophically) wiped out the original 40-second learning.

Figure 0. Response rate functions for the reference session (white curve), the

transition session (black curve) and the next (gray curve).
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However, things are very different in the concurrent-learning scenario in which the
animal learns a 40-second and an 8-second duration concurrently.  Sometimes food is
presented 8 seconds after the start of the trial, sometimes after 40-seconds.  The animal is
then switched to a 40-second-only reinforcement schedule, which is continued until the
animal consistently produces a single peak time of 40 seconds.  The reinforcement duration is
then switched to 8 seconds (transition 40-8 (3)) and then switched back to 40 seconds again
(transition 8-40 (4)). Unlike the previous case in which there was no savings from its
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previous learning, the animal, having learned the two durations concurrently, can now rapidly
shift back to the correct 8-second duration and, later, to the correct 40-second duration.  In
this case, while there is forgetting, there is no catastrophic forgetting of the originally learned
8-second duration. This would imply that the representations developed by the rat during
concurrent learning are significantly different than those developed during sequential time-
duration learning.

This is almost precisely what would occur if a simple feedforward backpropagation
network were used to model these time-learning data.

McClelland, McNaughton, and O'Reilly (1995) suggest that catastrophic forgetting
may be avoided in higher mammals because of their development of a hippocampal-
neocortical separation.  It is an open question whether lower animals in which this separation
is absent would suffer from catastrophic interference produced by the sequential learning of
patterns likely to interfere with one another, as the sequential learning of a 40-second
duration seemed to interfere with the prior learning of an 8-second duration in the rat.
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Box 4.  Catastrophic "remembering"

One of the most complete analyses of the problem of catastrophic interference
appeared in Sharkey & Sharkeya. In this paper they carefully analyzed the underlying reasons
for this type of interference and, significantly, introduced the notion of catastrophic
remembering. Unlike catastrophic forgetting, catastrophic remembering is not caused by
learning new data after having already learned an initial set of patterns, but rather is caused
by the network learning a function, in some sense, "too well."

To understand the notion of catastrophic remembering, consider a network that learns
to auto-associate a large number of patterns. The way in which the network "knows" whether
or not is has seen a particular pattern before is by comparing the pattern on input and the
result of its having passed through the network. If there is very little difference, it concludes
that it already auto-associated that particular pattern. In other words, it had already seen it. On
the other hand, a large input-output difference means that it has encountered a new pattern.
But now, consider what happens if the network has learned so many patterns that it has
effectively learned the identity function. Once the network can reliably produce on output
what it received on input for a large enough set of patterns, it will generalize correctly but it
will "remember" virtually any pattern, whether or not it has actually ever seen it before. The
fundamental difficulty is that the network has then lost its ability to discriminate previously
seen input from new input, even though it is generalizing the new input correctly. The
problem is that the ability to generalize to the identity function will necessarily mean that
there will be a loss of discrimination.

The problem of catastrophic remembering remains an important one and one for
which current auto-associative connectionist memory models have no immediate answer.
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