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The Dynamics of Active Categorical Perception in an 

Evolved Model Agent

Randall D. Beer
Department of Electrical Engineering and Computer Science, and Department of Biology Case 
Western Reserve University

Notions of embodiment, situatedness, and dynamics are increasingly being debated in cognitive sci-
ence. However, these debates are often carried out in the absence of concrete examples. In order to

build intuition, this paper explores a model agent to illustrate how the perspective and tools of dynam-

ical systems theory can be applied to the analysis of situated, embodied agents capable of minimally
cognitive behavior. Specifically, we study a model agent whose “nervous system” was evolved using a

genetic algorithm to catch circular objects and to avoid diamond-shaped ones. After characterizing

the performance, behavioral strategy and psychophysics of the best-evolved agent, its dynamics are
analyzed in some detail at three different levels: (1) the entire coupled brain/body/environment sys-

tem; (2) the interaction between agent and environment that generates the observed coupled dynam-

ics; (3) the underlying neuronal properties responsible for the agent dynamics. This analysis offers
both explanatory insight and testable predictions. The paper concludes with discussions of the overall

picture that emerges from this analysis, the challenges this picture poses to traditional notions of rep-

resentation, and the utility of a research methodology involving the analysis of simpler idealized mod-
els of complete brain/body/environment systems.
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1 Introduction

“May you live in interesting times.” This ancient Chi-
nese curse has never been more appropriate than it is
of cognitive science today. Once upon a time, life was
simple. Cognition was computation, and everyone
knew what that meant: formal manipulation of quasi-
linguistic symbolic representations by syntactic rules.
Then, in the early 1980s, connectionism began to
muddy the theoretical waters by significantly expand-
ing our notion of what a representation could be and
the form a computation could take.

Now notions of situatedness, embodiment, and
dynamics are threatening to once again revolutionize

some of our most basic assumptions about what cog-
nition is and how it should be understood. For a situ-
ated, embodied agent, taking action appropriate to
both its immediate circumstances and its long-term
goals is the primary concern, and cognition becomes
only one resource among many in service of this
objective. An agent’s physical body, the structure of
its environment, and its social context can play as
important a role in the generation of its behavior as its
brain. Indeed, in a very real sense, cognition can no
longer be seen as limited to an agent’s head, but can
be distributed across a group of agents and artifacts.

Dynamical approaches emphasize the temporal
dimension of cognition, and the way in which an
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agent’s behavior arises from the ongoing interaction
between its brain, its body and its environment. On
this view, the focus shifts from accurately represent-
ing an environment to continuously engaging that
environment with a body so as to stabilize coordinated
patterns of behavior that are adaptive for the agent.
Rather than assigning representational content to neu-
ronal states, the mathematical tools of dynamical sys-
tems theory are used to characterize the structure of
the space of possible behavioral trajectories and the
internal and external forces that shape the particular
trajectory that unfolds. Indeed, a dynamical approach
to situated action raises important questions about the
very necessity of notions of representation and com-
putation in cognitive theorizing.

Not surprisingly, such claims have met with a
great deal of skepticism, and there is considerable
controversy regarding the fundamental significance of
situatedness, embodiment, and dynamics to cognitive
science. Are these notions just minor corrections to
the classical picture of cognition, or do they radically
alter the entire enterprise of cognitive science? Unfor-
tunately, as in the early days of connectionism, the ini-
tial debates have often been based more on competing
intuitions than facts. Concrete dynamical models of a
wide range of cognitive phenomena are under construc-
tion (including language, cognitive development, deci-
sion-making, perception, and action (for reviews, see
Port & van Gelder (1995) and Beer (2000)). But in the
meantime, one powerful way to improve our intuitions,
clarify the key issues and sharpen the debate is through
the careful study of simpler idealized models of mini-
mally cognitive behavior, the simplest behavior that
raises issues of genuine cognitive interest (Beer, 1996).
Detailed dynamical analyses of situated and embodied
model agents can help us to expand our theoretical
imagination and to better ground the ongoing debates in
concrete examples (Beer, 1997, 1998). What kinds of
cognitive phenomena can dynamical notions account
for? What kinds of mathematical tools can be brought to
bear, and what sorts of insights do they provide? What is
the nature of a dynamical explanation and how does it
differ from more traditional modes of explanation in
cognitive science? What are the advantages and disad-
vantages of such an explanation? We will explore
these and other questions in the context of a detailed
dynamical analysis of a particular model agent.

What sort of minimally cognitive behavior should
we examine? Stably partitioning the world into

objects with distinctive properties is one of the most
fundamental activities that an agent must perform.
Indeed, it has been argued that categorical perception,
as this activity is often called, may provide a neces-
sary substrate for higher cognition (Harnad, 1987),
making it particularly appropriate for detailed study as
a minimally cognitive behavior. In categorical percep-
tion, the continuous signals received by sense organs
are sorted into discrete categories, whose members
resemble one another more than they resemble mem-
bers of other categories. The paradigmatic example of
categorical perception is the perception of phoneme
boundaries in continuous speech (Liberman, Cooper,
Shankweiler, & Studdert-Kennedy, 1967), but other
examples include color categorization in humans
(Boynton, 1975) and species-specific sound categoriza-
tion in monkeys, birds, frogs, toads and insects (Ehret,
1987; Wyttenbach, May, & Hoy, 1996). A variety of
neural network models of categorical perception have
been developed and analyzed (Harnad, Hanson, &
Lubin, 1995; Tijsseling & Harnad, 1997; Damper &
Harnad, 2000; Cangelosi, Greco, & Harnad, 2000).

In this paper, I present a dynamical analysis of a
previously developed model agent that “visually” dis-
criminates between objects (Beer, 1996). This agent is
controlled by a dynamical “nervous system” that was
evolved using a genetic algorithm to catch circular
objects and avoid diamond-shaped objects. The inten-
tion here is not to propose a serious model of categor-
ical perception, but rather to use this model agent to
explore the implications of dynamical explanation for
cognitive agents. For this reason, we will take the
analysis of this agent very seriously, systematically
examining in considerable depth each aspect of its
behavior and the mechanisms underlying that behav-
ior. While some may find the level of technical detail
tedious, it is a basic premise of this work that a proper
appreciation of the nature of dynamical explanation
requires a thorough grounding in concrete examples.
We must also address nontrivial issues involved in
extending the techniques utilized for dynamical analy-
sis of sensorimotor behavior to minimally cognitive
behavior. Furthermore, the ability to analyze a single
minimally cognitive agent is a crucial prerequisite for
abstracting general principles from the analysis of
many such agents. Think of this exercise, then, as a
form of mental calisthenics, an intellectual warm-up
for the dynamical analyses of a wider range of agents
and behaviors.
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The paper is organized as follows. The next sec-
tion presents an overview of the conceptual frame-
work within which the work described in this paper is
carried out, one that attempts to do justice to the
embodied, situated and dynamical nature of cognitive
agents. This is followed by a review of our object dis-
crimination experiments. I then summarize the overall
performance and the behavioral strategy used by the
best agent that was evolved. Next, I describe the
results of psychophysical experiments that demon-
strate categorical perception in the evolved agent,
determine the object features that matter to the dis-
crimination, and characterize the manner in which the
decision to catch or avoid is made. I then analyze this
evolved agent, first characterizing the dynamics of the
entire agent-environment system, then decomposing
this in terms of the interactions between the agent and
its environment, and finally examining the neural
implementation of the agent dynamics. The paper
concludes with discussions of the overall picture that
emerges from this analysis, the relationship of this
picture to traditional notions of representation, and the
utility of a research methodology based on analyzing
simpler idealized models of complete brain/body/
environment systems.

2 An Embodied, Situated, Dynamical 
Perspective on Cognition

What does it mean to take an embodied, situated or
dynamical perspective on cognition, let alone all three
simultaneously? There are probably as many answers
to this question as there are advocates or critics of
these various positions. Thus, I will make no attempt
here to provide a critical survey of the ongoing
debates or to develop and defend a general situated or
dynamical position. Fortunately, this ground is being
well-covered elsewhere (Clark, 1997). Rather, the
more modest aim of this section is to merely provide a
brief sketch of the general conceptual framework
within which the particular analysis described in this
paper will be carried out (Beer, 1995a, 1997).

As I intend them, embodiment and situatedness
are closely related concepts. Both reject the notion
that purely intellectual ratiocination is the defining
feature of the cognitive. Rather, embodiment empha-
sizes the role of an agent’s own body in its cognition,
while situatedness emphasizes the role of an agent’s

immediate physical and social environment (Gibson,
1979; Suchman, 1987; Beer, 1990; Brooks, 1991a;
Varela, Thompson, & Rosch, 1991; Ballard, 1991;
Hutchins, 1995; Hendriks-Jansen, 1996; Clancey, 1997;
Agre, 1997; Glenberg, 1997; Lakoff & Johnson, 1998;
Arkin, 1998; Pfeifer & Scheier, 1999). On this view,
situated action is the fundamental concern, and cogni-
tion is an elaboration of this more basic capacity, and
one resource among many that can be brought to bear
as an agent encounters its world. After all, nervous
systems originally evolved to coordinate behavior, not
to balance checkbooks. An embodied nervous system
can utilize the natural biomechanics of its body, the
geometry of its sensory surfaces, and its ability to
actively control these surfaces to considerably sim-
plify many problems. Likewise, a situated agent can
utilize and manipulate the physical and functional
organization of the space around it, as well as the
social organization in which it exists, to offload prob-
lems to its environment. On this view, cognitive
behavior arises from the interaction between a brain, a
body and an environment (Figure 1), and cannot prop-
erly be studied as a product of the mind/brain alone
(Beer, 1995a). Given that nervous systems and bodies
co-evolve with one another and with their environ-
ment, the need for such a coupled perspective is
hardly surprising. What is surprising is the extent to
which such an embodied, situated perspective can

Figure 1 A dynamical perspective on a situated, em-
bodied agent. The nervous system, body and environment
of an agent are each conceptualized as dynamical sys-
tems that are in constant interaction. From this viewpoint,
an agent’s behavior arises from this interaction between
these subsystems and cannot properly be attributed to any
one component in isolation from the others.
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alter our very conception of cognition, as well as the
domains in which we seek to understand its underly-
ing mechanisms.

By a dynamical perspective, I mean simply one in
which the concepts and mathematical tools of dynam-
ical systems theory are applied to the analysis of the
temporal behavior of a cognitive system (Ashby,
1952; Skarda & Freeman, 1987; Thelen & Smith,
1994; Kelso, 1995; Elman, 1995; Beer, 1995 ; Port &
van Gelder, 1995; van Gelder, 1998; Beer, 2000; The-
len, Schöner, Scheier, & Smith, 2001). A dynamical
system is a mathematical object that unambiguously
describes how the state of some system evolves over
time. More formally, a dynamical system is a triple

 consisting of an ordered time set T, a state
space S, and an evolution operator  that
transforms an initial state  at time  to
another state  at time . The time set T may
be continuous or discrete. The state space S may be
numerical or symbolic, continuous or discrete, or a
hybrid of the two, and it may be finite- or infinite-
dimensional depending on the number of variables
required to fully describe the state of the system. The
evolution operator  may be given explicitly or
defined implicitly, it may be deterministic or stochas-
tic and it may have inputs (non-autonomous) or not
(autonomous). Sets of differential or difference equa-
tions, cellular automata, finite state machines and Tur-
ing machines are all examples of dynamical systems.
Dynamical systems theory offers a wide variety of
tools for analyzing the temporal behavior of such sys-
tems, including the identification of invariant sets
(e.g., equilbrium points, limit cycles, etc.), a charac-
terization of their local and global structure (e.g., sta-
bility), and their dependence on parameters (e.g.,
bifurcations) (Abraham & Shaw, 1992; Strogatz,
1994).

Thus, to apply the tools of dynamical systems the-
ory to a cognitive process is to seek a set of state vari-
ables that uniquely characterize the behavior of the
process and to uncover the laws by which these states
evolve in time. Armed with such a dynamical model,
the dynamicist then attempts to understand the organ-
izing features of its dynamics and the response of
those dynamics to inputs or changes in system param-
eters. Here the focus is on how the system’s behavior
unfolds over time and the various “forces” that shape
this trajectory. The importance of the states that the
system passes through lies not so much in any content

that they may be assigned, but rather in their sensitiv-
ity to subsequent inputs and the future behavior that
they make possible.

While embodied, situated, and dynamical per-
spectives can be and have been independently devel-
oped and defended, these viewpoints work much
better as a unit. Taking a dynamical perspective on sit-
uated, embodied action, an agent’s nervous system,
its body and its environment are each described as
dynamical systems, which are coupled (Figure 1).
Because all of the individual components are
described in the same mathematical language, it is
much easier to approach questions involving their
interaction. To say that an agent’s behavior arises
from the interaction between its brain, body, and envi-
ronment, for example, simply means that it is a trajec-
tory of the complete dynamical system formed by
their coupling, and the explanatory focus shifts to the
properties of this trajectory and the mechanisms by
which it is generated and stabilized. This common
language can be applied to cognitive processes, the
neurophysiological processes that support it, non-cog-
nitive human behavior, and the adaptive behavior of
simpler animals, as well as the emergence of cogni-
tion in development and evolution. Thus, in dynami-
cal language, a unified theoretical framework for
cognitive science broadly construed begins to seem
possible.

3 An Object Discrimination Task

In a previous series of experiments, model agents
were evolved that could “visually” discriminate
between circles and diamonds, catching the former
while avoiding the latter. These experiments were
designed to produce evolved examples of categorical
perception, the best of which we will study in Sections
4–8. Complete details of these experiments can be
found in an earlier paper (Beer, 1996).

The agent has a circular body with a diameter of
30, and can move horizontally as objects fall from
above (Figure 2A). Horizontal velocity is proportional
to the sum of opposing forces produced by two
motors. The agent’s “eye” consists of seven rays dis-
tributed over a visual angle of π/6. An intersection
between a ray and an object causes an input to be
injected into the corresponding sensory neuron, with
the magnitude of the injected input inversely propor-

T S φt, ,〈 〉
φt : S S→

x0 S∈ t0 T∈
xt S∈ t T∈

φt



Beer Categorical Perception 213

Figure 2 Basic setup for the categorical perception experiments. (A) The agent can move horizontally while objects
fall from above. It uses an array of seven distance sensors to discriminate between circular (left) and diamond-shaped
(right) objects, catching the former while avoiding the latter. (B) Examples of the class of hybrid objects, RH (φ; α) as, α
is varied from 0 (circle) to 1 (diamond). (C) The network architecture consists of seven sensory neurons fully connected
to five fully interconnected interneurons, which are in turn fully connected to two motor neurons. All connections and
neurons are bilaterally symmetric.
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tional to the distance to the object along that ray.
When the rays are at their maximum length, no input
is injected, while the maximum input is injected for
rays of zero length.

Objects fall straight down from the top of the
environment with a fixed vertical velocity of –3 and
an initial horizontal offset from the agent in the range
±50. Circular objects had a diameter of 30 and dia-
monds had sides of length 30. Both for uniformity of
notation and for later analysis, it is convenient to
define a parameterized class of hybrid objects that
continuously interpolate between a circle and a dia-
mond, even though the agent was exposed only to cir-
cles and diamonds during evolution. This is most
easily done in polar coordinates. If the circle is
defined by RC (φ) = 15 and the diamond is defined by

then the hybrid objects are given by RH (φ; α) = (1 – α) ×
RC (φ) + αRD (φ). Sample objects produced as α var-
ing from 0 to 1 are shown in Figure 2B.

The agent’s behavior is controlled by a continu-
ous-time recurrent neural network (CTRNN) with the
following state equation (Beer, 1995c)

where s is the state of each neuron, τ is its time con-
stant, wji is the strength of the connection from the jth

to the ith neuron, g is a gain, θ is a bias term, σ(x) = 1/
(1 + e–x) is the standard logistic activation function,
and I represents an external input (e.g., from a sensor).
It will sometimes be convenient to refer to the output
of a neuron oi = σ(si + θi) rather than its state. The net-
work architecture was bilaterally symmetric in the
connection weights, biases, and time constants. The
architecture consisted of seven ray sensory neurons

projecting to five fully interconnected interneurons,
which in turn projected to two motor neurons control-
ling horizontal motion (Figure 2C). All sensory neu-
rons shared the same gain, bias, and time constant,
while all other neurons had a gain of 1.

Thus, the equations for the complete model take
the form

(1)

where x is the horizontal position of the object relative
to the agent’s midline, y is the vertical position of the
object relative to the agent, and Ii (x, y; α) is the sen-
sory input from the ith ray due to a hybrid object with
the given α at location (x, y) in agent-centered coordi-
nates.

The connection weights, biases, time constants,
and gain in the earlier equations were evolved. The
evolutionary algorithm used was a real-valued popula-
tion-based hill climber (Bäck, 1996). The perform-
ance measure to be maximized was Σ24

j = 1 pi /24, where
pi = 1 – | di | for circles (α = 0) and pi = | di | for dia-
monds (α = 1), and di is the horizontal distance
between the centers of the object and the agent when
their vertical separation goes to zero on the ith trial. A
total of 24 evaluation trials were uniformly distributed
over the range of horizontal offsets.

Fourteen circle/diamond discrimination experi-
ments were run with minor variations in the protocol
described earlier and with different random seeds.
Seven of these achieved an average performance of
> 90% on the discrimination task. Additional experi-
ments that involved discriminating a circle from a line
were also run. The results of all of these experiments
have been previously reported (Beer, 1996). In the
present paper, we focus on the detailed analysis of the
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best circle/diamond discrimination agent that was
evolved over all of these experiments.

4 Performance and Behavior

The best evolved agent achieved a mean performance
of 99.83% on the 24 evaluation trials after 80 genera-
tions of evolution, with a mean performance of
97.08% on 10,000 random trials whose initial hori-
zontal position was drawn from a uniform distribution
over the range ± 50. The dependence of performance
on the initial horizontal position of an object is illus-
trated in Figure 3. Note that there are very narrow
spikes of poor performance near the centerline for
both circles and diamonds. In general, due to the bilat-
eral symmetry of the task, objects whose initial posi-
tions are very near the centerline are difficult to
handle. For example, a diamond that begins exactly
centered over the agent must be caught, because there
is nothing to break the bilateral symmetry of the body,
environment and nervous system. There are also two
broader valleys of poor performance for circles. These
fall between the locations of the 24 evaluation trials
used during evolution.

The basic strategy that this agent uses to distin-
guish between circles and diamonds utilizes active
scanning of the object as it falls (Figure 4A). Initially,
the agent foveates any object by moving so as to
center the object within its field of view. Next, the
agent scans back and forth over the object. For a cir-
cle, the amplitude of the scan decreases as the object
nears until it is centered, while the agent makes a large
avoidance movement for a diamond. Note that,
although the agent responds more quickly to a dia-
mond than a circle, the first half of the motion is qual-
itatively very similar for both circles and diamonds
(Figure 4B). However, the circle and diamond
motions differ qualitatively at the second reversal
(Figure 4B, arrow), with the agent moving back
toward a circle, but pausing and then moving further
away from a diamond. This suggests that the second
reversal may be a key event in the discrimination, and
something that we would like to better understand.

Note how the motion trajectories group into two
bilaterally symmetric bundles depending on which
side of the agent the object appears initially. There is
one exception to this. For circles, the centermost trial
on each side crosses over to join the bundle character-

istic of initial positions on the opposite side. This pair
of central trajectories corresponds to the inner two
“fingers” of high performance that are separated from
the more peripheral trials by the low-performance val-
leys mentioned above (Figure 3A). Thus, it appears
that the central two trials are treated somewhat differ-
ently from the remaining trials, and the low-perform-
ance valleys may represent a transition region
between these two strategies.

The agent’s active responses to a falling object
can be characterized by examining its reaction to
objects held at fixed distances (Figure 5). The agent
foveates any object placed slightly off center at large
vertical distances (y = 200, 175). At intermediate dis-
tances (y = 150, 125, 100), the agent actively scans
objects, with diamonds scanned at a higher frequency
than circles. At closer distances (y = 75), a circle is

Figure 3 Generalization performance over initial hori-
zontal position of the best-evolved agent. (A) Circle catch
performance as a function of initial object location. (B)
Diamond avoidance performance as a function of initial
object location.
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Figure 4 Behavior of the best evolved agent. (A) The agent’s motion over time in object-centered coordinates for cir-
cles (left) and diamonds (right) beginning on the left side (gray) and the right side (black) of the agent. Note that the cen-
tral most trajectory of the circle trials follows the path characteristic of trajectories from the opposite side. (B) A
comparison of the motion for a single circle (gray) and diamond (black) trial from the same initial location. Arrows indi-
cate the location of the second reversal in each trajectory. (C) What the agent “sees”. The outputs of the seven ray sen-
sors over time for the circle (left) and diamond (right) trials from part B are shown as density plots. The shading ranges
from black for an output of 0 to white for an output of 1.
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Figure 5 Active perception in the best evolved agent. The agent’s motion over time in response to a circle (gray) or
diamond (black) fixed at a range of vertical distances is plotted.
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centered and a diamond is avoided. Finally, at even
closer distances (y = 50), a diamond is centered and a
circle is avoided. Of course, this is not a situation that
the agent would normally find itself in, because by
this point a circle would normally have already been
centered and a diamond would normally have already
been avoided.

The agent’s strategy of actively scanning falling
objects is an interesting one. Given the coarse spatial
resolution of the agent’s seven rays, it is likely that
this scanning accentuates the small differences
between a circle and a diamond. To see just how small
these differences are, it is useful to visualize circles
and diamonds from the agent’s perspective (Figure
4C). While the difference between a circle and a dia-
mond is obvious by the end of the interaction (because
a caught circle fills the field of view while an avoided
diamond leaves the field of view empty), it would be
quite a challenge to perform this discrimination using
only static snapshots of the visual array near the begin-
ning of the behavior. Active control of body position
and orientation has become an important theme in
vision research, where it appears to considerably sim-
plify otherwise intractable problems (Ballard, 1991;
Churchland, Ramachandran, & Sejnsowski, 1994).

5 Psychophysics

5.1 Labeling and Discrimination

The two major defining characteristics of categorical
perception are labeling and discrimination (Studdert-
Kennedy, Liberman, Harris, & Cooper, 1970; Ehret,
1987). Labeling requires that stimuli from a continuum
are partitioned into distinct classes, whereas discrimi-
nation requires that stimuli are better distinguished
between classes than within a class. For this agent, clas-
sification is manifested in its approach or avoidance
behavior. In order to demonstrate labeling, the mean
catch performance was plotted as the α parameter of a
hybrid object smoothly varied from 0 (circle) to 1
(diamond). The resulting curve is sigmoidal in shape,
with the category boundary occurring at approxi-
mately α = 0.3 (Figure 6A). Below this value, objects
are classified as circles and caught. Above this value,
objects are classified as diamonds and avoided (i.e.,
their catch performance is 0). In order to demonstrate
discrimination, the mean difference in catch perform-

Figure 6 Demonstration of labeling and discrimination
in the best evolved agent. (A) Average catch perform-
ance as a function of α shows a sigmoidal shape, with a
transition from catching to avoidance behavior at about α
= 0.3. Note that there is also an anomalous peak of rela-
tively high catch performance at about α = 0.85. Each
point represents mean value and standard deviation of
1000 trials, using initial horizontal offsets drawn from a
uniform distribution over ± 50. (B) Average difference in
catch performance for α values that differ by 0.1 as a
function of α is bell shaped, with a peak discrimination at
about α = 0.3. Note that there is a double anomalous
peak of high discrimination centered at about α = 0.85.
Each point represents mean value and standard devia-
tion of 1000 trials. (C) A density plot illustrating the struc-
ture of the data underlying the plot in part A. The mean
catch performance is plotted as a function of the initial
horizontal position and the α value of an object, with
black representing a catch performance of 0 and white
representing a catch performance of 100%. The plot in
part A can be recovered by averaging over x, while the
plots in Figure 3 represent α = 0 and α = 1 slices through
this plot.
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ance for hybrid objects separated by a ∆α of 0.1 was
plotted as a function of α. The resulting curve is bell-
shaped, with a peak discrimination occurring near the
category boundary at α = 0.3 (Figure 6B).

Note that both the labeling and discrimination
plots are marred by an anomalous peak of high catch
performance around α = 0.85 (near-diamond shapes).
Recall that the agent was only evolved to discriminate
circles (α = 0) and diamonds (α = 1); it was never
exposed to objects with intermediate values of α dur-
ing evolution. Thus, the sigmoidal labeling curve and
the bell-shaped discrimination curve were interpolated
by the evolved network, and it is hardly surprising that
mistakes might appear at intermediate values to which
the agent was never exposed during evolution. As will
be demonstrated later, this anomalous peak provides
an important clue to the organization of the agent-
environment dynamics that has evolved.

Finally, note that there is a fair amount of varia-
bility in both the labeling and discrimination plots.
We already know that there are two valleys of avoid-
ance behavior near the centerline for circles (Figure
3A) and that there are extremely narrow spikes of
catch behavior near the centerline for diamonds (Fig-
ure 3B). Such misclassifications clearly contribute to
variability in the mean performance statistics. In order
to obtain a more detailed picture of the structure
underlying this variability for general α, we can plot
catch performance as a function of the initial horizon-
tal offset of an object as α is varied from 0 to 1 (Figure
6C). In this plot, light bands correspond to catching
behavior and dark bands correspond to avoidance
behavior. Both the category boundary around α = 0.3
and the anomalous peak at about α = 0.85 have a very
similar structure, with central and peripheral horizon-
tal offsets switching behavior first as α is increased,
followed by horizontal offsets at about ± 20, and
finally intermediate offsets. A faint peak near α = 0.6
also exhibits a very similar structure (this small peak
can also be seen in Figure 6A).

5.2 What Features Matter to the 
Discrimination?

What object features does the evolved agent use to
make its categorization? Since the size of the circle is
such that it can be inscribed within the diamond, the
two objects differ only in the four corners shown in
Figure 7A, only three of which are visible to the agent

as the object falls. A coarse determination of the fea-
tures important to discrimination can be made by
examining the agent’s response to the eight possible
combinations of these three features. As the Figure
shows, the presence of a single corner on either side of
the object is sufficient to trigger avoidance, while the
presence or absence of the corner facing the agent
appears to make very little difference to the agent’s
response. This suggests that object width is the major
determining factor in discrimination.

In order to test this hypothesis, we can examine
the agent’s response to a variety of different objects
whose width varies from 30 (the width of the circle) to

 (the width of the diamond) (Figure 7B).
In all cases, the resulting labeling curves are qualita-
tively similar to Figure 6A (shown as a solid black
curve in Figure 7B for reference), with the category
boundary occurring at a width of 33.1 (SD 0.6) and the
anomalous peak occurring at a mean width of 40.3 (SD

1.0). Note that, as would be expected, the labeling
curve of hybrid objects is more similar to that for cir-
cles (dark gray curve) for α values closer to 0 and it is
more similar to that for diamonds (dotted curve) for α
values closer to 1. The location of the category bound-
ary varies in a consistent way with type of object, sug-
gesting that the agent’s behavior is also somewhat
sensitive to the amount that an object protrudes
toward the agent.

5.3 When is the Decision Made?

At what point does the agent make its decision to
catch or avoid an object? We can probe this question
by switching the identity of the object at different
points in time and asking when the agent has commit-
ted itself to a response. Figure 8A shows how the final
catch performance at a single horizontal offset varies
as a circle is switched to a diamond at later and later
times (left) and how the final avoidance performance
at a single horizontal offset varies as a diamond is
switched to a circle at later and later times (right). For
example, a high value in the circle plots (left) means
that, even though the circle is switched to a diamond
at that point, the agent still responds as if it were a cir-
cle and was thus already committed to catching it.
However, the multiple sharp changes in performance
that occur in both plots as the time of the switch is var-
ied demonstrate that the agent’s behavior remains
quite sensitive to object identity until very late in the

30 2 42.43≈
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interaction. The plots for other horizontal offsets
exhibit the same general pattern (Figure 8B), and
some features of this pattern correlate closely with the
agent’s behavior (Figure 8C). For example, the brief

peak in catch performance for circles at about t = 33
and the sharp rise in avoidance performance for dia-
monds at about t = 29 coincide with the second
reversal.

Figure 7 A demonstration that object width is the primary feature used by the best evolved agent to discriminate cir-
cles from diamonds. (A) The agent’s performance on objects possessing all possible combinations of the three discrete
features (shown in black at top) that distinguish a circle from a diamond. Note that the agent only catches objects with
no left or right corners; the presence of either one or both left/right corners leads to avoidance. (B) Variation in catch per-
formance with object width for a variety of different objects, including a horizontal line (dashed gray curve), wedges
whose height is the same as the circle and the diamond (dashed black curves), diamonds (dotted black curve), the hy-
brid objects, RH (φ; α) (solid black curve), ellipses whose height is the same as the circle (solid light gray curve), and cir-
cles and ellipses whose height is the same as a diamond (solid dark gray curve). Note that, as their width is varied, all
objects produce a qualitatively similar response in the agent.
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Taken at face value, these results suggest that the
“decision” is repeatedly made and unmade as the
agent and the object interact. For example, the agent
seems to be completely uncommitted during the initial
foveation of a circle, but is then largely committed to

catching during the first scan (although there are times
when this commitment wavers). The agent is then
uncommitted during subsequent scans, but committed
to catching at each reversal. By the final reversal near
t = 38, the agent is largely committed to catching the

Figure 8 The effect of switching object identity at different times on the final decision to catch or avoid an object in the
best evolved agent. (A) Catch performance as a function of the time of switch from a circle to a diamond (left) and avoid-
ance performance as a function of the time of switch from a diamond to a circle (right) for a single initial horizontal offset.
(B) Catch (left) and avoidance (right) performance as a function of time of switch for twelve different initial horizontal po-
sitions. In both cases, note that the agent’s sensitivity to switches in object identity appears to vary considerably
throughout the interaction. (C) The normal behavioral trajectories for the initial horizontal offsets used in (B). Note the
correspondence between features of the behavioral trajectories and features of the performance plots in (B).
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Plate 1 The dynamics of the best evolved agent. (A) Steady-state horizontal velocity fields for circles (left) and dia-
monds (right). Each point represents the long-term horizontal velocity that the agent would eventually adopt if an object
were fixed at that location in its field of view. These fields correspond to an x· projection of the coordinates of the equilib-
rium points of the evolved continuous-time recurrent neural network as a function of x and y. Regions in which x· is di-
rected toward the midline (centering regions) are colored blue, whereas those in which x· is directed away from the
midline (avoidance regions) are colored red. The magnitude of x· is represented by the intensity of a color, with x· = 0 rep-
resented as black. Green regions are those in which multiple stable equilibrium points exist. The straight white lines in-
dicate boundaries across which the object intersects different numbers of rays. These ray tangencies divide the visual
field into disjoint regions of smooth dynamics. (B) The fields from part A with the movement trajectories from Figure 4A
superimposed. The trajectories are color-coded with instantaneous horizontal velocity using the same scheme as in part
A. If the interaction were frozen at any point along a trajectory, the color of that point would eventually approach the
color of the corresponding point of the steady-state field. However, since both the agent and the object are moving, the
instantaneous velocity lags behind the steady-state velocity. (C) Some additional example trajectories. The inner trajec-
tories are misclassifications taken from the regions of low performance in Figure 3. The outer trajectories demonstrate
that all sufficiently peripheral objects are avoided.
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object. The pattern is less clear-cut for diamonds.
However, by the time of the pause near t = 27, the
agent is fairly committed to avoiding the object
(although there are times during the final scan when
this commitment wavers). Thus, it is not until the
expression of the decision is nearly complete that a
stable decision can really be said to have been made.
These results suggest that the generation of a catch or
avoidance response is a complex, temporally extended
process, and it makes little sense to talk about the agent
having made a decision before its behavioral expression
of that decision. A similar view of decisions as tempo-
rally extended processes shaped by both sensory sig-
nals and neuronal state has begun to emerge from the
decision-making literature (Townsend & Busemeyer,
1995; Platt, 2002).

6 The Dynamics of the Coupled Agent–
Environment System

Let us now turn to an analysis of the dynamics under-
lying the behavioral and psychophysical phenomena
described in the previous two sections. The first step
in such an analysis is to characterize the dynamical
structure of the entire coupled system formed by the
evolved nervous system, the agent’s body and the fall-
ing object (Figure 1). There are a number of questions
that we would like to answer about the dynamics of
this agent–environment system. How is its dynamics
structured so that almost all circle trajectories result in
centering, while almost all diamond trajectories lead
to avoidance? How does this structure change as α
increases so that the agent’s response changes from
catch to avoid, resulting in a category boundary
between circles and diamonds at about α = 0.3? What
causes the anomalous peak at about α = 0.85?

From the equations describing the coupled agent–
environment system (equation 1), we can make sev-
eral general observations about its dynamics. First, the
system is 16-dimensional, because 16 separate differ-
ential equations are required to uniquely describe its
motion. Second, this system has no closed limit sets
such as equilibrium points or limit cycles because the
y· = –3 equation means that y is always decreasing.
Third, discontinuities are introduced into the dynam-
ics through the ray sensory neurons (neurons one
through seven) because Ii (x, y; α) is a discontinuous
function of x and y. There are locations where an

infinitesimal change in position can cause an object
that was not intersecting a ray to suddenly intersect it,
or vice versa. These ray tangencies divide the state
space into discrete cells of smooth dynamics which
depend on the size and shape of the object (see Plate 1),
making the agent a hybrid dynamical system (Johnson,
1994). One final general observation that we can make
is that the coupled agent-environment system is actu-
ally a one-parameter family of systems, because chang-
ing the object from a circle to a diamond amounts to
changing the α parameter from 0 to 1.

In order to say anything more specific about this
coupled dynamics, we must examine its detailed
structure. While it is not possible to directly visualize
the trajectories of such a high-dimensional system,
carefully chosen projections can provide important
insights into this structure. By examining various pro-
jections of the dynamics, it was discovered that com-
binations of x, y and an interneuron are most useful.
The three-dimensional projection (x, y, o9) leads to
particularly clear visualizations of the dynamics.
Interestingly, this projection includes an environmen-
tal state variable (the vertical position of the object), a
body state variable (the horizontal position of the
body relative to the object), and a neuronal state varia-
ble (the output of interneuron 9).

In the (x, y, o9) projection, the trajectories begin
as a line of initial states and move to decreasing y val-
ues as the object falls (Figure 9). When the leading
edge of the object reaches the leading edge of the
agent, a fitness value is assigned based on their hori-
zontal separation. By adjusting network parameters,
the evolutionary algorithm has been asked to structure
the dynamics of the entire coupled system so that the
line of initial states is concentrated near x = 0 by the
end of the trial for circles, but is dispersed to large
positive or negative values of x for diamonds.

Figure 9 shows the structure of the 24 evaluation
trials as α is varied from 0 to 1, with the trajectories
shaded according to final catch performance so that it
is easier to distinguish those that are caught from
those that are avoided. Note that the motion trajecto-
ries shown in Figure 4a are simply the projection of
the trajectories shown in Figure 9 onto the (x, y) plane.
As expected, there are no closed limit sets and the tra-
jectories merely flow from left to right. However, they
develop quite a bit of structure as the interaction
unfolds. In particular, note how the line of initial
states is separated into two distinct bundles of trajec-
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Figure 9 The dynamics of the coupled agent–environment system. The (x, y, o9) projections of twenty-four trajectories
of the system are shown. The plots are arranged in a counter-clockwise direction as α varies from 0 (circle) to 1 (dia-
mond). The trajectories are shaded according to catch performance, with lighter shades representing high catch per-
formance and darker shades representing low catch performance. Note that the trajectories are organized into two
bundles that wind around one another. For small values of α, these bundles collide on the axis of bilateral symmetry and
the objects are caught. As α increases, the bundles progressively unwind. As can be seen in the α = 0. 8 and α = 0.9
plots, the anomalous peak in Figure 6 corresponds to the two bundles colliding at their third crossing.
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Plate 2 The circle steady-state response fields of the bilateral pairs of interneurons 8/12 and 9/11. (A). A density plot of
the feedforward response fields of each interneuron in response to a circle placed at each point in the agent’s field of
view. Here only the feedforward connections from the sensory neurons to the interneurons are considered. White re-
gions correspond to an output of 1 while black regions correspond to an output of 0. (B) A density plot of the interneuron
response fields when the recurrent interactions are also taken into consideration. Note that intensity of the feedforward
response fields is modified in places and that regions of multistability appear (green). (C) The steady-state horizontal ve-
locity fields of each interneuron, color-coded in the same way as in Plate 1. These fields show the steady-state horizon-
tal velocity produced by each interneuron in response to a circle placed at each point in the field of view. (D) The net
steady-state horizontal velocity field formed by summing the four fields in Part C. Note that this summed response field
closely matches the steady-state horizontal velocity field shown in Plate 1A (left).
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tories that wind around each other several times. Each
time the agent scans to the right, the output of
interneuron 9 develops a peak (three arrows at top of
α = 0 plot) that allows the bundle to cross over the
other bundle’s corresponding scan to the left. Note
that the trajectory bundle resulting from objects that
initially appeared to the right of the agent exhibits two
peaks, while the bundle resulting from objects that ini-
tially appeared to the left exhibits only one. Of course,
due to bilateral symmetry, plots of the (x, y, o11) pro-
jection would be mirror images of these, with the
peaks occurring during scans to the left and the order
and number of peaks for objects initially on the left of
the agent reversed as compared with objects initially
on the right.

How do these plots help us to answer the ques-
tions raised at the beginning of this section? Let us
begin by examining the circle trials (α = 0). After
crossing over one another three times, the two circle
trajectory bundles appear to “collide” and merge at the
trajectory of bilateral symmetry rather than crossing a
fourth time (arrow at bottom). Note that one must be
careful in drawing such a conclusion from a single
lower-dimensional projection. However, examination
of other projections verifies that the two trajectory
bundles do indeed interpenetrate at this point (since
the agent dynamics is non-autonomous, distinct
behavioral trajectories can pass through the same neu-
ronal state). From the point of this collision on, both
bundles follow the trajectory of bilateral symmetry
(the trajectory that the dynamics follows in response
to an object dropped at the midline), resulting in accu-
rate catches. As α increases, the trajectories appear to
unwind. While they retain their basic shape, they shift
to larger values of y so that the peaks occur earlier in
time. As the bundles shift earlier in time with increas-
ing α, more and more trajectories miss the final colli-
sion and instead diverge from the trajectory of
bilateral symmetry until, by α = 0.5, the two bundles
do not intersect at all. As α continues to increase, the
two trajectory bundles continue to shift earlier in time
until they begin to collide at the third crossing at α =
0.8, resulting in catches that produce the anomalous
peak. As α increases even further, the bundles shift to
the point where, by α = 1, they cross only twice before
diverging.

These observations immediately suggest a predic-
tion. From our psychophysical analysis, we know that
the most important effect of increasing α is to increase

the width of the object. Assuming that the two trajec-
tory bundles continue to unwind with increasing
object size, we would expect that two additional colli-
sions should occur as the bundles intersect at the sec-
ond and then the first crossing. This reasoning
predicts that two additional anomalous peaks in catch
performance should be observed for objects wider
than the α = 1 diamond. As shown in Figure 10A, this
is indeed the case. The catch performance is plotted
for diamonds ranging in width from 30 to 100. From
30 to 42.4, the plot is a compressed version of the dot-
ted black line in Figure 7B, with the anomalous peak
appearing as a narrow spike. From a width of about
47.7 to about 54.5, there is a second short anomalous
peak. Finally, beginning around a width of 59, there is
a final slow increase in catch performance. Figure
10B shows how a collision of the two trajectory bun-
dles at the second crossing is responsible for the sec-
ond short peak (w = 51.2) and a collision at the first
crossing is responsible for final broad peak (w = 66),
as predicted. Note that, between these two anomalous
peaks, the bundles have unwound past the second
crossing (w = 54.8). Beyond the start of the last anom-
alous peak, the trajectory bundles have unwound com-
pletely (w = 89.6).

7 The Analysis of Agent–Environment 
Interaction

The characterization of the overall dynamical struc-
ture of the coupled agent–environment system in the
previous section certainly provided some explanatory
and even predictive insight into this agent’s behavior.
However, it could be argued that this characterization
is primarily descriptive in nature, detailing what the
structure is without explaining how it arises. The sec-
ond step in a dynamical analysis is to examine how
this structure emerges from the interaction between
the agent and its environment. What produces the
active scans? What causes the two trajectory bundles
to develop and to have the structure that they do? Why
do circle trajectories move back toward the midline
at the second reversal, while diamond trajectories
merely pause and then continue moving away? What
happens when the two bundles collide at the trajectory
of bilateral symmetry? What causes the two bundles
to unwind with increasing α? Why is object width the
determining factor in discrimination? What underlies
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Figure 10 Confirming a prediction of additional peaks as object width increases. (A) A plot of catch performance for a
diamond whose width varies from the width of a circle to more than twice the width of a normal diamond. Note that addi-
tional anomalous peaks occur. The dashed vertical lines correspond to the predicted widths at which anomalous peaks
should begin based on the reasoning described in the text. (B) Trajectory plots for diamond widths within the third peak
(w = 51.2), between the third and fourth peak (w = 54.8), and at two different points within the fourth peak (w = 66 and w
= 89.6). The format is the same as in Figure 9. Note that the two bundles continue to unwind with increasing object width
and that the two new anomalous peaks correspond to collisions occurring at the second or first crossing.
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the misclassifications that occasionally occur? Why is
the moment of decision to catch or avoid so difficult
to pin down?

7.1 Steady-State Effects

Once again, we have many different choices as to how
to decompose the dynamics of the agent–environment
system and how to visualize it. Clearly, whatever
decomposition we choose should emphasize the fac-
tors underlying movement, since the agent’s decision
is expressed in its motion over time and it is this
behavior that we want to explain. Thus, we will
decompose the agent–environment dynamics into: (1)
the effect that the relative positions of the object and
the agent have on the agent’s motion; (2) the effect
that the agent’s motion has on the relative positions of
the object and the agent.

Imagine a particular object fixed at some (x, y)
location in the agent’s field of view. This specifies a
constant set of sensory inputs to the evolved neural
circuit as described by the Ii (x, y; α) terms in equation
1. For constant inputs, the neural circuit is an autono-
mous dynamical system. It turns out that the only limit
sets exhibited by this circuit are equilibrium points,
whose positions and stabilities we can calculate.
Although each stable equilibrium point is 14-dimen-
sional, the only quantity that directly affects the
agent’s motion is the horizontal velocity x·, which is
determined by o13 and o14 as described in equation 1.
If we wait long enough after fixing the object in the
agent’s field of view, the state of the neural circuit
will be found very near one of its stable equilibrium
points. Thus, for each point in the agent’s field of
view, we can plot a representation of the steady-state
velocity that would be produced by an object located
at that point (Plate 1A). These points are color-coded
according to whether the steady-state x· is directed
toward (blue) or away (red) from the centerline. The
intensity of the color represents the magnitude of x·,
with an x· of zero colored black. Green points indicate
object locations where the neural circuit has more than
one stable equilibrium point. In this case, the long-
term horizontal velocity is not uniquely determined by
object position alone, but depends on the system’s
state. Note the straight, sharp borders between regions
of different color that radiate at several angles from
the bottom of the plots. These correspond to the ray
tangencies described earlier (white lines in Plate 1A),

which separate the regions of smooth dynamics where
the object intersects different subsets of rays.

Superimposed on these steady-state velocity
fields are the trajectories of motion of the object
through the agent’s field of view for the 24 trials used
during evolution (Plate 1B). These trajectories are
color-coded according to their instantaneous horizon-
tal velocity using the same color scheme described
earlier. If the interaction were frozen at any point
along a trajectory, then the instantaneous velocity
would approach the steady-state value over time as the
internal state of the neural circuit approached the cor-
responding stable equilibrium point. However, since
both the agent and the object are moving, the instanta-
neous velocity lags behind the steady-state value. As
we shall see, this subtle interplay between sensory
input and internal state is crucial to accurate discrimi-
nation.

How can these plots be used to understand the
agent’s behavior? Consider the circle trials shown in
Plate 1B (left). The most striking feature of this plot is
how the blue centering regions repeatedly turn the tra-
jectory bundles back toward the midline until they
become trapped in the central black regions of no hor-
izontal movement. Initially, all trajectories begin in
dark-blue regions corresponding to equilibrium points
that attract the agent’s velocity toward the center,
slowly at first, and then with increasing velocity as the
regions brighten. The trajectories overshoot the mid-
line due to the lag mentioned above between the
actual internal state of the agent and the changing
equilibrium points that are attracting it (it takes some
time for the neurons to respond to a sudden change in
sensory input). This lag is also the reason that the brief
passage of the outermost trajectories through a red
region near the top of the plot has little effect on them.
Note that the trajectories turn red as soon as they cross
the midline. This is because, although a motion of the
object toward the right is a centering movement when
the object is on the left side of the midline, it becomes
an avoidance movement when the object is on the
right side of the midline and vice versa. As these now
red trajectories pass through blue centering regions on
the opposite side of the midline, they eventually turn
blue and move back toward the center. This overshoot
and turning back toward the midline occurs twice
more. Thus, the active scans are produced by the inter-
play between the steady-state horizontal velocity field
and a kind of “neuronal inertia” that causes the agent
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to repeatedly overshoot the midline. If this inertia is
not allowed to build up (e.g., by decreasing the time
constants of the interneurons), then the agent’s dis-
crimination performance drops sharply.

The last time the trajectory bundles approach the
midline, they pass briefly through a red avoidance
region before moving into the central black region and
becoming trapped. The black region corresponds to
object positions for which there exists a single stable
equilibrium point whose x· projection is 0. If the agent
had sufficient neuronal inertia at this point, it would
pass right through this region. In fact, there is a slight
overshoot of the midline. However, this overshoot is
not sufficient to carry the agent out of the black
region. As the object continues to fall, the trajectories
briefly intersect the corners of the central red regions,
causing a small transient movement that actually
serves to further center them (we will examine such
transient effects shortly). Thus, what happens when
the two trajectory bundles collide is that they run out
of neuronal inertia in the upper black diamond-shaped
region of the steady-state horizontal velocity field,
leaving neither sensory inputs nor internal state to ini-
tiate further horizontal motion.

Now consider the diamond trials shown in Plate
1B (right). Although the details are somewhat differ-
ent, the upper half of the steady-state horizontal veloc-
ity field and the initial motion of the trajectories is
similar to that for circles. The most striking difference
from the circle trials is that the central red regions of
the steady-state horizontal velocity field in the lower
half of the plot (and the black regions separating
them) are much larger for diamonds than for circles,
and penetrate much higher into the agent’s field of
view. These red avoidance regions have the effect of
pushing the trajectory bundles away from the midline
after the first scan, so that they never pass into the
central black regions. Whereas the circle trajectories
pass through only blue regions at the second reversal,
turning them back toward the midline, the diamond
trajectories pass through the top of the expanded cen-
tral red region, causing only a brief pause rather than a
reversal. The diamond trajectories then enter a blue
centering region that pushes them back toward the
midline, but the large central red region again pushes
them away, resulting in a final avoidance. Because the
size and location of the central regions are determined
by the width of the object (compare the left and right
sides of Plate 1A), it is easy to see how wider objects

unwind the trajectory bundles (Figure 9) as the
expanding red avoidance regions push the trajectories
away from the midline earlier and earlier in the inter-
action.

Using this decomposition of the agent-environ-
ment dynamics, we can account for the shape of the
catch performance plot (Figure 6A) as follows. As the
width w of an object increases, the regions of smooth
dynamics (delimited by the white lines in Plate 1A)
enlarge and shift upwards (compare the left and right
sides of the Figure), causing the central black region
to intersect each of the four midline crossings in turn.
Catch peaks begin whenever the trajectory bundles
pass through a sufficiently wide portion of the black
region that they become trapped. At w = 30, the origi-
nal peak occurs when the mean vertical offset of the
fourth midline crossing falls approximately 13.6
below the top of the black region. For a diamond, the
ray tangencies occur at y = mi (x ± w/2), where mi is
the slope of the ith ray. By solving for the ray tangency
intersections that define the upper central black
region, we find that its top occurs at y = m6w / 2. If we
solve for the object widths at which the other three
midline crossings occur 13.6 units below the top of
the central black region, we obtain quantitative pre-
dictions for where the three anomalous peaks should
begin. As the dashed lines in Figure 10A show, these
predictions are fairly accurate. Catch peaks end when
the red avoidance region surrounding the lower por-
tion of the central black diamond become sufficiently
large that the trajectories are pushed away before they
ever enter the black region. This happens only three
times because, for sufficiently wide objects, the cen-
tral lower black triangle-shaped region becomes so
large that no trajectories can avoid becoming trapped
within it.

This decomposition of the agent–environment
interaction can also explain a number of other features
of the agent’s behavior. Misclassifications occur when
the agent’s internal state gets sufficiently out of phase
with the steady-state velocity field. For example, in
the valleys of low circle performance (Figure 3A), the
scan is delayed to the point where these trajectories
pass through enough of the red avoidance region to
carry them out of the black region that normally traps
circle trajectories (Plate 1C, left). Similarly, in the
narrow spikes of low diamond performance (Figure
3B), the initial scan is delayed long enough that the
trajectories become trapped in the central black region
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and they are caught (Plate 1C, right). The different
patterns of active scanning at different vertical dis-
tances (Figure 5) can be explained by the differences
in the steady-state horizontal velocity fields for circles
and diamonds at different vertical distances along the
midline. The complexity of the decision plots (Figure 8)
is due to the fact that switching object identity corre-
sponds to replacing the steady-state horizontal veloc-
ity field for one object with that for the other.
Depending on the position of the object and the inter-
nal state of the agent at the time of the switch, the sub-
sequent interaction of the agent with the new velocity
field can sometimes cause the object to be caught and
sometimes to be avoided. Finally, the outer red avoid-
ance regions observed in both circle and diamond
velocity fields predict that the agent will avoid all suf-
ficiently peripheral objects. As shown by the periph-
eral trajectories in Plate 1C, this is indeed the case.

7.2 Transient Effects

The steady-state horizontal velocity fields provide
some qualitative insight into how the interaction
between this agent and its environment generates the
observed categorization behavior, and even provide
some quantitative predictive power. However, they do
not fully explain the fine details of the behavior. For
example, note that some trajectories pass into the cen-
tral black region in all cases shown in Plate 1B and
C. Why is it that some become trapped there (Plate
1B, left and Plate 1C, right) while others do not (Plate
1B, right and Plate 1C, left)? In order to answer such
questions, we must look in more detail at the transient
structure of the agent dynamics when the object
passes into the central black region of the steady-state
velocity fields, taking into account the neuronal iner-
tia provided by the lag of the CTRNN state.

Figure 11 illustrates the transient effects underlying
the agent’s behavior for two trajectories that become
trapped in the black region (C1 and D2) and two trajec-
tories that do not (C2 and D1). The actual trajectory of
the second largest principal component of the CTRNN
state is plotted against x· (black curves) from the time an
object enters the black region until the time it exits or
the trial ends for one example of each of the four cases.
At each point along a trajectory (black dots), the agent
is following a particular instantaneous trajectory (gray
curves) toward the equilibrium point currently attract-
ing it (gray points). Note that although the vertical loca-

Figure 11 The role of transient effects in the dynamics
of the best evolved agent for two circle (C) and two dia-
mond (D) trajectories. (A) The passage of each of the
four trajectories through the central black diamond-
shaped region in the steady-state horizontal velocity field
for circles (left) and diamonds (right) is shown. C1 is a
normal circle catch from Plate 1B (left). C2 is a mistaken
circle avoid from Plate 1C (left). D1 is a normal diamond
avoid from Plate 1B (right). D2 is a mistaken diamond
catch from Plate 1C (right). (B) The second principal
component of continuous-time recurrent neural network
(CTRNN) output is plotted against horizontal velocity as
the agent enters the central black diamond for the four cas-
es shown in part A. PCA 2 can be considered a depiction
of the internal state or “neuronal inertia” of the CTRNN.
PCA 2 was chosen over PCA 1 because the former led to
less overlap of trajectories in this plot. The labeled points
show the state of the agent at the time the object enters
the black region and the sequence of black dots show
how this state evolves over time until the agent leaves the
black region. The gray curves show how the state would
evolve if the interaction were frozen at selected points
along the trajectory. Note that the two circle trajectories
(C1 and C2, light gray) are ultimately headed toward an x· =
0 equilibrium point (light gray point), and the two diamond
trajectories (D1 and D2, dark gray) are ultimately headed
toward a slightly different x· = 0 equilibrium point (dark
gray point). However, due to differences in internal state,
only C1 and D2 actually reach the equilibrium points and
the agent stops horizontal motion, whereas C2 and D1
never reach the equilibrium points before the object pass-
es out of the black region.
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tion of the equilibrium point is slightly different for
circles (light gray) and diamonds (dark gray), both
occur at x· = 0, which is why this region is colored black
in the steady-state velocity fields. If the object remained
in this region long enough, the black trajectories would
eventually reach the equilibrium points at x· = 0 and the
agent would stop moving in all four cases. However,
because the CTRNN dynamics is parameterized by the
(x, y) location of the object in the agent’s field of view
and both the object and agent are moving, the CTRNN
dynamics is constantly changing, causing the state to
follow a slightly different instantaneous trajectory at
each time step (gray curves).

With this background, we are ready to explain why
some trajectories pass through the central black region
of the steady-state velocity fields while others become
trapped there. For all four trials, the state begins at x· <
0, so the object is moving to the left in the agent’s field
of view. For a normal circle trial (C1), the state briefly
crosses into the x· < 0 region, leading to a small right-
ward movement of the object, and then reaches the
equilibrium point. This ceases horizontal motion of the
agent and results in a catch. For the case in which a cir-
cle is mistakenly avoided (C2), a qualitatively similar
trajectory is followed. However, due to the different
CTRNN state and the different sequence of relative
positions of the object and the agent, larger positive
values of x· are reached and a much larger rightward
movement is generated, causing the object to reverse
direction and move out of the black region before the
state reaches the equilibrium point. For a normal dia-
mond trial (D1), the time spent in the black region is so
brief that the state barely has a chance to move toward
the equilibrium point. Finally, for the case in which a
diamond is mistakenly caught (D2), the CTRNN state
and sequence of object positions are such that the
motion toward the equilibrium point is even faster and
more direct than for a normal circle trial. Thus, the par-
ticular trajectory that the agent follows depends on the
interplay between the internal neural state and the
changing (x, y) location of the object in the agent’s field
of view.

8 Neural Implementation of Agent 
Dynamics

The final step in a dynamical analysis of this agent is
to examine how the agent dynamics described in the

previous section is actually instantiated in the evolved
neural circuit. How do the specific neuronal and syn-
aptic parameters in this network produce the observed
steady-state horizontal velocity fields? What neural
properties give rise to the central black region so
essential to catching circles? What neuronal interac-
tions underlie the transient effects involved in over-
shooting the midline during scans and in trapping
trajectory bundles in the central black region for cir-
cles? We will use a graphical illustration of the
evolved circuit architecture (Figure 12) to present
answers to all of these questions.

One observation that follows immediately from
Figure 12 is that interneuron 10 has a high threshold,
inhibits itself, and is either strongly inhibited or only
very weakly excited by the sensory neurons. This sug-
gests that this neuron will remain off under most con-
ditions and thus may not play any significant role in
the circuit’s operation. Lesion studies largely confirm
this. When interneuron 10 is removed, diamond
avoidance performance only drops from 99.38 to
99.18% (N = 1000). However, circle catch perform-
ance drops from 95.08 to 88.77% due to a small but
crucial effect that interneuron 10 has at one point in
the behavior. Nevertheless, this difference is small
enough that we will not consider interneuron 10 fur-
ther in our analysis.

8.1 Steady-State Effects

Our first task is to account for the structure of the steady-
state horizontal velocity fields (Plate 1). This is most
easily done in three steps. First, we will examine the
effect of the feedforward sensory connections in the cir-
cuit on the interneuron response fields (Plate 2A). Then
we will consider the contribution of the recurrent inter-
actions between the interneurons (Plate 2B). Finally, we
will examine the consequences of the interneuron
responses on the agent’s motion (Plate 2C) and compare
the combined effect of movement responses to the
observed steady-state horizontal velocity fields (Plate 1).
Our analysis will focus on the circle fields. The mecha-
nisms underlying the diamond fields are very similar and
we have already explained the differences in size and
shape between the circle fields and the diamond fields in
terms of how the locations of the lines of ray tangency
differ for the two classes of objects.

The feedforward response fields for the bilateral
interneuron pairs 8/12 and 9/11 are shown in Plate 2A.
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These fields represent the output of each neuron in
response to a circle at each point in the visual field.
Note that interneurons 8/12 primarily respond to
objects on the same side, whereas interneurons 9/11
primarily respond to objects on the opposite side.

These features are relatively easy to explain. Both the
sensory neurons and the interneurons are intrinsically
off. The left side of interneuron 8’s response field is
black due to the inhibition it receives from sensory
neurons 1 and 2, while the right half of interneuron 9’s

Figure 12 A graphical depiction of the evolved continuous-time recurrent neural network (CTRNN) of the best agent.
The feedforward architecture is shown in (A), while the recurrent interactions between the interneurons are shown in
(B). Neurons are shaded according to their bias, with higher threshold neurons (which require more excitation to acti-
vate) shaded darker. Excitatory connections are shaded gray and inhibitory connections are shaded black, with the
width of the line proportional to the strength of the connection. The symbol above the neuron number in part B reflects
the sign of the self-connection and the size of the symbol represents its strength. Thus, interneuron 10 has a high
threshold and strongly inhibits itself. It is strongly inhibited by sensory neurons 1, 2, 6 and 7, very weakly excited by sen-
sory neurons 3–5, strongly excited by interneurons 8 and 12, and very weakly excited by interneurons 9 and 11. In turn,
interneuron 10 provides modest inhibition to the other interneurons and modest excitation to motor neurons 13 and 14.
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response field is black due to the strong inhibition
from sensory neurons 5, 6 and 7. The remainder of the
fields are produced by the pattern of excitation and
inhibition from adjacent rays in a distributed fashion.
Of course, the response fields and underlying synaptic
mechanisms for interneurons 12 and 11 are simply the
mirror images of those of interneurons 8 and 9 respec-
tively. Most importantly, note the central black
regions in all four response fields. These are due to the
fact that inhibition dominates excitation when the cen-
tral five or all seven sensory neurons are active. This
is ultimately the mechanism responsible for the cen-
tral black region in the horizontal steady-state velocity
fields that traps circle trajectories.

The recurrent interactions between the interneu-
rons modify the feedforward response fields as shown
in Plate 2B. The most striking difference is that
regions of multistability appear (green) in which the
network can adopt different steady-state patterns of
activation in response to the same input depending on
the state it is in when the input occurs. The central
region of multistability is primarily due to the mutual
inhibition between interneurons 8 and 12, while the
peripheral regions of multistability are produced by
the mutual inhibition between interneurons 8 and 11
and between interneurons 12 and 9. In addition, the
responses of interneurons 8 and 12 are both stronger
than the feedforward responses alone due to self-exci-
tation, while the responses of interneurons 9 and 11
are weaker due to inhibition from inteneurons 12 and
8 respectively.

Finally, each of the steady-state interneuron
response fields produce a steady-state horizontal
velocity field via their projections to the motor neu-
rons (Plate 2C). These fields are color-coded in the
same way as those in Plate 1. Note that all four
interneurons produce motion away from the side they
are on. In all cases, this is accomplished by inhibiting
the motor neuron on the same side while exciting the
motor neuron on the opposite side. Simply summing
these individual horizontal velocity fields produces an
estimate of their combined effect on the agent’s
motion (Plate 2D). Of course, this estimate is only
approximate due to the nonlinear nature of the neural
activation function (because of the saturation in σ(x),
σ(x + y) ≠ σ(x) + σ(y) in general). However, this
summed horizontal velocity field corresponds quite
closely in both structure and intensity to the observed
velocity field (compare Plate 2D with Plate 1A, left).

Thus, the step-by-step reconstruction of the agent’s
steady-state horizontal velocity field illustrated in
Plate 2 can largely account for this important feature
of its dynamics.

8.2 Transient Effects

As in the previous section, the steady-state responses
of the interneurons to an object and the effects of
those responses on motion do not give the full story.
Transient effects also play an essential role. In order to
illustrate the importance of these effects, I will exam-
ine the neural activity underlying the termination of
active scanning and the final catching of circles (this
was also explored in Figure 11). Because they cannot
respond instantly to a change in input, all neurons
contribute to some extent to the neuronal inertia that
produces scanning, as shown by the fact that modify-
ing the time constants of any of them lead to deficits
in behavior. However, because all sensory signals
must pass through the interneurons to affect behavior,
we will focus on the transient responses of the
interneurons during circle trials here.

Figure 13A shows the outputs of interneurons 8,
9, 11 and 12 along circle catch trajectories superim-
posed over the interneurons’ feedforward response
fields (from Plate 2A). Note that, for the most part,
interneurons are only active along specific segments
of the trajectory bundles and generally only one
interneuron is active at a time (although there is sig-
nificant overlap in places). This is presumably due to
the almost universal mutual inhibition between the
four interneurons. For example, for objects that begin
to the right of the agent, interneuronal activation
occurs in the following sequence: 11, 12, 9, 8, 11, 9,
12. We will focus on interneuron 9, which is active
during left-to-right scans (Note that these bright
regions of activity correspond to the peaks in the α = 0
plot in Figure 9).

How are scans terminated to produce a catch? In
the last section, we saw that whether or not a trajec-
tory is trapped by the x· = 0 equilibrium point corre-
sponding to the central black region depends on the
system’s state when the black region is entered (Fig-
ure 11). However, what neuronal mechanism under-
lies this behavior? Since the motor neurons require
differential activation to produce movement and
interneuron 9 is the only interneuron active during
left-to-right scans, it stands to reason that it and its
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bilateral partner interneuron 11 are the principal pro-
ducers of these scans. As can be seen in Figure 12,
activity in interneuron 9 is primarily due to excitation
from sensory neurons 1, 2 and 4, which produces the
bright regions of excitation on the left side of its visual
field. Normally, activity in interneuron 9 is terminated
by inhibition from sensory neurons 5, 6 and 7 as the

trajectory bundles pass into the right half of the visual
field. However, notice that the activity during the final
left-to-right scan is terminated early (Figure 13A,
interneuron 9, white arrow). What causes this early
termination? Unlike in previous left-to-right scans,
interneuron 12 becomes active as the bundles
approach the midline on the final scan. Since interneu-

Figure 13 Transient behavior of the interneurons during circle catch trials. (A) Motion trajectories are superimposed on
the feedforward interneuron response fields from Plate 2A. The trajectories are shaded according to the output of each
interneuron, with black corresponding to an output of 0 and white corresponding to an output of 1. Note that, in most
cases, only one interneuron is active at a time along each trajectory bundle. An important exception to this is that in-
terneurons 9/12 and 8/11 are simultaneously active on the final scan before catching. (B). Interneuron 9 activity in re-
sponse to circle trials beginning on the right of the agent when the connection from interneuron 12 to interneuron 9 is
transiently lesioned as soon as the trajectories enter the black region. Note that the activity in interneuron 9 now lasts
longer (compare white arrow here to white arrow in the interneuron 9 plot in part A), causing the trajectories to overshoot
the central black region, and these circles are now avoided.
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ron 12 strongly inhibits interneuron 9, its activity
removes the source of left-to-right movement.
Interneuron 12’s activity also serves to terminate the
left-to-right motion itself, because interneuron 12
excites and inhibits the opposite motor neurons from
interneuron 9.

If this explanation is correct, it would predict that
transiently lesioning the connection from interneuron
12 to 9 just as the trajectories pass into the black
region of inhibition during the final scan should allow
the trajectory bundles to pass through this region
instead of becoming trapped there. As shown in Fig-
ure 13B (white arrow), this is indeed the case. Note
that the length of time that interneuron 9 is active dur-
ing the final scan is now comparable to that of earlier
scans, causing the agent to move past the object and
eventually produce an avoidance movement very
much like that seen for diamonds (see Plate 1B, right),
except that it is executed one scan later than usual.

9 Discussion

9.1 Summary

This paper has utilized a simpler idealized model
agent to illustrate in some detail how the perspective
and tools of dynamical systems theory can be applied
to the analysis of embodied, situated agents capable of
minimally cognitive behavior. A 14-neuron continu-
ous-time recurrent neural network was evolved to
allow an agent to visually discriminate between circu-
lar and diamond-shaped objects in its environment by
catching the former and avoiding the latter. The best
evolved agent used a strategy in which it foveated and
actively scanned any object before eventually catch-
ing or avoiding it. It was also shown that this agent
exhibited labeling and discrimination behavior char-
acteristic of categorical perception, that object width
was the primary determining factor in discrimination,
and that the decision to catch or avoid was a tempo-
rally extended process rather than a discrete event.

The majority of the paper then focused on analyz-
ing the dynamics of this evolved agent at three different
levels: (1) the entire coupled brain/body/environment
system; (2) the interaction between agent and environ-
ment that generates the observed coupled dynamics; (3)
the underlying neuronal properties responsible for the
agent dynamics. We found that the coupled dynamics

was structured into a pair of bundles that twisted around
one another, and that these two bundles unwound with
increasing object width. Objects were caught whenever
the two bundles collided at the axis of bilateral symme-
try. These collisions underlay the category boundary
between circles and diamonds, as well as producing an
anomalous peak of catch performance. This structure
also predicted two additional anomalous peaks that
were subsequently observed. We were then able to
explain these features of the coupled dynamics in terms
of the interaction between the steady-state horizontal
velocity fields of the agent dynamics and the neuronal
inertia caused by the lag of CTRNN state in response to
changing sensory inputs. Specifically, circle trajectories
repeatedly overshot the midline and were then turned
back toward it by blue centering regions until they
became trapped in central black regions, whereas larger
red avoidance regions ultimately pushed diamond tra-
jectories away from the midline. Finally, we demon-
strated how the horizontal steady-state fields were
instantiated in the evolved CTRNN, as well as the neu-
ronal interactions that underlay the trapping of circle
trajectories in the central black region. This analysis
successfully predicted that transiently lesioning a par-
ticular connection at a crucial point in time would cause
circles to be avoided rather than caught.

9.2 The Dynamics of Embodied, Situated 
Cognition

The primary technical goal of this paper has been to
show how dynamical analysis can be applied to a min-
imally cognitive agent. One very important question
that remains to be addressed is the extent to which the
specific result obtained here will generalize, both to
other agents evolved on the same object discrimina-
tion task and to other related tasks. Such a generaliza-
tion has successfully been performed for evolved
neural circuits for walking (Chiel, Beer, & Gallagher,
1999; Beer, Chiel, & Gallagher, 1999). A key step in
that generalization was a detailed study of a large set of
high-fitness walkers that identified the range of possi-
ble solutions and their similarities and differences. Such
a generalization study remains to be performed for the
object discrimination task. Nevertheless, we can at
least begin to sketch the general picture that is sug-
gested by our analysis.

First and foremost, this analysis has illustrated
what it means to say that an agent’s behavior is a
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property only of the coupled brain/body/environment
system, and cannot be attributed to any one subsys-
tem. In a very real sense, the evolved CTRNN does
not “know” the difference between circles and dia-
monds. It is only when embodied in its particular body
and situated within the environment in which it
evolved that this distinction arises over time through
the interaction of these subsystems. For example, if
the object ceases to fall, the agent produces stereo-
typed responses depending on the vertical distance to
the object (Figure 5). The vertical motion of the object
as it falls and the horizontal motion of the object
through the agent’s field of view as the agent moves
combine with neural activity to produce a temporally
extended approach or avoidance response that is more
like the gradual accumulation of small differences
than it is a discrete decision. Even though only
CTRNN parameters have been modified by the evolu-
tionary algorithm, it is a property of the dynamics of
the entire coupled system that has been selected for
(specifically, the horizontal separation between the
agent and object at the end of a trial).

A second general theme that has emerged from
the analysis of this model agent is that, if we seek to
go beyond mere characterization of the coupled
dynamics to an explanation of its generation, we must
decompose the coupled brain/body/environment sys-
tem into its components and study how their interac-
tions give rise to the observed behavior. The main
decomposition strategy that we have pursued here has
been to separate the agent from its environment and
ask how the structure of the environment affects the
agent’s behavior and how the agent’s behavior affects
the structure of its environment. Specifically, we char-
acterized the steady-state structure of the agent’s
movement field as a function of the object’s relative
position in the agent’s field of view (Plate 1). This
kind of steady-state decomposition can be made math-
ematically rigorous when the time scale of the agent
dynamics is much faster than the time scale of the sen-
sory inputs from the environment. Even when this
condition is not strictly satisfied, a great deal of quali-
tative insight can often be extracted from such a
steady-state decomposition.

When the timescales of the agent significantly
overlap those of its environment, as they do here and
in many biological systems, then one cannot ignore
the transient effects that arise from the lag between
actual agent state and the equilibrium state. For exam-

ple, this lag produces the differences shown in Plate 1
between the instantaneous horizontal velocity along a
trajectory and the steady-state horizontal velocity
given by the field. As the agent’s state evolves from
its current point, the agent’s resulting actions and the
environment’s own dynamical evolution change the
sensory input that the agent receives and modify the
subsequent trajectories that are available to it. In this
way, both the agent’s dynamics and that of its envi-
ronment continually shape the unfolding behavioral
trajectory, as well as the future sensitivity of that tra-
jectory to subsequent sensory input. As with any feed-
back system, it can be very difficult to disentangle
cause and effect. Effects “play through the system” to
become causes. Indeed, the entire discrimination
behavior takes place on an extended transient of the
coupled system. This certainly does not mean that the
contribution of an agent’s dynamics to its behavior
cannot be understood. However, these results do sug-
gest that we may need to modify our expectations
regarding the demands we can reasonably place upon
a componential explanation, stemming from the sim-
ple fact that the agent and its environment are really
just two components of a single larger system.

The analysis described in this paper also has
important implications for our understanding of per-
ception. Traditionally, perception has been conceived
as a process whereby an agent is informed about the
state of its environment. But, as we have seen above, a
dynamical agent follows a trajectory specified by its
own dynamical laws and its current state. By paramet-
rically shaping those laws, sensory inputs can cer-
tainly influence an agent’s behavior. They cannot,
however, in general steer it along any desired path or
place it into a state uniquely corresponding to a given
stimulus. Because the behavioral consequences of a
given sensory input can differ greatly depending on
the internal state of the agent when it occurs, ongoing
neural activity sets a context for perceptual processing
(Arieli, Sterkin, Grinvald, & Aertsen, 1996). For
example, although the steady-state behavior specified
by the perception of an object approaching the midline
is the same in all four cases shown in Figure 11
(namely, to stop moving), the actual behavior differs
due to differences in internal state.

Thus, it is perhaps most accurate to view percep-
tion as a perturbation to an agent, with the resulting
behavior determined by the structure of the agent’s
dynamics and its internal state (Maturana & Varela,
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1980). On this view, evolution structures an agent’s
dynamics so that its behavior is appropriately sensi-
tive or insensitive to the different classes of perturba-
tion that it may encounter (indeed, the agent creates
these classes by its differential sensitivity). If the
agent had been evolved to catch both circles and dia-
monds rather than to discriminate between them, then
its dynamics would have had to suppress rather than
amplify the behavioral effects of the small sensory
differences between them. Of course, given the tight
coupling between action and perception, a dynamical
agent need not sit by passively while the environment
shoves it around. Rather, it can modify its behavior so
as to actively structure the perturbations it receives,
making active perception a natural consequence of
this view.

Dynamical systems theory provides a powerful
set of mathematical and computational tools for char-
acterizing the dynamics of a brain/body/environment
system, only a few of which we have utilized here.
However, there are clearly many challenges facing a
dynamical approach to cognition. Even in the rela-
tively simple agent considered in this paper, it is still
quite impossible to fully visualize or characterize its
complete 16-dimensional dynamics. Fortunately, such
a complete characterization is usually unnecessary.
The key is to focus only on the essential degrees of
freedom, since only a tiny fraction of the full state
space is actually visited during typical behavioral
interactions. For example, note that the actual catego-
rization behavior of the agent analyzed in this paper
occurs in the neighborhood of the trajectory bundles
shown in Figure 9. Appropriate projections allowed us
to gain considerable insight into the operation of this
evolved agent. Furthermore, many of the quantitative
tools of dynamical systems theory do not require visu-
alization for their application. Finally, it is likely that
new tools will need to be developed, particularly in
the areas of systematic reduction of dimensionality
and the analysis of the non-autonomous dynamical
subsystems that arise when a coupled brain/body/
environment system is decomposed (Abarbanel &
Rabinovich, 2001).

9.3 Stalking the Wily Representation

How does the concept of representation, the corner-
stone of a computational theory of mind, fit into a sit-
uated/embodied/dynamical explanatory scheme? It is

difficult to imagine a more controversial question in
the foundations of cognitive science than this one
(Carello, Turvey, Kugler, & Shaw, 1984; Brooks,
1991b; Bickhard & Terveen, 1995; Beer, 1995b;
Clark & Toribio, 1995; Harvey, 1996; Ramsey, 1997;
Bechtel, 1998; Clark & Grush; 1999; Wheeler &
Clark, 1999; Markman & Dietrich, 2000; Keijzer,
2001). Much of the debate hinges on exactly what one
is or is not willing to call a representation. Taken liter-
ally, the word “representation” means re-presentation,
to present again. Thus, a sketch may re-present the
essentials of a scene to someone who did not see it
directly. Traditionally, internal representations are
invoked as mediators between the outside world and
internal cognitive processes. The basic idea is that
these internal representations stand in for (re-present)
external things in a way that both carries a coherent
semantic interpretation and plays a direct causal role
in the cognitive machinery.

Because representation is such a ubiquitous and
fundamental concept in cognitive science, an ongoing
critical assessment of representational notions is espe-
cially important. Thus, at the risk of inflaming what is
already a sometimes acrimonious debate, it is worth
understanding the challenges that dynamical analyses
are beginning to raise for traditional representational
notions. It is highly unlikely that any one of these
challenges could ever definitively disprove the repre-
sentation hypothesis. “Representation” is far too mal-
leable a label for that. But minimally-cognitive agents
do provide concrete examples within which we can
explore the utility of these various notions and, by
stretching our intuitions about the kinds of mecha-
nisms that can account for sophisticated non-reactive
behavior, they enlarge the intellectual playing field on
which these debates are carried out. Remember that a
skeptical stance is supposed to be a good thing in sci-
ence. Someone who runs around yelling that the sky is
falling is a trouble-maker. A skeptic just wants to
know: How do you know that the sky won’t fall
today? Do you know what’s keeping the sky up? What
exactly do we mean by “the sky” anyway?

Consider the idea of an internal representation
“standing in for” environmental entities that are not
present in the agent’s immediate environment (e.g.,
absent, hypothetical or fictitious objects, events,
actions, or states of affairs), guiding behavior in their
stead (Haugeland, 1991; Clark, 1997). Historically,
this aspect of internal representation was one of the
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primary theoretical concepts by which cognitive
approaches sought to overcome the inability of the
stimulus/response framework of their behaviorist
predecessors to account for many features of human
behavior (Gardner, 1985). Unlike reactive agents,
the behavior of an agent possessing internal represen-
tations can transcend the stimuli in its immediate envi-
ronment. Even today, the limitations of reactive
systems are often used to criticize situated approaches
more generally.

Strictly speaking, however, internal state is the
only requirement for such non-reactive behavior
(Beer, 1995b). If an agent has internal state, then it
can respond to the same environmental situation in
different ways depending on that state, which in turn
can depend upon its past experiences in that environ-
ment. Such a dynamical agent can also initiate and
carry out sequences of actions even in the absence of
environmental triggers and feedback, and it can
organize its behavior in anticipation of future events.
As an agent’s internal state becomes more and more
complex, the relationship between perception and
action can become increasingly indirect. For these
reasons, merely by virtue of its internal state, any
dynamical agent will produce non-reactive behavior
in general, as long as the timescale of its dynamics is
sufficiently slower than that of its environment. Yet
few would be willing to equate representation with
internal state, since internal state is a property of phys-
ical systems in general. Finally, note that this observa-
tion cuts both ways. Not only does internal state allow
an agent to respond differently to the same sensory
stimulus, but different sensory stimuli can place a
dynamical agent into the same internal state. This
means that internal states are not necessarily uniquely
associated with external events; the state of the body
and environment must also be taken into account to
fully disambiguate the trajectory.

Another common claim of representationalism
that is challenged by dynamical analysis is the idea
that the units of cognitive machinery will be individu-
ally semantically intelligible. The intuition here is that
the objects and relations appearing in our conceptuali-
zation of an agent’s environment and behavior must
align in some sufficiently straightforward way with
actual mechanisms internal to the agent. For example,
since we conceptualize the object discrimination task in
terms of a “decision” to “approach” “circles” (which
are “smooth”) and “avoid” “diamonds” (which have

“sharp” “corners”), we expect to find representations
of such things within the agent, as well as processes
that manipulate and transform these representations.
Indeed, a story is generally considered to be represen-
tational insofar as it “depicts whole systems of identifi-
able inner states (local or distributed) or processes
(temporal sequences of such states) as having the func-
tion of bearing specific types of information” (Clark,
1997, p. 147).

There is no question that the patterns of activity of
the interneurons play a key role in the operation of the
agent analyzed here, but is this role best understood as
a representational one? We have found no evidence
for circle detectors or corner detectors within this
agent’s evolved nervous system, and even though we
have shown that the agent’s behavior is sensitive to
object width, there is no evidence that any combina-
tion of interneuronal activity plays the role of re-pre-
senting that width. Neither does there appear to be any
straightforward neural correlate of the agent’s “deci-
sion”. Rather, the interneurons are active at multiple
times during both circle and diamond trials, and in
multiple contexts (Figure 13). Whatever “meaning”
this interneuronal activity has lies in the way it shapes
the agent’s ongoing behavior, and in the way it influ-
ences the sensitivity of that behavior to subsequent
sensory perturbations, not in coding particular fea-
tures of the falling objects. For each possible internal
state and sensory input of the agent, its nervous sys-
tem defines how its behavior should change. Indeed,
such a vectorfield of change is one common definition
of what it means to be a dynamical system. This is
wise dynamics to be sure, even dynamics for a pur-
pose. But re-presentation?

Another common concern in many representa-
tional theories of mind is the possibility of misrepre-
sentation (see e.g., Cummins, 1989), in which a
putative internal representation fails to properly track
its external referent in some circumstances. Since any
discussion of mis-representation must presuppose a
notion of re-presentation, there is little we can say
about misrepresentation in the context of the evolved
agent. However, the related issue of classification
error due to misbehavior is certainly relevant here,
e.g., the mistakenly avoided circles and caught dia-
monds in Plate 1C and the avoided circles in Figure
13B. But these misclassifications are probably best
thought of as errors in dynamics that lead to a loss of
synchronization between the agent and its environment.
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Like juggling, a successful categorization is dynami-
cally assembled and maintained. While a coordinated
juggling pattern can be destroyed by a perturbed ball or
a mistimed toss, a coordinated classification behavior
can be destroyed by a perturbed object or neuron. But
the fact that perturbing a specific element leads to a par-
ticular misbehavior can at best be taken as evidence of
a dynamical role for that element in the behavior. It
does not demonstrate a re-presentational role.

Since the object is always present in the agent’s
field of view, it might be argued that this categorical
perception task is not sufficiently “representation-
hungry” to fully engage questions regarding the utility
of representational thinking (Clark & Toribio, 1995).
There is some truth to this criticism, and it is certainly
the case that categorical perception may fall below
some cognitive scientists’ threshold for cognitively
interesting behavior. However, even if cognitive inter-
est is equated with the extent to which a behavior is
internally rather than externally driven, this task does
at least begin to engage the issues. As I have repeat-
edly emphasized, the object alone does not drive the
agent’s behavior; rather, the object’s effect on behav-
ior is influenced by the agent’s evolving internal state
as the interaction proceeds. Thus, even in this simple
task, there is a certain amount of causal disconnection
between the object and the agent’s behavior. How-
ever, it is important to further explore how the ideas
developed here carry over to even more offline tasks.
Toward that end, ongoing work is aimed at extending
the approach described in this paper to tasks involving
short-term memory and selective attention, in which
the agent’s behavior must depend in increasingly
more sophisticated ways on information that is not
available in its immediate environment (Slocum,
Downey, & Beer, 2000).

It is becoming widely recognized that traditional
notions of representation may need to be modified in
order to do justice to the embodied, situated and
dynamical facts emerging from recent work. For
example, proposals are on the table to generalize the
notion of representation to include analog, context-
dependent, action-oriented, distributed, and dynami-
cal features. This raises the question of how appropri-
ate the term “representation” will continue to be. We
are certainly free to redefine the term “representation”
to mean anything we like, but some care must be
taken in generalizing this concept. If “representation”
comes to mean nothing more than correlated internal

state and “computation” comes to mean nothing more
than systematicity of behavior, then a computational
theory of mind loses its empirical force (Beer, 1995b).

It may seem somewhat pointless to argue over a
word. But the exemplar for computational theories of
cognition is still quasilinguistic symbols syntacti-
cally manipulated, and by its connotations and its
history the term “representation” carries with it pre-
conceptions that may ultimately prove to be inappro-
priate for understanding the mechanisms of cognitive
behavior. Thus, a little terminological hygiene seems
to be in order. If we can reliably identify semanti-
cally intelligible internal configurations that can use-
fully be described as re-presenting an agent’s internal
goals and external environment, then “representa-
tion” it is. But if the mechanisms underlying situated,
embodied cognitive behavior look nothing like re-
presentations, and they act nothing like re-presenta-
tions, then they are not representations, and continu-
ing to call them representations is just going to
confuse everyone.

9.4 Frictionless Brains

The research methodology that has been pursued in
this paper is somewhat unusual, to say the least.
Rather than studying the cognitive behavior of an
existing animal through experiment and/or modeling,
I have invented an artificial agent that engages in a
cognitively interesting behavior and then analyzed the
mechanisms underlying this behavior. While such
approaches are quite common in adaptive behavior
and artificial life research, they are still sufficiently
novel in cognitive science and neuroscience that it is
worth briefly articulating the motivation behind this
methodology (Meyer, 1996; Beer, 1997; Parisi, 1997;
Dean, 1998; Webb, 2000).

The integrated perspective illustrated in Figure 1
raises special difficulties that any scientific approach
to the neural basis of behavior must address. Studying
any one component of a brain/body/environment sys-
tem is difficult enough, but studying all three compo-
nents and their interactions in any animal is currently
beyond our experimental capabilities. Not only must
one be able to control, measure and manipulate the
properties of a large fraction of an animal’s nervous
system, but also the relevant aspects of its body and
environment. Perhaps even more importantly, even if
the required data were available, we currently lack the
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theoretical concepts and mathematical tools necessary
for an integrated understanding of complete agent–
environment systems. These experimental and theo-
retical difficulties are only exacerbated by the com-
plexity of cognitive processes.

The early theoretical development of a field typi-
cally involves the careful study of simpler idealized
models that capture the essential conceptual features
of the phenomena of interest. Such model systems
have a long history in physics. For example, it was not
until Galileo’s consideration of such idealized situa-
tions as frictionless planes that theoretical physics in
the modern sense of the word really began. The power
of such an idealization is that it simultaneously makes
clear a deep principle of motion (acceleration, not
velocity, is proportional to force) and provides a well-
defined way in which the complicating effects of fric-
tion can be understood (as an external force acting on
the system). While testable quantitative predictions can
sometimes be derived from simpler idealized models
(e.g., when the friction coefficient of a physical surface
is very low), their significance typically lies in the qual-
itative understanding they provide rather than their abil-
ity to account for specific empirical data.

Thus, in order to begin to flesh out the form that a
dynamical perspective on situated, embodied agents
might take, we need to undertake a careful study of
simpler idealized models of complete brain/body/
environment systems, an endeavor that has been
termed computational neuroethology (Beer, 1990;
Cliff, 1991). Instead of frictionless planes, we need
frictionless brains (and bodies and environments).
Only in idealized model agents can we presently hope
to study the dynamics of a complete agent–environ-
ment system and thus clarify the fundamental nature
of such systems. And if we are interested in cognitive
phenomena, then we must focus on model agents that
exhibit at least minimally cognitive behavior. Model
agents can help us to formulate the necessary theoreti-
cal concepts, mathematical and computational tools,
and experimental designs. They can serve not only as
intuition pumps (Dennett, 1980), but also as theory
pumps and mathematics pumps and even experiment
pumps that can pave the way for more empirically
driven analysis. They can also help to ground the
ongoing debates about the proper place of embodied,
situated, and dynamical notions in cognitive science
by providing concrete examples to build intuition and
sharpen the discussion.

In the work described here, evolutionary algo-
rithms (Mitchell, 1996) are used to evolve dynamical
nervous systems for situated model agents (Beer &
Gallagher, 1992; Cliff , Harvey, & Husband, 1993;
Nolfi & Floreano, 2000). There are, of course, many
different ways to construct simpler idealized model
agents that generate minimally cognitive behavior,
and I certainly do not wish to claim that this is the only
or best approach. However, there are certain advan-
tages to this particular methodology that are worth
mentioning. Continuous-time recurrent neural networks
are arguably the simplest nonlinear, continuous-time
neural network model. They are relatively computa-
tionally and analytically tractable, have a straightfor-
ward neurobiological interpretation that captures some
of the key features of nerve cells, and are universal
approximators of smooth dynamics (Funahashi &
Nakamura, 1993; Kimura & Nakano, 1998). Thus, they
provide an excellent substrate for exploring the dynam-
ics of neural circuits. Evolutionary algorithms capture
the two key features of Darwinian evolution: (1) herita-
ble variation; (2) differential reproduction under resource
limitations (or natural selection). A significant advan-
tage of an evolutionary approach is that, by selecting
only for the overall behavioral efficacy of the entire
agent rather than a particular neuronal solution, we can
minimize our a priori commitments to how a given
behavior must be instantiated and thus better explore
the design space of possibilities that exists in a rela-
tively unbiased way.

The study of simpler idealized model agents is not
without its drawbacks. First, such models are never
likely to make specific quantitative predictions that
are empirically testable in the way that more realistic
models often can. However, the intent of idealized
models is not empirical prediction, but conceptual
clarification. Detailed, realistic models are often as
difficult to understand as the original system. Clearly
the study of idealized models and empirically driven
analysis of particular cognitive processes are comple-
mentary approaches, and neither should proceed in
isolation from the other. Second, there are many sub-
jective decisions that must be made in order to formu-
late an idealized model, such as choosing a task to
study, choosing a body model, choosing an evolution-
ary algorithm, etc. These decisions introduce their
own biases. But far from being a shortcoming, I view
this as an opportunity. Each set of decisions consti-
tutes hypotheses to be explored. Of course some of the
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choices will be wrong, but how will we know until we
try them and work through the consequences? Third,
many of the details of an idealized model’s analysis
will be tied to the particular decisions made in its for-
mulation, and thus be of questionable direct relevance
to any real cognitive system. But it is only by working
through the details of tractable concrete examples of
the cognitive phenomena of interest that we can begin
to glimpse whatever general theoretical principles
may exist and whatever mathematical and computa-
tional tools will be necessary to formulate them.

10 Conclusion

In response to a question about the relevance of think-
ing of the brain as a complex dynamical system, the
philosopher of mind Patricia Churchland once replied
“It’s obviously true, but so what? Then what is your
research program?” (Lewin, 1992, p. 164). The
present paper has described one possible way to begin
to answer this question: (1) develop simpler idealized
models of minimally cognitive behavior in embodied,
situated agents with as few a priori theoretical com-
mitments as possible; (2) analyze the dynamics of the
resulting brain/body/environment system with an
open mind about the mechanisms by which they might
operate; (3) carefully consider the implications of
these analyses for more realistic systems. The extent
to which dynamical language will eventually become
a key element of the explanatory structure of cognitive
science remains to be seen. What does seem certain,
however, is that dynamical analyses of cognitive
behavior, and the critical questions they raise, can
only broaden and clarify our understanding of the
mechanisms of cognition.
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