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This paper proposes a way of constructing higher order cognition by means of

continuous neurodynamic systems, exemplified by robots.

By Jun Tani

ABSTRACT | The most pressing question about cognitive

brains is how they support the compositionality that enables

combinatorial manipulations of images, thoughts, and actions.

When addressing this problem with synthetic modeling, the

conventional idea prevalent in artificial intelligence and

cognitive science, generally, is to assume hybrid systems and

corresponding neural network models, where higher order

cognition is realized by means of symbolic representation and

lower sensory-motor processes by analog processing. Howev-

er, the crucial problem with such approaches is that the

symbols represented at higher order cognitive levels cannot be

grounded naturally in sensory-motor reality. The former are

defined in a discrete space without any metric, and the latter

are defined in a continuous space with a physical metric. These,

therefore, cannot directly interact with each other, regardless

of the interface that is assigned between them. The proposal in

the current paper is to reconstruct higher order cognition by

means of continuous neurodynamic systems that can elaborate

delicate interactions with the sensory-motor level while

sharing the same metric space. Our neurorobotics experi-

mentsVincluding language–action associations and the learn-

ing of goal-directed actionsVshow that the compositionality

necessary for higher order cognitive tasks can be acquired by

means of self-organizing dynamic structures, via interactive

learning between the top–down intentional process of acting

on the physical world and the bottom–up recognition of

perceptual reality. Using robotic simulations, the current paper

demonstrates that nonlinear dynamic phenomena, such as

bifurcations and the chaotic dynamics induced by unstable

fixed points, could play essential roles in realizing higher order

functions.
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systems; neural networkmodels; neurorobotics; self-organization;
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I . INTRODUCTION

One of the amazing aspects of human brains is that they

can generate diverse thoughts, images, and actions through

novel combinations of acquired knowledge and skills. Such

cognitive competency is expressed well by the principle of
compositionality, i.e., the meaning of the whole is a

function of the meaning of the parts. As described by Evans

[1] in regard to language, the principle of compositionality

asserts that the meaning of a complex expression is

determined by the meanings of its constituent expressions

and the rules used to combine them, to wit, sentences are

composed from sequences of words combined according to

grammatical rules, and can be decomposed similarly. This
central notion, that the whole can be decomposed into

reusable parts (or primitives) by following rules, is

applicable to other faculties, as well, such as to the

generation of complex action routines. For example, the

motor schemata theory [2] proposes that complex goal-

directed actions can be decomposed into sequences of

behavior primitives. Here, behavior primitives are com-

monly used behavior segments or motor programs.
From the preceding considerations, a crucial question

emerges. How is compositionality realized in cognitive

brains? Cognitive scientists have considered that such
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compositionality is a product of manipulations of arbitrary
shapes of tokens within a symbolic system [3]. Because the

manipulation of symbols which are, in themselves, without

any physical dimensions such as weight, length, speed, or

force is free from any constraints due to these physical

dimensions on possible combinations of such symbols, a

symbol system provided with recursive functionality

achieves compositionality with an infinite range of

possible expressions. However, studies on intelligent (or
cognitive) robots have revealed that this framework,

employing symbolic representation and manipulation,

encounters problems when symbols are required to be

grounded within the context of continuous sensory-motor

flow [4]. This problem, the famous symbol grounding

problem [3], [5], becomes crucial for cognitive robots

especially when inconsistencies appear between what the

symbol level represents in the top–down pathway and
the reality which arises from the sensory-motor level in

the bottom–up pathway. It is assumed that both levels

should participate in attempts to resolve such conflicts via

cooperative processes. This cooperation entails iterative

interactions between the two levels through which optimal

matching between them is sought dynamically. If one level

pushes forward a little, the other should pull back

elastically so that a point of compromise can be found
through iterative dynamic interactions. Yet, this problem

is not so easily solved through conventional hybrid

approaches. The symbol systems defined in a discrete

space are too rigid to afford such delicate interactions with

the sensory-motor system. Moreover, this problem cannot

be resolved by simply implementing arbitrary interfaces

between the two systems, because they simply do not share

the same metric space for the interactions.
Confronted with these difficulties, it may be fruitful to

inquire into how this problem is understood, and possibly

solved, in terms of human brains. Specifically, we would

like to know how neuronal structures enabling composi-

tionality in the higher order cognition level develop in

human brains. With such information, we might better

understand how such structures can remain adequately

grounded in ongoing perceptual input. However, it is fair
to say that these mechanisms are not yet exactly

understood. Significant evidence has accumulated, never-

theless, for a convergent understanding that the prefrontal

cortex is involved in compositionality due to its executive

control of other parts of the brain [6]–[8]. Fuster writes in

his textbook [8] that executive function is the ability to

organize a sequence of actions toward a goal, an operation

requiring compositionality as described previously. Anoth-
er aspect of compositionality within human brains for

which there is some evidence is that they utilize hierarchy

in complex information processing. For instance, the

visual recognition of complex objects is performed

hierarchically, beginning with V1 and V2 for simple

feature detection, and proceeding to the inferotemporal

cortex for the integration of those features into more

complex compositions [9], [10]. Evidence also suggests
that complex actions are generated similarly, by means of

an organizing hierarchy [11], the general understanding of

which proceeds as follows. The prefrontal cortex sits on

the top of the action hierarchy and generates an abstract

goal-directed action plan. The next level in the hierarchy is

composed of the supplementary motor area (SMA) and the

premotor cortex (PC). These are thought to be responsible

for generating motor programs for voluntary actions and
sensory-guided actions, respectively. These areas then

send signals to the next lower level, the primary motor

cortex (M1), where it is believed that primitive motor pat-

terns are generated. M1 then passes patterned motor

signals further downward via the pons and cerebellum to

the spinal cord, which then sends out detailed motor

commands to corresponding muscles, finally initiating

physical movements. That said, it must be noted that the
complex action generating hierarchy in the human brain is

not so simple. Other parts of the human brain are also

involved in the generation of complex actions. In partic-

ular, studies on apraxia caused by cerebral hemorrhage

have suggested that the inferior parietal lobe (IPL) is

crucial for generating skilled actions like tool usage [12],

[13]. This is because skilled actions, such as manipulating

an object as a tool, require motor related multimodal
sensory feedback, and this visuo–tactile–proprioceptive

integration is developed in the IPL through dense

interactions between the frontal and parietal lobes [14].

Considering the evidence that human brains achieve

compositionality through a functional hierarchy embedded

in neuronal networks connecting different local regions,

our original question returns: How exactly is composition-

ality realized at the neural circuit level? Specifically, we
may ask: Do some neuronal circuits behave as if symbols

were represented and manipulated, as digital computers

do? Some may argue that the discovery of ‘‘grandmother

cells’’ [15] suggests something like symbolic representation

in neuronal circuits. However, the evidence does not

wholly support such an argument. Some cells do appear to

demonstrate quite narrow response selectivity as if

activated only by a particular perceptual stimulus, such
as one’s grandmother’s face. However, when tested with

diverse visual stimuli [16], it has been found that these

same cells can also be activated by other types of visual

images. Rather than each item being discretely repre-

sented by a corresponding cell, meanings and concepts are

more likely encoded in distributed activities of neuronal

ensembles. And, if such a distributed representation is the

reality in biological brains, how can we imagine compo-
sitionality being realized by them?

In pursuing this question, the current paper presumes

the following model and from this basis makes two central

hypotheses. The model, on the one hand, presumes a top–

down intentional pathway by which compositional images

and plans for acting in and on the world are proactively

generated under particular intentional states. On the other
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hand, the model presumes a bottom–up pathway which is

responsible for recognition of the continuously updated

perceptual reality. The core hypothesis is that composi-

tionality develops by means of the self-organization of a

particular class of dynamic structures. These structures
provide for dense interactions between the aforemen-

tioned two pathways, both during the course of con-

solidative learning of perceptual experience and through

diverse intentional interactions of the agent with the outer

world. It is further speculated that compositionality

developed in such neurodynamic systems can be naturally

grounded in sensory-motor reality. These hypotheses are

examined via synthetic modeling studies accompanied by
robotics experiments. The robotics experiments include

learning of compositional action generation and associa-

tive learning of proto-language and corresponding actions.

Although these synthetic modeling studies may not be able

to prove the biological reality of the proposed hypotheses,

it can provide proof of principle for ‘‘brain-like’’ realization

of cognitive competence in artifacts, i.e., cognitive robots.

Section II describes the basic framework that underlies all
subsequent demonstrations.

II . BASIC FRAMEWORKS OF
THE MODELS

This section describes how the top–down proactive
intentional processes and the bottom–up recognition

processes could be realized in a particular neurodynamic

system, and how these two processes can interact densely

in the course of learning as well as in generating

compositional actions. Furthermore, it describes how the

model can be extended to produce a functional hierarchy

for action generation.

A. Learning to Predict/Recognize
Perceptual Sequences

Tani et al. [17]–[19] have shown that learning,

generating, and recognizing sensory-motor patterns can

be accomplished by extending conventional recurrent

neural network (RNN) models, in terms of prediction

error minimization within a particular dynamic neural

network model, a recurrent neural network with paramet-
ric biases (RNNPB) [20], [21]. The dynamics of the model

can be described by a difference

ðYtþ1;Xtþ1Þ ¼ fðYt;Xt;W; �Þ (1)

where Xt is the current internal neural state, W is a set of

learnable parameters such as connectivity weights and

biases, � is the intention state, and Yt is the perceptual state

which is an observable state. This equation represents the

top–down intentional process where Ytþ1 (the perceptual
state at the next time step for a given intentional state �) is

predicted by means of the dynamic mapping from the

current internal state Xt and the current perceptual state

Yt. This mapping is parameterized by W which is acquired

through the learning process described later. This forward

dynamics model can be regarded as a generative model

with the intentional state being key to regenerate the

corresponding perceptual sequence that is learned.
Fig. 1(a) illustrates how this idea can be realized in the

RNNPB model where the PB units in the input layer

represent the intentional state in question. It is noted that

X0 is the initial internal state, set with a neutral value as in

the case of learning, described next.

The system predicts perceptual sequences to be caused

by the intentional state either in an open-loop mode or in a

Fig. 1.RNNPB model. (a) Perceptual sequences for given intentional states are predicted. (b) Target perceptual sequences are learned by inferring

optimal connectivity weights and intentional states by means of prediction error minimization where red arrows denote error signal

backpropagation. (c) Intentional states for given perceptual sequences are inversely computed by means of prediction error minimization.
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closed-loop mode. In the open-loop mode, an actual
movement is made by generating the one-step prediction

of the next perceptual state through the use of the current

one. In the closed-loop mode, a look-ahead prediction of

multiple steps of a perceptual sequence is generated by

feeding back the predicted perceptual state from the

previous step to the current inputs. This process can

generate a motor imagery sequence evolving in correspon-

dence with a specific intentional state. Although the
RNNPB model employs a hidden units layer between the

input and output layers, these are not shown in Fig. 1.

Next, the learning process is described. The learning of

a set of intentional actions in a supervised manner is

formulated as the process of minimizing the prediction

error between the teaching target perceptual sequence Yt

and its prediction Yt in (1). This is accomplished by

searching for the optimal values of the learnable para-
meters W common to all target actions to be learned as

well as for the corresponding intentional state � for each

action [see Fig. 1(b)], and is implemented by utilizing the

error backpropagation through time (BPTT) algorithm [22].

In the learning process, the top–down prediction of a

perceptual sequence is unfolded in time with a particular

intentional state given as the input. Then, when compared to

the target perceptual sequence, an error signal is generated
and backpropagated through the internal state loop to the

intention state. Thus, through bottom–up recognition, the

connectivity weights and the intentional states are gradually

updated. In fact, through iterations of this learning process,

dense interaction between the top–down and bottom–up

processes is facilitated, and in this way projected perceptual

images originating from the intentional state can be shaped

by and grounded in the reality of the ‘‘objective world.’’
Finally, the process of recognizing a target perceptual

sequence can be formulated as a process of searching for

an optimal intentional state by which the target sequence

can be generated with a minimum error while the learned

weight parameters W remain fixed [see Fig. 1(c)]. The

aforementioned model is formally related to the idea of

predictive coding as developed by Rao and Ballard [23]. It

also bears formal similarity with that of active inference for
which Friston [24] has recently demonstrated a general-

ized framework under the name of free-energy minimiza-
tion. In the model by Friston [24], the prediction of a

subsequent perceptual state is accomplished by means of

approximate Bayesian inference through the estimation of

both mean and variance.

B. Functional Hierarchy
On the computational view, compositionality requires

some hierarchical operations involving the manipulation

of a set of elements in a lower level through the application

of particular rules from a higher level. This is analogous to

storing and retrieving behavior primitives, or words, in the

lower level and combining them into goal-directed actions

or sentences by following scenarios or plans from the

higher level. How can dynamic neural network models
represent such mechanisms? One possible way is to

consider a cascade of aforementioned RNNPB models

operating according to different timescales [18]. Such a

model, operative on two levels, can be described as

ðYtþ1;Xtþ1Þ ¼ f lðYt;Xt;Wl; �tÞ
ð�Tþ1;XTþ1Þ ¼ f hð�T;XT;Wh; �hÞ:

�
(2)

Here, t denotes time on the faster timescale with a smaller

Dt for each time step in the lower level, and T denotes time

on the slower timescale with a larger Dt in the higher level,

while l and h denote suffixes for the lower level and the

higher level, respectively. The main idea is that �t in the

lower level dynamic function works as a slowly changing

parameter for f l which is predicted as �Tþ1 by the higher
level dynamic system operating in the slower timescale

[see Fig. 2(a)].

The prediction of �Tþ1 is generated as corresponding to

the higher level intentional state �h. This is an important

aspect of the implicit generative model, due to the

fundamental role played by the separation of temporal

scales. This separation enables higher level dynamics to

Fig. 2. Hierarchically organized RNNPB model. (a) A perceptual

sequence is predicted for intentional states given in the higher level.

(b) Target perceptual sequences are either learned or recognized by

inferring both connectivity weights and intentional states, or the

intentional states only, where red arrows denote the error signal

backpropagated from the lower level to the higher level.
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contextualize (through the provision of parametric biases)
faster fluctuations at lower levels, and recapitulates the

causal structure of the (hierarchical) world that the agent is

trying to predict. In sum, a functional hierarchy is achieved

by means of an ‘‘abstract’’ low-dimensional parametric

control over the lower level dynamic function by the higher

level one. In the learning process, the delta error signal is

backpropagated from the lower level to the higher one by

being passed from �t to �T and finally to the higher level
intentional state �h whereby parameters Wl and Wh as well

as �h are updated in the direction of minimizing error

[Fig. 2(b)]. A target perceptual sequence can be recognized

simply by updating �h by utilizing the delta error delivered

from the prediction error for the perceptual inputs.

The aforementioned hierarchical model can be im-

proved, further, by considering that perceptual sequence

patterns are experienced as continuous flow rather than as
discrete events, and by adjusting the model to operate in

continuous time accordingly. For this purpose, consider a

continuous-time recurrent neural network model (CTRNN)

[25], [26] consisting of subnetworks, the dynamics of which

are characterized by the different values of time constants

assigned. Such a model is referred to as a multiple timescales

recurrent neural network (MTRNN) [27], [28] in which the

forward dynamics of each neural unit is described as

�i _ul ¼ ui þ
P

j wijaj þ
P

k wikIk

yi ¼ expðuiÞP
j2Out

expðujÞ
; if i 2 Out

ai ¼ 1
1þe�ðuiþbiÞ ; otherwise

8>><
>>:

(3)

where �i, ui, yi, ai, and bi are the time constant, the

membrane potential, the neural activation state for an

output unit and for an internal (context) unit, and the bias

of the ith unit, respectively. It is important to note, here,

that the activation of output units follows a softmax

function with ui as the potential value at the ith cell within

OutN cells, while the activation of internal units follows a

standard sigmoidal function. This treatment is stipulated
in order to make the output patterns activate only sparsely,

i.e., the summation of OutN output units becomes 1.0. Ik is

the kth input, and wij is the connectivity weight from the

jth unit to the ith unit. When the time constant �i is set at a

larger value, the activation dynamics of the unit tend to be

slower. Conversely, with a smaller value, they become

faster. If the whole network is built as a cascade of

subnetworks, with the higher level network consisting of
dynamic units with a larger time constant, and with the

lower level network with a smaller time constant as

illustrated in Fig. 3, a functional hierarchy similar to the

one described for the RNNPB with discrete time emerges.

On the top–down pathway, the intentional state in the

higher level network is set with particular values for initial

states in some neural units, the so-called ‘‘intention’’ units,

and slowly changing neural activities in this higher level

network are initiated. This slowly changing activity affects

the faster dynamics of the lower level network by means of

parameter modulation and bifurcation, resulting in the
modulation of and shifting in sequence patterns predicted by,

and generated in, the output units. In the learning process,

the error generated in the comparison of the target sequence

and the prediction sequence backpropagates through time to

the initial states of the intention units in the higher level

network by going through all connectivity weights in the

whole network, whereby all of the connectivity weights as

well as the initial states for each target sequence are updated.
Through the iterative interactions between top–down

prediction and bottom–up error regression, which the

whole network undergoes at all levels in a distributed and

parallel manner, it is almost inevitable that an adequate

functional hierarchy between multiple levels with differ-

ent timescales can and will self-organize. The exact

learning mechanism incorporates a modified BPTT

scheme which considers the effects of each time constant
assigned to each dynamic unit in MTRNN [27]–[29].

Consider E as a summation of prediction errors for all

output units and for all time steps, and which is to be

minimized through the learning process. E is represented

in terms of Kullback–Leibler divergence as

E ¼
X

t

X
i2Out

y�i;t log
y�i;t
yi;t

� �
(4)

where y�i;t and yi;t are the target output and output for the

ith output unit at time step t, respectively. Each

Fig. 3. MTRNN model with top–down perception prediction according

to a given intentional state on the left-hand side, and with bottom–up

perception recognition and learning on the right-hand side.
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connectivity weight wij is updated in a direction opposite to
that of the gradient @E=@wij as

wijðnþ 1Þ ¼ wijðnÞ � �
@E

@wij
(5)

where � is the learning rate and n is an index representing

the iteration step in the learning process. Then, @E=@wij is

given by

@E

@wij
¼
X

t

1

�i

@E

@ui;t
aj;t�1 (6)

and the delta error at the ith unit @E=@ui;t is recursively

calculated from the following formula:

@E

@ui;t
¼

yi;t � y�i;t þ 1� 1
�i

� �
@E

@ui;tþ1
; i 2 OutP

k2N
@E

@uk;tþ1
�ik 1� 1

�i

� �h
þ 1

�k
wkif

0ðui;tÞ
i
; i 62 Out

8>>><
>>>:

(7)

where f 0ðÞ is the derivative of the sigmoid output function

and �ik is the Kronecker delta function. By looking at the

second line of (7) it can be seen that the ith unit in the
current step t inherits a large portion ð1� ð1=�iÞÞ of the delta

error @E=@ui;tþ1 from the same unit in the next step tþ 1

when its time constant �i is relatively large. It is noted that (7)

turns out to be the conventional, discrete time version of

BPTT with �i set as 1.0. This means that, in a slow dynamic

network with a large time constant, error backpropagates

through time with a small decay rate. This enables learning of

long-term correlations latent in the target time profiles by
filtering out fast changes in the profiles. In addition, an

optimal initial state of the intention unit can be searched for

by updating the membrane potential state ui;0 and by

utilizing the delta error backpropagated through time to the

unit of the 0th step as

ui;0ðnþ 1Þ ¼ ui;0ðnÞ � �
@E

@ui;0
: (8)

In summary, the preceding describes a generic scheme

based on the hierarchical composition of (autonomous)

dynamical systems that serve as a generative model of both

exteroceptive and proprioceptive inputs. The deep hierar-

chical structure, and the separation of temporal scales

described in this model (through descending parametric

biases), enable the agent to predict and to learn, informed
as it is by the sensorimotor contingencies entailed in its

environment (and its motor plant). Crucially, on this

point, all levels of the model rest upon continuous

dynamics, where symbolic representation is implicit in

the (unstable) fixed points of the dynamical system. A

second key aspect of this framework is that there are no

explicit sensory response links. These are acquired through

descending predictions of sensory observations in both the
visual and motor domains. This means that sensorimotor

constructs are represented as amodal dynamics at the top

of the hierarchy (with protracted timescales), providing

bilateral corollary discharges or predictions about the state

of the world and the motor plant. In what follows, we will

use this scheme in a number of experimental contexts to

show how it accounts for the learning of motor primitives,

imitative behavior, and for the generation of spontaneous
yet deterministic behavior, all through the use of

(entrained) chaotic dynamics.

III . NEUROROBOTICS EXPERIMENTS

This section describes robotics experiments utilizing the

aforementioned dynamic neural network models in the

examination of how an agent may develop the capacity to
compose complex cognitive behaviors while remaining

grounded in sensory-motor reality. These robotics experi-

ments explore research topics, including: 1) dynamic shifts

of action intentions via recognition of situational changes

in the environment; 2) the development of compositional

concepts via associative learning between proto-language

and behaviors; 3) the tutoring of complex skilled actions;

and 4) the spontaneous generation of combinatorial action
sequences. Further, analysis of the dynamical structures

self-organized in the models under consideration will also

shed light on essential neurodynamic mechanisms under-

lying compositionality in human–level cognition.

A. Dynamic Shifts of Action Intentions via
Bottom–Up and Top–Down Interactions

The following robotics experiments, utilizing the
RNNPB model described earlier, examine how the top–

down intention to act on the physical environment can be

dynamically adapted by the bottom–up recognition of

perceptual reality according to situational changes in the

environment (for further details, see [30]). In the current

task, a small humanoid robot made by the Sony

Corporation learned to generate ball ‘‘playing’’ behaviors

under human tutoring. The human tutor manually guided
the robot’s movements, helping it to manipulate a ball by

grasping its arms, while the robot perceived sequences of

two types, visual and proprioception. The robot’s visual

perception St took the form of the 3-D relative position of

the ball on the task table as measured by color tracking,

and the proprioception Mt of the bimanual arms and hands

was represented by 8 degrees of freedom (DOFs) of the
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corresponding joint angles. After repeated training, the
robot was able to predict the visuo–proprioceptive state of

the next step in an action sequence. The actual movement

of the robot arms was generated by sending the prediction,

the next target values, of the next proprioceptive step in

terms of 8 DOFs of joint angles to the motor controllers of

the arms. The robot was trained for two types of ball play.

‘‘Play-1’’ consisted in rolling the ball from the left-hand

side to the right-hand side, and vice versa, repeatedly by
gently pushing it with both hands. ‘‘Play-2’’ consisted in

repeatedly grasping the ball in the middle position, lifting

it up, and then dropping it. By following the scheme shown

in Fig. 1(b), training of the RNNPB was conducted where

the visuo–proprioceptive sequences ðSt;MtÞ obtained

during the tutoring sessions were utilized as target training

sequences. The training data consisted of six cycles of

sequences both for play-1 and play-2. Note that the
objective of the training was to make the network

regenerate two types of target visuo–proprioceptive

sequences depending on the intention states (the PB

values) which had been self-determined through the

training process. We employed an RNNPB that has 11

input units and 11 prediction output units. It also has two

PB units, 50 hidden units, and 70 context units

representing the internal state Xt. The learning was
iterated for 50 000 epochs, starting from an initial random

set of synaptic weights. The final root mean square error of

the output units became less than 0.0003. It was assured

that a different PB vector value was determined for each

type of play.

After the training, the robot’s behavior generation for

the learned types of ball play was tested by following a

scheme of online generation and recognition. The robot’s
movements were generated by feeding the next-step

predictions of proprioceptive states (the joint angles of

bimanual arms and hands) to the position controller of the

robot, and the PB vector was updated by means of online

recognition of visual perception (the perception of ball

position). For the online recognition process (PB regres-

sion utilizing the prediction error), 50 instances of forward

propagation and backpropagation were conducted using a
30-step window on the immediate past in order to

determine the PB at each next time step. This repeated

behavior generation experiment showed that, although the

robot tended to stably generate one of the learned types of

ball play, the type of play switched from one to the other

intermittently. Fig. 4 shows a sequence of photo snaps and

the corresponding plots of time evolution of parameters

during this particular behavior generation.
In Fig. 4(a), it can be seen that behavior switching

takes place in the ninth photo snap. Fig. 4(b) shows time

profiles for the predicted ball position, its actual percep-

tion, predicted joint angles (representing two out of a total

of eight DOFs), and the 2-D PB vector. From the time

profiles of the ball position and the joint angles, it can be

seen that behavior switching took place between 200 and

350 steps and that it was associated with a shift in the PB

vector. The behavior switching was initiated by a small

fluctuation in ball positioning during ‘‘rolling ball’’ play at

around the 180th time step when the ball came slightly

more toward the center than was predicted in the case of

pushing the ball from the right side. The resultant

prediction error caused gradual modulation of the PB
vector toward the value for ‘‘grasping the ball located at the

center’’ which caused the arm to gradually push the ball

toward the center more. Finally, play-2 of ‘‘grasping the

ball in the center position and dropping it’’ was initiated by

achieving a perfect match between the perceived ball

position and the one predicted by the modulated PB value.

Here, we can see how intention can be dynamically

modulated through the bottom–up recognition of the
perceptual reality by utilizing the error regression scheme.

B. Associative Learning Between Proto-Language
and Behaviors

The faculty for language and the faculties for other

types of action have been treated independently in

conventional neuroscience. Recently, however, some

Fig. 4. Autonomous behavioral switching from ‘‘rolling ball’’ to

‘‘grasping and dropping ball’’ in the Sony humanoid robot QRIO.

(a) The corresponding photo snap sequence. (b) Time profiles for the

predicted ball position (X, Y, Z) in vision, its actual perception,

predicted joint angles (a representative joint angle for each arm),

and the PB vector (PB1, PB2).
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researchers have been looking at these functions utilizing
various brain imaging techniques, including fMRI, PET,

and EEG, and this research has begun to suggest a certain

dependency between them. Hauk et al. [31] showed in a

functional MRI experiment that reading action related

words with different end effectors, e.g., ‘‘lick,’’ ‘‘pick,’’ and

‘‘kick,’ ’ evoke neural activities in motor areas

corresponding with the local areas responsible for

generating motor movements in the face, arm, and leg,
respectively. This result, as well as that reported in [32],

suggests that understanding words or sentences related to

actions may require the presence of specific motor circuits

responsible for generating those actions, and therefore the

parts of the brain responsible for language use and other

forms of action might be interdependent. Pulvemuller [33]

argues that, if everyday experiences of speech and

corresponding sensory-motor signals tend to overlap
during infant development, synaptic connectivity between

the two circuits can be reinforced through Hebbian

learning. This suggests a possibility that meaning and

concepts of words and sentences are acquired as associa-

tions with related sensory-motor experiences, as discussed

in the usage-based approach by Tomasello [34], i.e.,

cognitive linguistics.

The robotics experiment described in this section
explores this possibility, that the so-called ‘‘semantically

combinatorial language of thought’’ as mentioned by Fodor

and Pylyshyn [35] can be developed in terms of

neurodynamic structures provided that dense interactions

are allowed between linguistic processes and behavioral

ones. In this robotics experiment, we examined how a set

of simple sentences consisting of verbs and object nouns

can be understood, and the corresponding actions
produced, by robots utilizing an extended RNNPB model

[36]. The model consists of a linguistic RNNPB and a

behavioral RNNPB interconnected through PB units.

The central idea behind the model was that the PB

activation vectors in both modules should be bound in

order to become identical for generating pairs of

corresponding linguistic and behavioral sequences via

learning (see Fig. 5). In other words, stimulus response
links are not formed by simply associating, or mapping,

between words and actions, but by constructing amodal,

high level, dynamical representations that are both sensory

and motor in nature. In what follows, we will show that

this representational space embodies the fundamental

distinction between the different actions that can be

undertaken and the objects that are the targets of those

actions. More specifically, in the course of the bound
learning of pairs of linguistic and behavioral sequences, the

PB activation vectors in both modules were updated in the

direction of minimizing their differences as well as in

the direction of minimizing the prediction error in either

modality, alone. By passing the error signals backpropa-

gated from both modules to the shared PB units, a sort of

unified representation between the two modalities could

be formed through the self-organization of the PB

activations. After the learning converged for all of the

pairs, the capacity to understand sentences was tested as

follows. A particular word sequence was shown to the

linguistic module as a target to be recognized by the PB
regression scheme. Then, the PB value obtained as the

result of regenerating the word sequence with the

minimum error was used to activate the behavioral

RNNPB in order to generate a prediction of the

corresponding perceptual sequence responsible for gener-

ating that particular robot behavior. Here, a tempting

expectation was that compositionality hidden in the

perceived data of the linguistic modality and behavioral
modality could be captured in the internal neurodynamic

structures shared by these two modalities via consolidative

learning accompanied by the top–down and bottom–up

interactions. This hypothesis was evaluated through

experiments utilizing a physically mobile robot.

A mobile robot equipped with a camera and one DOF

arm was placed in a workspace where red, blue, and green

objects were always located to the left, center, and right of
the robot, respectively [Fig. 6(a)].

We considered a set of imperative sentences consisting

of three verbs (point, push, hit) and six object nouns (left,

center, right, red, blue, green). In these sentences, ‘‘point

blue’’ indicated that the robot had to point to the blue

object by extending its arm, ‘‘push red’’ indicated that the

robot had to move to the red object and push it with its

body, and ‘‘hit left’’ indicated that the robot had to move to
the object to its left and hit that object with its arm. Note

that ‘‘red’’ and ‘‘left’’ were synonymous in the employed

workspace setting, as were ‘‘blue’’ and ‘‘center’’ and

‘‘green’’ and ‘‘right.’’ For each given combination of verb

Fig. 5. Linguistic RNNPB predicting word sequences and a behavioral

RNNPB predicting sensory-motor sequences, interconnected by PB

units, where the PB vector of each RNNPB is updated by utilizing its

own error signal while minimizing the difference between two.
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and noun, corresponding actions in terms of perceptual

sequences consisting of more than 100 steps for each trial

were tutored by guiding the robot with a remote

controller, while slight variances in object positions as

well as in the robot’s starting positions were introduced

during each trial of tutoring. Such tutoring was repeated

three times for each imperative sentence. For the purpose
of investigating the capacity to generalize the learning,

only 14 out of 18 possible sentences were trained and also

bound to the corresponding behavioral sequences tutored.

The remaining four behavioral sequences were trained

without being bound to the linguistic sentences. The

behavioral RNNPB received 26-dimensional multimodal

perceptual inputs and it output their prediction for each

next step. The multimodal perceptions included 21 feature
values for encoding visual images, along with two

measured torque values (an average torque value of both

wheels, and a torque value of the arm), the velocities of the

two motor wheels and a joint angle for the one DOF arm as

proprioception. The behavioral RNNPB had 70 hidden

units, four context units, and six PB units. The linguistic

RNNPB received a single word at each step which was

encoded by ten input units (each unit uniquely represents
a single world out of nine words and a starting symbol) and

output a prediction of the next word as encoded in

nine output units in the same manner. This RNNPB

had 50 hidden units, four context units, and six PB units. It

must be noted that time-step processing by the forward

dynamics of these two RNNPB modules was not necessarily

synchronous, as the learning of both modules was

conducted offline and behavior generation was preceded
by the recognition of imperative sentences.

The learning process converged with a root mean

square error of 0.0091 for the linguistic module and 0.025

for the behavior module after 50 000 epochs of iterative

training of the whole network. In the succeeding behavior
generation test, it was found that the robot could generate

correct actions for all 18 sentences. Crucially, these

included the four untrained sentences. In other words,

the agent was able to generalize the abstract and cognitive

structure of its world as evident in its responses to novel

contexts. An example of a ‘‘hit red’’ trajectory generated by

the robot is shown in Fig. 6(b). It was also found that the

robot could generate the corresponding behaviors quite
robustly against miscellaneous perturbations. For example,

in the cases of ‘‘hitting’’ or ‘‘pushing’’ object behaviors, the

robot could continue to track the target object even after

the object was slightly moved while approaching. Such an

example movie can be seen in video 1 in [37]. We

examined how each sentence was mapped to the PB vector

space. Fig. 7 shows this sentence mapping to the PB space

with its two principal components.
Observe that the mapping appears with a 2-D grid

structure with one dimension for verbs and the other for

nouns, where all sentences with the same verbs followed

by synonymous nouns appeared close in the space. It is

noted that even sentences of the unlearned combinations,

‘‘push redjleft’’ and ‘‘point greenjright’’ were mapped to

adequate positions in the grid (indicated by dotted circles).

And, following further experiments, it appears that these
untrained sentences were recognized correctly because

Fig. 7. Observed mapping of 18 imperative sentences into the

PB space constructed by its first and second principal components.

The four PB points surrounded by dotted circles represent PB values

for untrained sentences.

Fig. 6. Mobile robot with video camera and arm used in the

experiment for proto-language and behavior association learning.

(a) The robot is facing red, blue, and green objects at its home position.

(b) An example of a behavioral trajectory for hitting the red object.
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their meanings became inferable due to structural relations
with learned ones. The same experiment was repeated

three times, each time introducing different sets of four

unbound sentences. We found that the same generalization

was attained by the trained network model in every case

where a similar 2-D grid structure was formed in the PB

mapping. However, it was also observed that this gener-

alization was lost when more than four sentences were

removed from the bound learning. These results imply that
meanings could be acquired as a relational structure among

many of the sentences, and that such structures can be

developed in the distributed activation patterns of neural

units as the result of the generalization of learning if and

only if a sufficient number of exemplars are provided.

C. Learning Compositional Actions via
Self-Organization of Functional Hierarchy

This robotics experiment examined how a functional

hierarchy can be developed in the course of learning

complex actions dealing with object manipulation by

utilizing the previously described MTRNN model. As

mentioned in the introductory section, it is generally

considered that complex, goal-directed actions can be

generated by combining reusable primitives. A difficult

question arises, however, concerning how behavior
primitives can be extracted from direct experience and

then be stored in the memory pool, when the perceptual

sequence itself is naively experienced as unarticulated

flow, without explicit cues guiding segmentation into

those behavior primitives. Another question, related to this

one, concerns how those primitives, once stored in

memory, can be recombined to generate smooth and

continuous patterns of behavior, complex yet fluid
operations which Luria [38] metaphorically refers to as

‘‘kinetic melodies.’’ The central problem here is that

cognitive competency for compositional action generation

seems to require two incompatible aspects. On the one

hand, there appear to be algebraic operations on behavior

primitives treated as if they were discrete, concrete

objects, and on the other hand, there is the fluid and

context-sensitive concatenation of one primitive with
another matching the delicate flow of perceptual experi-

ence. The following humanoid robotics experiment

focused on this issue.

The experiment was conducted with the Sony human-

oid robot platform utilizing the MTRNN architecture

shown in Fig. 8 [27].

By implementing a color-based object-tracking camera

on the robot’s head, 2-D camera head angles targeting a red
colored object represented the visually perceived object

position Vt. Eight-dimensional joint angles in bimanual

arms represented the proprioceptive state Pt. The visual

state vt and the proprioception mt were mapped to softmax

activation patterns of 36 cells for visual state vt and 64 cells

for proprioceptive state pt by utilizing corresponding

topology-preserving maps implemented in Kohonen net-

works [39]. The current visual state vt and proprioceptive

state pt were fed into the input units of vision and the

proprioception input–output networks, respectively, in

order to predict its state at each next time step in the

output units. The whole MTRNN architecture consisted of
a higher level network containing 20 slow context units

ð�s ¼ 70Þ, a lower level network containing 30 fast context

units ð�f ¼ 5Þ, the vision input–output network containing

36 units ð�v ¼ 2Þ, and the proprioception input–output

network containing 64 input–output units ð�p ¼ 2Þ. Two

slow context units in the higher level network were

assigned to represent intentional states in terms of the

initial states. The units within each network, the higher
level network and the lower level network, were fully

interconnected, as were the units within both vision and

proprioception networks. However, neither were the units

in the higher level network connected directly with the

units in the input–output network, nor were the units in

the vision network connected directly with the units in the

proprioception network. Our assumption was that this

kind of constraint on the network connectivity would

Fig. 8. MTRNN architecture utilized in humanoid robot experiments

examining object manipulation.
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allow for the development of information bottlenecks and
hubs in the lower level network. Starting with a particular

initial state (representing intention), and following the

forward dynamics of the whole network, the network

predicted the vision state and the proprioceptive state of

each next time step by receiving the values from the

current time step from the corresponding perception

channels. The prediction of the proprioception state at

each next time step was sent to the proportional–integral–
differential (PID) controller of the robot in order to

generate the appropriate motor command for each joint

motor to achieve the predicted posture of the robot at that

next time step.

The robot was trained to generate five different task

behaviors with an object under the physical guidance of a

human tutor as described in previous experiments. The

goal of each task behavior was to generate a different
sequence of behavior primitives in order to manipulate the

object in different ways, such as reaching for the object,

moving the object up and down (UD), left and right (LR),

and forward and backward (FB) a specific number of

repetitions. There was one behavior primitive, clapping

hands (CL), which was not involved with the object. All

five task behaviors started from the home position and

ended by returning to that same position (see Fig. 9).
The tutor taught the robot each of these task behaviors,

changing the object position five times (2 cm each)

between the left end and the right end in the task table,

except for task 5 which did not contain object-related

behavior. It is important to note here that no explicit cues

were provided for the segmentation of the tutored visuo–

proprioceptive sequences into behavior primitives.

Training of the MTRNN was completed with 5000
iterations of BPTT for each of the tutored sequences. This

resulted in a root mean square error of 0.009. The robot’s

performance was tested for all five task behaviors by

changing the initial object position five times within the

trained range. It was shown that the robot performed all

task behaviors successfully. Here, ‘‘success’’ means that the

robot could generate specific patterns within specific

ranges of movement amplitudes for UD, LR, FB, and CL,
for a specific number of repetitions, without dropping the

object (for more details, see [27]). It is important to note,

also, that this same learning experiment was repeated five

times, in each case with similar results obtained with near-

perfect behavior regenerations. The robot failed in only

one trial out of 25 trials by dropping the object while

grasping it.

Fig. 10 illustrates representative task regenerations,
showing the development over time of essential system

variables, with task 2 and task 5 represented in the left-

hand and right-hand columns, respectively.

Each plot shows target signals for the four represen-

tative dimensions of proprioception and 2-D visual

information for object position during tutoring, with

corresponding generated outputs, and with the activations

of 60 fast context units and 20 slow context units in grayscale
representation. Looking at the activation dynamics of the fast

context units in the lower network, it is clear that their

dynamics were correlated with visuo–proprioceptive trajec-

tories. On the other hand, the activation patterns in the slow

context units changed much more slowly. From this

observation, a hypothesis can be drawn that a sequence of

primitive patterns, embedded in the lower subnetwork and

characterized by fast dynamics, was learned in the higher
subnetwork and characterized by slow dynamics.

According to this hypothesis and assumed functional

roles of the slow and fast dynamics in the model network,

one would anticipate that novel combinations of primitives

would be generated only by modulating the activity of the

slow context units. In order to test this idea, the network

was retrained to generate additional, novel behavior

sequences, which were to be assembled from new
combinations of prior-learned primitives. Most impor-

tantly, during this additional training, only the connectiv-

ity weights in the higher network were allowed to change,

not the ones in the lower and input–output networks. The

additional training consisted of two additional tasks. In

task 6, the robot was required to move the object up and

down three times, then to move the object left and right

three times, and finally to go back to the home position. In
task 7, the robot was required to move the object backward

and forward three times, then to touch the object with one

hand, and finally to go back to the home position. After the

retraining, the robot reproduced the novel behavior

sequences successfully with generalization across object

locations (an example robot movie can be seen in video 2

in [37]). Fig. 11 displays an example of regeneration of the
Fig. 9. Humanoid robot made by Sony is trained for five behavioral

tasks, each of which is composed of a sequence of behavior primitives.
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novel behavior sequence of task 6, in which we can see that
the visuo–proprioceptive trajectories were perfectly gen-

erated as compared to the teaching target ones. It can be

also seen that activation patterns of the fast context units

synchronized with the perceptual sequences, whereas

those for the slow context units changed much more

slowly, in accordance with the earlier experimental design.

In order to examine the effects on the learning process

of timescale differences between the slow network and the
fast one, the experiment that included training of the

additional novel sequences was further extended. In this

extension, the difference in the timescales was described

in terms of the ratio of � values in the fast and slow context

units as ð�s=�f Þ. First, after initially randomizing all the

connectivity weights in the whole network in each

instance, the basic sequences were trained five times,

with the time constant ratio ð�s=�f Þ set to five different
values from 1.0 to 14.0, and with �f fixed at 5.0. Then, the

additional novel sequences were trained five times. In

these instances, the connectivity weights were randomized

only in the higher network while the weights in other

subnetworks were preserved, and while the time constant

ratio ð�s=�f Þ was adjusted in the same way. In both training

cases, learning was iterated for 5000 epochs. As a result,

the average root mean square error achieved over five trials
for five different time constant ratios is shown for both

basic cases and additional cases in Fig. 12.

It can be seen that the learning error for the additional

training case started to increase significantly when the

time constant ratio was set to less than 5.0, while the one

for the basic case remained almost constant regardless of

the time constant ratio. It was also found that the robot

could not generate both of the novel behavior sequences
successfully when those sequences were trained with time

constant ratio settings of 2.0 or 1.0. From these results, it

can be inferred that the higher network could not

reorganize the novel primitive sequences simply by

adapting the weights in the higher network, because the

primitives had not been acquired in the lower network in a

reusable manner through the basic training phase when

the time constant ratio was set too small. This is because
two types of memories, one for primitive patterns and the

other for the sequencing of them, cannot be segregated in

the lower and higher networks in the case of learning

under the condition of the small time constant ratio. On

the other hand, with larger time constant ratio values, such

as 5.0 and 14.0, it is postulated that the functional

hierarchy self-organized between the two subnetworks

Fig. 10. Examples of teaching patterns and generated patterns for task 2 and task 5. Proprioception and vision trajectories during teaching

(in the first and second rows) and during generation (in the third and fourth rows) are shown. The activation patterns for 60 fast context

units and for 20 slow context units are shown in the sixth and seventh rows, respectively.
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such that a set of primitive patterns stored in the lower
network could be reutilized to generate the novel

sequences of the primitives in the higher one.

It was observed that the time profiles of the slow

context activities were smooth and uncorrelated with detail

profiles either in the visuo–proprioceptive sequences or in

the fast context unit activation sequences. Although the

profiles of those slow context activities drastically changed
as the primitives were shifted from one to another, they

never showed stepwise changes at the moments that

primitives were switched, but rather only showed contin-

uous, smooth changes. Most importantly, it can thus be said

that the higher level sequencing was realized not in terms

of discrete event-like sequences, but in terms of the

continuous flow of collective neural activities. The exact

profiles of the slow context activities should be determined
by the consolidative learning processes which attempt to

find compromise between two potentially conflicting

factors. One of these factors is that the slow context unit

activities can change only gradually because of their time

constant constraint, and the other is that the prediction

output error in the lower level network should be

minimized by adequately modulating the slow context

activities which work as nonlinear parameters, regulating
the lower level network dynamics.

The gradually changing profiles in the slow context

units seem to contain some contextual information, useful

for counting cycle times in cyclic patterns as well as for

predicting the next primitives to switch. When the

activities in the slow context units were slightly perturbed

by adding artificial noises, the counting became imprecise

with plus or minus 1. However, it was always observed that
these behaviors were smoothly connected to the next

primitive and that transitions to the next primitive never

took place midway through an ongoing primitive. For

example, in task 6, moving the object up and down an

incorrect number of repetitions (four times rather than the

correct three times as had been taught), smoothly

connected to the next primitive of moving the object to

the left and right after locating the object on the floor, even
though the cycle times were counted inaccurately. This

implies that what we may call ‘‘fluid compositionality’’ had

been developed via iterative interactions between the

higher level neural dynamics and the lower level during

the learning process.

D. Learning to Generate Spontaneous Combinations
of Primitive Actions

The previous experiment showed how robots can learn

to generate a set of task behaviors, each of which

comprising a deterministic sequential combination of

behavior primitives. However, everyday behaviors of

human beings appear to be spontaneous, their sequences

being not so fully predetermined. Consider the actions

involved in making pasta as an example. After pouring
water into a pot, and putting it on a gas stove, I can either

light the gas stove or put a spoonful of salt in the water. Or,

very often, I completely forget to add salt during the

preparation of the pasta, only to remember the salt later

when I take the first bite. As this example illustrates, some

segments of action sequences are deterministic, and must

be done in order to satisfy the goal, while others are

Fig. 12. Average root mean square error over five training trials, each

with a different time constant ratio, is shown for both the basic

learning case and the additional one.

Fig. 11. Example of teaching and generated patterns for the novel

behavior sequence of task 6.
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nondeterministic, even optional, and where we might find
spontaneity in action generation.

Psychologists have studied this aspect of human

behavior in terms of statistical learning. Their observations

on child development as well as adult learning have

suggested that chunk structures can be extracted through

statistical learning with a sufficiently large number of

perceptual and behavioral experiences [40]–[42]. Here,

the term ‘‘chunk structures’’ denotes repeatable sequence
patterns as chunks, or primitives, and takes account of

probabilistic state transitions between those chunks or

primitives. One important question here is how dynamic

neural network models can learn to generate ‘‘spontaneous

behaviors’’ by extracting the aforementioned statistical

structures for chunking. Furthermore, what is the origin of

the probability underlying the statistical structure ob-

served in spontaneous behaviors?
For the purpose of investigating these questions, we

conducted the following robot learning experiment

involving statistical learning of primitive action transition

sequences [29]. The same humanoid robot with the same

setting described in the previous section was trained to

imitate object manipulation behaviors through direct

guidance by a tutor. The target task to be tutored

contained stochastic transitions between primitive actions,
as shown in Fig. 13.

A colored object was placed on a table in one of three

positions (left, center, or right), and the tutor repeated a

primitive action proceeding as follows. Beginning from the

home position, both hands approached the object for

grasping, then grasped the object. Then, the object was

moved to one of two possible positions with equal

probability (50%). After releasing the object, the hands
returned to the home position. The tutoring of the action

was performed continuously, with each next object

position determined randomly, and no explicit cues were

provided for segmenting the sequences. This tutoring
process generated 24 training sequences, each of which

consisted of 20 transitions of primitive actions, amounting

to roughly 2500 time steps of continuous visuo–

proprioceptive sequences. Using the same scheme as

described in the previous section, this experiment used

these training sequences for offline training of the

MTRNN. The MTRNN consisted of a higher level network

containing 30 context units ð�s ¼ 100Þ, a lower level
network containing 30 context units ð�f ¼ 20Þ, and an

input–output network containing 16 gated modular net-

works with each comprising ten neural units ð�io ¼ 2Þ (for

further details, see [29]).

After the training of the network, we tested the robot

for its ability to imitate each tutored sequence. Beginning

with the network set with the acquired initial state, the

trained primitive action sequences consisting of several
primitive action transitions were reproduced exactly

during the initial period. However, generated sequences

gradually started to deviate from the learned ones. Newly

generated sequences deviating from the learned ones

were aperiodic, with various sequential combinations of

moving the object to left, center, or right being observed.

Statistical analysis conducted on the transition sequences

generated over longer periods (300 transitions of action
primitives) showed that the probability of transitioning to

one of two possible alternatives was in the range of

40%–60% for each position, approximating that of the

tutored sequences. An example movie for demonstrating

the corresponding robot behaviors can be seen in video 3

in [37].

In order to more rigorously examine the capability of

the model network to extract stochastic structures hidden
in the tutored sequences, we performed analyses on the

look-ahead prediction sequences generated by the model

network during its closed-loop operation while repeating

the training of the network under different conditions. In

the closed-loop operation, long sequences of look-ahead

prediction for the visuo–proprioceptive state in terms of

‘‘motor imagery’’ can be generated by feeding the current

prediction outputs to the next inputs without using the
actual sensory inputs, as described previously. Fig. 14

shows an example of the closed-loop generation by the

prior trained network, in which the neural activation

sequences in units with different timescales on different

network levels, and the associated visuo–proprioceptive

sequences, can be seen.

Fig. 14 demonstrates that neural activities in the lower

level network and in the higher level network developed
with their intrinsic timescale dynamics, as had been

observed in the previous experiment using the MTRNN.

Next, an analysis was conducted for cases introducing

different transition probabilities in the tutoring. For this

purpose, the tutoring sequences were newly generated by

changing the transition probability (the probability of

selecting an action of ‘‘right to center’’ in Fig. 14) from the

Fig. 13. Task of successive stochastic transitions of action primitives

tutored for a Sony-made humanoid robot. Each action primitive

starts with both hands approaching a green object, grasping and

moving the object to two alternative possible positions with

50% probability for each, releasing the object, and finally ends with

the hands going back to the home position.
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original 50% to 25% and to 12.5%. The number of

generated tutoring sequences remained the same as during

previous tutoring, one for each transition probability case.

The network training was repeated 100 times, utilizing

different random settings for the initial weights in each

case. Then, the transition probability was measured for the

visuo–proprioceptive sequences produced via the closed-

loop operation of each trained network. Fig. 15 shows the
mean of the transition probability obtained from the

results of 100 trials of learning for each of the aforemen-

tioned three probabilities. It can be seen that the transition

probabilities of the reproduced actions mostly followed the
target ones.

This result implies that the employed model could

learn to extract the statistical structures of chunking with

their corresponding transition probabilities from the

tutored sequences.

Next, we investigated the main issue, namely the origin

of indeterminacy or spontaneity in choosing action

primitives. In order to avoid the possibility that the
stochastic property was originating from miscellaneous

real-world noise sources, including sensory noise and

mechanical noise, the intrinsic dynamics of the network

model attained by the closed-loop operation was analyzed

again. For purposes of examining the dynamic character-

istics of the network quantitatively, a dynamic measure

known as the Lyapunov exponent was calculated for the

activity of each subnetwork during generation of motor
imagery. A positive or negative Lyapunov exponent value

indicates the rate of divergence or convergence of adjacent

trajectories in a given dynamic system, respectively. A

positive value for the maximum Lyapunov exponent (MLE)

as the largest component indicates that chaos is generated

in the system. We computed the MLEs for the higher and

lower level networks (see the Appendix for the method.)

The computation was repeated 100 times with different
connectivity weights developed from the initial weights

randomized with different seeds but under the same

learning conditions. The computation results showed that

the average MLE for 100 trials of training was 0.000533 for

the higher level network and �0.007424 for the lower

level network. It was also shown that the probability of

showing a positive value of the MLE was 94% for the

higher level network and 0% for the lower level network.
The result indicates that deterministic chaos was formed in

the higher level network. Results from an additional

experiment on artificial lesions in the network model

agree with this indication. When the higher level network

was lesioned by forcing activation values of all the context

units in the network to a constant value, only simple,

periodic sequences of action primitive transitions appeared

instead of pseudostochastic sequences of them. It can be
inferred from these results that deterministic chaos

developed in the higher level can generate pseudostochas-

tic transitioning between action primitives stored in the

lower level network.

For the purpose of investigating possible contributions

of the time constant ratio ð�s=�f Þ to the formation of chaos

in the subnetworks, the same computation was repeated

while reducing �s from the original value of 100 to 50, and
to 20, while �f was fixed at 20. The results showed that the

average MLE of the higher level network became negative,

�0.000068 for �s set at 50, and�0.005069 for �s set at 20.

The average MLE of the lower level network was found to

also be negative for both of these higher level network time

constant conditions. When the time constant ratio was

reduced to less than or equal to half of the original, the

Fig. 15. Mean probability of selecting the action ‘‘right to center’’ of

100 trained networks for three different probabilities (12.5%, 25%,

and 50%) during the tutoring session.

Fig. 14. Forward dynamics generated by the closed-loop operation of

a trained network showing a time series of primitive action labels

(R, C, and L) in terms of vision (relative object position in 2-D),

proprioception (two representative dimensions), and activities of

30 fast context units and 30 slow context units with grayscale plots.
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MLE of both networks became negative. These results
indicate that deterministic chaos can be generated in the

higher level network as a consequence of the learning

processes, provided that the time constant of the higher

level network is set to an adequately large value as

compared to that of the lower level network.

In summary, the current investigation showed that the

MTRNN can generate ‘‘spontaneous behaviors’’ by self-

organizing chaos in the higher level network as the results
of statistical learning of perceptual flow. Our analysis

confirmed that the chaotic dynamics incorporated with the

lower level network dynamics can realize spontaneous

selection of primitive actions by reflecting the observed

statistical structures of chunking.

IV. DISCUSSION AND CONCLUSION

This paper began with questions concerning how the

compositionality assumed in human brains can be

developed while remaining grounded in sensory-motor

reality. It was conjectured that this compositionality can be

developed as embedded in particular neurodynamic

systems through dense interactions between top–down

intentional processes and the bottom–up recognition of

the perceptual reality, with such compositional structures
remaining naturally grounded. Testing these conjectures,

the current paper proposed specific dynamic neural

network models, including the RNNPB and the MTRNN,

for controlling sensory-motor systems realized under the

principle of prediction error minimization. In the process

of minimizing the error, such dynamic neural networks

learned to predict the perceptual outcomes for particular

intention states by forward computation, and they also
learned to recognize the perceptual reality by inversely

searching corresponding intentional states. It was further

speculated that these dynamic neural networks could be

incorporated with a ‘‘functional hierarchy’’ such as that

observed in human brains by utilizing timescale differ-

ences assumed between the subnetworks.

A set of robotics experiments was conducted, examin-

ing the aforementioned conjectures. The first robotics
experiment, utilizing the RNNPB, showed that the

intention of a robot could be dynamically shifted, adapting

to sudden situation changes in the environment by means

of the regression of possible error between the top–down

prediction and the bottom recognition of the perceptual

outcome. What we witnessed was an emergence of circular

causality in embodied cognition, as has been discussed by

Freeman [43], where an intention generates an action,
which causes a perception in the environment, which

causes a dynamic shift in the intention, which generates

another action. The second robotics experiment examined

how concepts for actions could be acquired through

dynamic interactions between a linguistic module and a

behavior module, both of which were implemented by

RNNPB models. Through interactive learning between the

two modules, by utilizing the error information back-
propagated from each of them, the results of this

experiment indicated that a compositional structure for

expressing combinations of verbs and nouns can be

developed with generalization in the distributed repre-

sentations self-organized in PB activities.

The third experiment, using the MTRNN model,

showed that a functional hierarchy can be developed in

the model network through iterative learning of the
continuous perceptual flow, where a set of reusable

behavior primitives was developed in the lower level

network and where the sequencing of these was realized in

the higher level network, provided that the time constant

parameter of each level is appropriately set. One

interesting point of observation taken from this experi-

ment concerns the emergence of the so-called ‘‘fluid

compositionality’’ that supports two seemingly incompat-
ible functions: 1) the algebraic operations on primitives as

concrete objects; and 2) the fluid and context-sensitive

concatenations of primitives as delicate perceptual spatial–

temporal patterns. The very fine structures accommodat-

ing these two can be developed in the course of interactive

learning between the higher order cognitive level and the

lower perceptual level, where the top–down intentional

pathway attempts to generate the whole behavioral flow
proactively, and where the bottom–up process modulates

such flow by reflecting the perceptual reality. Such

interaction should lead to the achievement of ‘‘kinetic

melody’’ [38] in generating fluid, yet compositional

actions.

One interesting finding in the fourth experiment was

that the pseudostochastic process in action-primitive

transitions was realized by deterministic chaos self-
organized in the higher level network through the

extraction of the probabilistic structure latent in observed

visuo–proprioceptive sequences in the lower level net-

work. What we saw here can be understood as a reverse of

the ordinary way of constructing the symbolic dynamic

[44]–[46]. The symbolic dynamic can be obtained by

applying finite numbers of partitions to trajectories of

chaos defined in continuous space by assigning a symbol
label to each partition. It is known that the symbol

sequences obtained by this operation exhibit probabilistic

state transition properties which can be reconstructed by

stochastic finite state machines with epsilon approxima-

tion [46]. The current robotics experiments showed that

chaos is self-organized in the adopted neural dynamic

system through the process of imitating the observed

sequences of primitive actions, sequences that are like
stochastic transitions of symbols. Here, the reader may

consider that the same phenomena of spontaneous

generation of actions, or perceptual sequence patterns,

can be generated much more simply by employing

probabilistic models such as the hidden Markov model

[47] or stochastic dynamics models, such as in [24]. The

crucial difference, however, is that in the case of chaos
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self-organized in the MTRNN model, the network itself
selects each next action deterministically, even though

external observers may not be able to judge whether it is

deterministically or probabilistically determined simply by

observing the action sequences generated. On the other

hand, in the case of probabilistic or stochastic dynamics

models, next actions are selected only probabilistically by

means of externally provided random processes. Presum-

ably, deterministic dynamic systems would be indispens-
able for generating both spontaneous behaviors and

intentional behaviors under the same dynamic mecha-

nism, especially by utilizing the initial sensitivity char-

acteristics. Behavioral trajectories departing from

arbitrarily set initial states of the intentional units exhibit

spontaneous transitions of primitive actions by means of

chaos which has been self-organized by extracting the

statistical structures from observation. On the other hand,
by the deterministic nature of the same model, a particular

sequence of shorter length can be generated with rigorous

intention by resetting the model to the corresponding

initial state values, if saved in the memory. It is also crucial

to note that deterministic dynamical systems allow for

mean field approximations to neuronal dynamics. Al-

though individual neuronal dynamics may be stochastic,

Fokker–Planck formulations and related mean field
treatments render the essential dynamics deterministic,

again. Accordingly, these deterministic treatments are

predominant in the theoretical and modeling literature.

The current research has been inspired by prior studies

by others on the dynamical systems approach to under-

standing cognitive brain processes. First, the current study

has been largely influenced by thought about embodied

cognition viewed from the dynamical systems perspectives
[48]–[50]. It presumes that the essence of embodied

cognition should appear in the structural coupling between

brains, bodies, and environments. Although on this

account the perceptual entrainment of internal processes

is considered to be the key mechanism ensuring situated-
ness in the environment [50], the current study assumes

that sophisticated mechanisms of interaction between

top–down prediction and bottom–up error regression are
crucial to the development of compositionality in embod-

ied higher level cognitive processes that also succeed in

remaining situated in the outer environment. Recently,

other groups have introduced different neurodynamic

models to deal with compositionality problems in language

and behavior association learning [51], and in composi-

tions of sensory-motor primitives into goal-directed

actions [52]. However, that research does not focus on
the essentiality of top–down and bottom–up interactions

in the development of compositionality. Other brain

modeling researchers [53], [54] who regard the brains as

complex systems have speculated that chaos might play an

important role in cortical processing. For example, some

have speculated that memory search processes utilize

chaotically generated itinerant trajectories in shifting from

one candidate memory state to another, an idea which has
some experimental support in EEG recordings of the

olfactory bulbs of rabbits smelling odors [55]. Although the

observation of spontaneous shifts in generating primitive

actions or their motor imagery shown in our robotics

experiments might be analogous to this phenomena of so-

called ‘‘chaos itinerancy’’ [54], there are fundamental

differences in the way that our studies have treated chaos.

In our studies, chaos was self-organized by means of
reflecting stochasticity observed in primitive action

sequences during the learning process. On the other

hand, in those brain modeling studies [53], [54], chaos was

utilized as additive noise for generating fluctuations in

memory dynamics.

Now let us examine possible correspondences of our

proposed model, especially the MTRNN, to real brains.

The major assumptions represented in the MTRNN are:
1) timescale differences in neural activation dynamics are

assumed between subnetworks; 2) a hub-like subnetwork

is assumed in the intermediate level which is connected

both from the higher level network and the input level

modular networks for motor and vision; and 3) top–down

intention is initiated from the higher level network and

bottom–up error-based recognition originates from the

lower level network. In electrophysiological experiments
with monkeys, Tanji and Shima [56] observed timescale

differences in the buildup of neural activations between

the supplementary motor area (with slower dynamics

spanning timescales on the order of seconds) and M1 (with

faster dynamics on the order of a fraction of a second)

immediately before action generation. Hoshi et al. [57]

showed that the time profile of prefrontal cortex neurons

during the buildup period can show similar slow dynamics
profiles with the ones in the supplementary motor area.

Soon et al. [58] demonstrated that brain activity is initiated

in the prefrontal cortex up to seven seconds before a

conscious decision of free actions in human fMRI imaging

experiments. Kiebel et al. [59], Badre and D’Esposito [60],

and Uddén and Bahlmann [61] proposed a similar idea to

explain the rostral–caudal gradient of timescale differ-

ences by assuming slower dynamics at the rostral side
(PFC) and faster dynamics at the caudal side (M1) in the

frontal cortex to account for a possible functional

hierarchy in the region. Next, let us take a glance at the

connectivity among the related local cortical areas. First, it

is well known that the parietal cortex receives multimodal

sensory information including that of dorsal stream vision

(spatial and motion components in the visual inputs) and

somatosensation for their possible integration [62]. Also,
anatomical studies of monkey brains have shown that the

prefrontal cortex and the parietal cortex are densely

interconnected [63], [64]. Human brain imaging studies

have suggested that the so-called ‘‘prefrontal–parietal’’

network may be involved in executive tasks [65], [66] and

attention systems [67]. Taken together, this research

suggests that the parietal cortex may serve in the
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generation of cognitive behaviors by acting as an
information hub both for the executive control from the

prefrontal cortex and multimodal sensation from the

sensory peripherals.

Integrating present experimental evidence with views

prevalent in neuroscience, the following interpretation of

the MTRNN and its correspondence with real brains

presents itself. Top–down intention for generating volun-

tary action might be initiated in a slow dynamics network
corresponding to the prefrontal cortex. Then, top–down

intention might propagate to an intermediate dynamics

network corresponding to the parietal cortex, where

prediction of the integrated visuo–proprioceptive states

expected to result from intended actions is made. This

top–down prediction further propagates in one way to the

motor cortex where motor commands necessary to achieve

the predicted proprioceptive changes (the predicted
movements of the limbs) are inversely computed, and in

another way to the V5 where visually perceived motion

(e.g., movements of a visual object in our robot

experiments) is predicted. When the predictions of the

perceptual inputs in vision and proprioception are

compared with the actual ones, the resultant errors might

be backpropagated to the parietal cortex. This accords with

a speculation made by Desmurget et al. [68] that the
parietal cortex might mediate error monitoring between

the predicted perceptual outcome for the intended action

and the actual perceptual outcome. Furthermore, they

argued that this error monitoring in the parietal cortex

may trigger the postdictive conscious awareness of the will

for generating voluntary actions. Friston [24] provides a

similar account, arguing that prediction error causes

surprise. I have speculated that our consciousness may
arise when the intention in the higher order cognitive

brain is effortfully modified through the process of

searching for the error minimum [69]–[71].

Future research should concern the scaling issues in

the models presented in the current paper. The experi-

ment on associative learning between language and action

should include more complex sentences, such as those

composed of an objective noun followed by adverb phrase
like ‘‘put A on B.’’ It is assumed that generalized learning of

such a case should require an additional principal

dimension in the concept space (a 3-D rather than a 2-D

grid) generated in the PB mapping. An interesting

question might be how much the concept space can be

enlarged just by adding further principal dimensions to the

space. Other possible scenarios should be considered, also,

because any incremental increase in the number of
essential dimensions would cause a combinatorial explo-

sion where generalization of learning might become too

difficult to be achieved. For the MTRNN model, scalability

issues such as the incremental increases in memory size in

terms of the number of different primitives to be acquired

versus the incremental increase in the number of neural

units in the network are important, but there are other

fundamental issues open to future research as well. One
concerns the setting of the time constant parameters.

Although, in the current study, the time constant

parameter of each level was intuitively set by the

experimenters, it is more desirable that the parameter

can be set automatically. Although it is mathematically

possible to optimize each time constant by means of the

error minimization, it is not certain how much more stably

such optimization processes can converge. The clarifica-
tion of this problem, alone, requires some intensive

studies. Another issue concerns the number of levels to be

determined for particular given tasks. Although there

might be some optimization methods to determine the

number by learning, an open question is if the levels

should be maintained as countable ones, or if the

functionality should change rather continuously without

having explicit boundaries between them. It should be also
true that the degree of topological connectivity between

different levels affects the degree of segregation between

them [72]. Dense connectivity will suppress developments

of independent functions at each level, whereas sparse

connectivity will suppress necessary interactions between

them. Theoretically, it may be possible to optimize the

connectivity, the number of hierarchical levels, and the

number of nodes using Bayesian model comparison. This
follows because our scheme is formally related to free

energy minimization in active inference [24]. This is

important because the free energy provides an objective

function that can be used not just to make perceptual

inferences and to optimize connection weights, but it can

also be used to score different models of the embodied

environmentVand, therefore, to optimize the model

itself. Although this has not been demonstrated in
practice, it remains an exciting prospect. h

APPENDIX
MAXIMUM LYAPUNOV EXPONENT

The maximum Lyapunov exponent of a dynamic system

represents the rate of exponential divergence from the

perturbed initial conditions. By considering two points, X0

and X0 þ �X0, in a state space, each of which develops in

time to generate an orbit, the maximum Lyapunov

exponent � can be defined as

� ¼ limt!1
1

t
ln

�Xt

j�X0j

where �X0 represents the initial separation vector of two

orbits, and �Xt is the separation vector at time t.
For evaluating the maximum Lyapunov exponent for

each subnetwork, 100 sample sequences of 100 000 time

steps with random initial states and initial separation

vectors were generated by performing the closed-loop

Tani: Self-Organization and Compositionality in Cognitive Brains: A Neurorobotics Study

Vol. 102, No. 4, April 2014 | Proceedings of the IEEE 603



operation of the whole network without receiving the
external inputs. When the maximum Lyapunov exponent of

the lower or higher level network was measured, we

computed the dynamics of the entire network, but evaluated

a separation vector containing only the component of a

subnetwork as the lower or higher level component. This

method measures the contribution of the subnetwork to the

initial sensitivity of the dynamics. Note that if the

subnetwork has a positive Lyapunov exponent, as measured
in the aforementioned manner, then the entire network also

has a positive Lyapunov exponent.
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