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Abstract

According to the motor theories of perception, the motor systems of an observer are actively involved in the perception of actions when these
are performed by a demonstrator. In this paper we review our computational architecture, HAMMER (Hierarchical Attentive Multiple Models for
Execution and Recognition), where the motor control systems of a robot are organised in a hierarchical, distributed manner, and can be used in
the dual role of (a) competitively selecting and executing an action, and (b) perceiving it when performed by a demonstrator. We subsequently
demonstrate that such an arrangement can provide a principled method for the top-down control of attention during action perception, resulting in
significant performance gains. We assess these performance gains under a variety of resource allocation strategies.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Following the increased interest in mechanisms that will
endow robots with the capability to imitate human action,
several computational architectures have been proposed to
match visual information from observing a demonstrator to
motor plans that would achieve the corresponding action for
the observer [1–3]. Internal models of the motor systems of the
observer and the demonstrator and their capabilities have been
frequently suggested as useful tools aiding in this matching
(e.g. [4], for a review, see [5]). The particular method we
will employ in this paper relies on the concept of motor
simulation. Mental simulation theories of cognitive function
[6], of which motor simulation is an instance, advocate the
use of the observer’s cognitive and motor structures in a dual
role: on-line, for the purposes of perceiving and acting overtly,
and off-line, for simulating and imagining actions and their
consequences [7]. With the discovery of the mirror system,
first in monkeys [8] and subsequently in humans [9], the idea
that motor systems can be used for the perception of others’
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actions became increasingly popular [10]. In our previous work
[2], we have performed a computational investigation of the
mirror system using robotic devices as models, which resulted
in plausible explanations and testable predictions regarding its
behaviour, and in particular its sensitivity to the velocity profile
of the demonstrator (for a review see [11]).

In this paper, we describe HAMMER, our computational
architecture for recognising and executing actions, utilising
hierarchical, attentive, multiple models. After a review of
related work, we will review the operation of the building
blocks of the architecture. Subsequently we will perform a
number of experiments, (a) illustrating that such architecture
can provide a principled method for the top-down control
of attention during the perception of actions of others, and
(b) demonstrating that it results in significant computational
performance increases.

2. Background

Equipping robots with the ability to imitate enables them
to learn to perform tasks by observing a human demonstrator
[12]. In the centre of this ability lies a mechanism that
matches demonstrated actions with motor actions available to
the robot [2,1,5]. Several architectures have been proposed for
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implementing this mechanism (for reviews see [13,12,5,14]),
including a number of proposals utilising a shared substrate
between execution, planning, and recognition of actions [2,5,
15]. This methodological shift, compared to other successful
approaches to learning by demonstration [16] was inspired by
the discovery of the mirror system [17,18], which indicated
that, at least in primates, there is indeed a shared neural
substrate between the mechanisms of action execution and
those of action recognition. Apart from being compatible
with the motor theories of perception, from an engineering
perspective this approach is also attractive since it allows reuse
of subsystems in multiple roles.

An important issue that remains unresolved is where
the attention of the observer should be focused when
a demonstrator performs an action. Whilst there is little
agreement on an universal definition of attention [19], from an
engineering point of view it can be defined as a mechanism
for allocating the limited perceptual and motor resources of
an agent to the most relevant sensory stimuli. The control
inputs to the attention mechanism can be divided into two
categories: stimulus-driven (or bottom-up) and goal-directed
(or top-down). Stimulus-driven attention models work by
attaching levels of saliency to low-level features of the visual
scene, e.g. colour, texture or movement, and then deriving
the corresponding saliency maps, fusing them, and applying
a winner-take-all strategy to direct the attention to the most
salient part of the scene [20]. However, it is well known from
human psychophysical experiments that top-down information
can also influence bottom-up processing (e.g. [21,22]). Wolfe
[21] put forward the hypothesis that the goal-directed element
of attention selects bottom-up features that are relevant to
the current task (in what is termed visual search) by varying
the weighting of the feature maps. However, the fundamental
question of what determines the features that are relevant to
the task has not been answered in a principled way. This is the
case particularly when the tasks are performed by someone else
without the observer having access to the internal motivational
systems of the demonstrator. The task demonstrated is not even
known in advance, therefore the top-down selection of features
to attend to is not obvious, and an online method for selecting
features dynamically is needed. We will utilise our previous
work implementing the motor theory of perception [2] for
deriving a principled mechanism for the goal-directed control
of attention during action perception, which we consider the
key contribution of this paper.

3. HAMMER

HAMMER is organised around, and contributes towards,
three concepts:

• The basic building block involves a pair of inverse and
forward models in the dual role of either executing or
perceiving an action [2].

• These building blocks are arranged in a hierarchical, parallel
manner [4].

• The limited computational and sensor resources are taken
explicitly into consideration: we do not assume that all
state information is instantly available to the inverse model
that requires it, but formulate them as requests to an
attention mechanism. We will describe how this provides
a principled approach to the top-down control of attention
during imitation.

3.1. Building blocks

HAMMER makes extensive use of the concepts of inverse
and forward models [23–25]. An inverse model (akin to the
concepts of a controller, behaviour, or action) is a function that
takes as inputs the current state of the system and the target
goal(s), and outputs the control commands that are needed to
achieve or maintain those goal(s). Related to this concept is
that of a forward model of a controlled system: a forward model
(akin to the concept of internal predictor) is a function that takes
as inputs the current state of the system and a control command
to be applied on it and outputs the predicted next state of the
controlled system.

The building block of HAMMER is an inverse model paired
with a forward model. When HAMMER is asked to rehearse
or execute a certain action, the inverse model module receives
information about the current state (and, optionally, about the
target goal(s)), and it outputs the motor commands that it
“believes” are necessary to achieve or maintain these implicit or
explicit target goal(s). The forward model provides an estimate
of the upcoming states should these motor commands get
executed. This estimate is returned back to the inverse model,
allowing it to adjust any parameters of the action (an example
of this would be achieving different movement speeds [2]).

If HAMMER is to determine whether a visually perceived
demonstrated action matches a particular inverse-forward
model coupling, the demonstrator’s current state as perceived
by the imitator is fed to the inverse model. The inverse model
generates the motor commands that it would output if it was
in that state and wanted to execute this particular action. The
motor commands are inhibited from being sent to the motor
system. The forward model outputs an estimated next state,
which is a prediction of what the demonstrator’s next state will
be. This predicted state is compared with the demonstrator’s
actual state at the next time step. This comparison results in an
error signal that can be used to increase or decrease the inverse
model’s confidence value, which is an indicator of how closely
the demonstrated action matches a particular imitator’s action.

3.2. Distribution and hierarchy

Multiple pairs of inverse and forward models can operate
in parallel [2]. Fig. 1 shows the basic structure. When the
demonstrator agent executes a particular action the perceived
states are fed into all of the imitator’s available inverse models.
As described earlier, this generates multiple motor commands
(representing multiple hypotheses as to what action is being
demonstrated) that are sent to the corresponding forward
models. The forward models generate predictions about the
demonstrator’s next state: these are compared with the actual
demonstrator’s state at the next time step, and the error signal
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Fig. 1. The basic architecture, showing multiple inverse models (B1 to Bn) receiving the system state, suggesting motor commands (M1 to Mn), with which the
corresponding forward models (F1 to Fn) form predictions regarding the system’s next state (P1 to Pn); these predictions are verified at the next time state, resulting
in a set of error signals (E1 to En).
resulting from this comparison affects the confidence values of
the inverse models. At the end of the demonstration (or earlier if
required) the inverse model with the highest confidence value,
i.e. the one that is the closest match to the demonstrator’s action,
is selected. This architecture has been implemented in real-
dynamics robot simulations [2], and robotic platforms [4,26]
and has offered plausible explanations and testable predictions
regarding the behaviour of biological imitation mechanisms in
humans and monkeys (see the review in [11]). More recently
we have designed and implemented a hierarchical extension [4]
to this arrangement: primitive inverse models are combined to
form higher more complex sequences, with the eventual goal
of achieving increasingly more abstract inverse models [26],
thus helping in dealing with the correspondence problem [27].
The hierarchical aspect of the architecture has been described
in detail in [4,26], and since it is not used in the attention
experiments that follow, it is not elaborated further here. The
main point of it is that nodes higher in the hierarchy encode
increasingly abstract behavioural aspects, such as goal states,
and can be used to simulate the demonstrated action not by
following the demonstrated movements, but their effects on the
environment instead [26]. We have also conducted experiments
to learn forward and inverse models through motor babbling
[28], and to integrate the results with the inverse and forward
models learned through demonstration [29].

3.3. Top-down control of attention

The architecture as stated so far assumes that the complete
state information will be available for and fed to all the available
inverse models. However, the sensory and memory capacities of
the observer are limited, so in order to increase the efficiency
of the architecture, we do not feed all the state information
to all the inverse models. Since each of the inverse models
requires a subset of the global state information (for example,
one might only need the arm position rather than full body
state information), we can optimise this process by allowing
each inverse model to request a subset of the information from
an attention mechanism, thus exerting a top-down control on
the attention mechanism. Since HAMMER is inspired by the
simulation theory of mind point of view for action perception,
it asserts the following: for a given action, the information
that the attention system will try to extract during the action’s
demonstration is the state of the variables the corresponding
inverse model would have control if it was executing this
action. For example, the inverse model for executing an arm
movement will request the state of the arm when used in
perception mode. This novel approach provides a principled
way for supplying top-down signals to the attention system.
Depending on the hypotheses that the observer has on what
the ongoing demonstrated task is, the attention will be directed
to the features of the task needed to confirm one of the
hypotheses. Since there are multiple hypotheses, thus multiple
state requests, the saliency of each request can be made a
function of the confidence that each inverse model possesses.
This removes the need for ad-hoc ways for computing the
saliency of top-down requests. Top-down control can then be
integrated with saliency information from the stimuli itself,
allowing a control decision to be made as to where to focus
the observer’s attention. An overall diagram of this is shown in
Fig. 2.
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Fig. 2. The complete architecture, incorporating the attention systems; forward
models have been omitted (but are shown in Fig. 1); B1 to Bn are the available
inverse models, and the arbitration block has to decide which of their requests
to satisfy.

4. Experiments

4.1. Experimental setup

We implemented and tested this architecture on an
experimental setup involving an ActivMedia Peoplebot; in
these experiments the on-board camera was used as the only
sensor. A human demonstrator performed an object oriented
action (an example is shown in Fig. 3), and the robot,
using HAMMER, attempted to match the action demonstrated
(an example is shown in Fig. 4), with the equivalent in
its repertoire. In the experiments reported here, the robot
captured the demonstration at a rate of 30 Hz, with an image
resolution of 160 × 120, and the demonstrations lasted an
average of 2 s. In the following sections, we will describe the
implementation of the architecture, along with its performance
with and without several implementations of the attention
mechanism. We will compare its performance against previous
implementations of this approach [2,4] to demonstrate the
performance improvements that the attention subsystem of
HAMMER brings.
Fig. 3. The experimental setup involves an ActivMedia Peoplebot observing a
human demonstrator acting on objects.

4.2. Implementation of HAMMER

4.2.1. From inverse models to biases — top-down control
A number of inverse models were implemented including

move effector towards object (in the experiments below objects
included a soda can and an orange), pick object, drop object,
and move away from object using the ARIA library of
primitives provided with the ActivMedia Peoplebot, similarly
to our previous experiments with these robots [4,26]. For each
of the inverse models simple directed graphs with conditions
that needed to be satisfied (for example, to pick an object, the
robot’s effector must move towards the object’s location until
that location is reached) were made available, and were used to
monitor the progress of the inverse model. In total, eight inverse
models were used (two instances of each of the above four
inverse models, one for each object). We used separate inverse
models for each object merely in order to increase the number
of inverse models available given the limited motor capabilities
of the Peoplebot; this way the effects of the architecture and
the different test conditions are clearer. The inverse models
could be parametrised with the object type rather than keeping
a separate model for each object. Forward models were hand-
coded for each of the inverse models, using kinematic rules to
output a qualitative prediction of the next state of the system
for each of these inverse models. For example, given the current
position and speed of the hand and a motor command to move
the hand to a certain direction, the predicted next state would
be “closer” or “further away” from an object.

The list of state requests of each of the inverse models is
passed to the arbitration module of the attention mechanism
(essentially the part of the architecture exerting the top-down
control) along with the current confidence of each of the inverse
models. The arbitration module (Fig. 2) selects which inverse
model will be awarded the attention of the robot. We have
implemented two different selection algorithms:

• The first one is based on the “Round-Robin” scheduling
algorithm [30], whereby a first-in first-out circular linked
list is formed with all the requests, and equal resources
are given to each. In the implementation of these particular
experiments one frame is given to each.
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Fig. 4. Representative frames from a video sequence involving a human reaching for an object.
• The second one is priority-based, which gives all the
resources to the state requests of the inverse model with the
highest confidence.

4.2.2. From biases to inverse models
Once the arbitration process is complete, and an inverse

model has been selected, the state vector that this inverse
model is requesting gets translated into a set of object
properties, including colour, motion and size information.
The corresponding properties, including hue and saturation
histograms for each of the objects (an orange, a soda can, and a
human hand) used in our experiments were pre-calculated and
saved in the robot’s memory. These properties act as biases in
the calculation of saliency maps [21,22], which are combined
to form a composite saliency map (Fig. 2). The image location
with the highest saliency is extracted and this information is
sent to the corresponding inverse model that asked for it. The
motor command of that inverse model is generated and sent to
the corresponding forward model, which forms a prediction of
what the next state will be. We then calculate the prediction
error and use it to update the confidence of the inverse model.
Since we are using a qualitative prediction (e.g. hand closer
to target), the prediction will either be correct or not. The
confidence of the inverse model is then updated according to
the following rule:

C(t) =

C(t − 1) + 1 + N , if prediction is correct

C(t − 1) − 1 − N , if prediction is incorrect
(1)

where N is the number of times the inverse model has been
rewarded in the past. If an inverse model has not been given the
state information it requested, it is not processed in this frame,
and its confidence remains constant. We adopted this update
function, among others we tried (for example, without the N ),
since it reflects the desired behaviour of rewarding or punishing
an inverse model more as the demonstration progresses: in plain
terms, if the behaviour has been rewarded a lot in the past, and
continues to get it right, it deserves to get more reward; if an
inverse model has been rewarded a lot in the past and begins to
get it wrong, it deserves to get a lot of negative reward for taking
up too many resources. This update function proves capable of
good performance, as described next.

4.3. Results

In these experiments, we captured eight video sequences of
a demonstrator performing different tasks in front of the robot
Fig. 5. The inverse models used in the experiments with their corresponding
labels.

to ensure fair comparison between the different conditions,
and performed 40 experiments on these videos under
different combinations of scheduling algorithms. Figs. 6–9 give
representative results with respect to the performance of the
architecture under five different experimental conditions (Fig. 5
serves as a legend for the other figures, and shows the assigned
numbers (B1–B8) for the different inverse models):

• No attention mechanism — at each frame all inverse models
receive the state information they require, and all compute
and update their confidences. This condition is the same used
in previous experiments [2,4], and will serve as the reference
condition for comparing the performance of the attention
subsystem.

• Round-Robin implementation: a circular linked list is
created and all requests are served in a first-in first-out
fashion (one frame per request).

• HCAW (Highest Confidence Always Wins) condition, in
which the inverse model with the current highest confidence
is always given the state it is requesting.

• RR-HCAW condition, which combines conditions two and
three above. Initially all inverse models are given equal
treatment (RR), but when one of them takes a clear lead
(its confidence becomes higher than 50% of the average
confidence of all inverse models with positive confidences),
the arbitration mechanism switches to HCAW.

• RR-HCAW-A condition, which repeats the last condition
but performs an initialisation step that removes from the
candidate inverse models the ones that are not applicable —
for example if an object is not present, the corresponding
inverse models for handling it are not activated.

Fig. 6 gives the evolution of the confidences of all the
inverse models when no attention mechanism is employed. The
demonstrator is picking up an orange and the corresponding
inverse model (B4) correctly receives the highest confidence
score, with the “picking up the can” action (B1) receiving the
second highest given its similarity to B4 for the initial part of
the trajectory. Fig. 7 gives the evolution of the confidences of all
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Fig. 6. Evolution of the confidences when no attention mechanism is employed.

Fig. 7. Evolution of the confidence values with a Round Robin implementation.

Fig. 8. Evolution of the confidence values with a Highest Confidence Always Wins (HCAW) implementation.
the inverse models when attention is given to each of the inverse
models in an equal-share manner. The corresponding inverse
model (B4) again correctly receives the highest confidence
score, but the separability of B4 from B1 is now significantly
smaller since the inverse models are not as frequently updated
as in the first experimental condition. The corresponding
computational savings however are significant (assuming equal
computational resources are required for each inverse model,
this is of the order of n−1

n (87.5% in this case), with n being
the number of inverse models — the arbitration mechanism’s
overheads are negligible), since under this condition (and
the following three), only one of the eight inverse models
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Fig. 9. Evolution of confidence values using the RR-HCAW condition.
gets processed at each frame. This point is further elaborated
in the discussion section. Fig. 8 gives the evolution of the
confidences of all the inverse models when attention is given
only to the inverse model with the highest confidence. The
corresponding inverse model (B4) still correctly receives the
highest confidence score, and the separability of B4 from B1
(and all the rest) is now clearer. However this condition is more
susceptible to noise with respect to the RR condition and the
overall confidence portrait of the inverse models is noisier than
before. Fig. 9 gives the evolution of the confidences of all the
inverse models when attention is given to an inverse model
using a combination of the two previous conditions. Initially all
inverse models are receiving equal treatment (RR), but when
the confidence of one of them increases to more than 50% of
the average of all inverse models with a positive score, the
selection algorithm switches to one that favours the one with the
highest confidence. This condition combines the benefits of the
two previous conditions: it displays clear separability between
the winner inverse model and the rest, while not displaying
the initial noisy profile of the HCAW condition. This condition
essentially amounts to an attention strategy of “playing it safe”
at first, and then focusing the system’s resources to the winner
once a strong candidate is found.

Finally, we repeat the last experiment, removing the soda
can from the setup. Fig. 10 shows the evolution of confidences
of the inverse models with the initialisation step; the inverse
models that have to deal with the soda can are not considered
in the arbitration process, and (as a matter of convention)
are constantly receiving negative confidence reinforcement of
−1. This boosts the separability even further since there are
fewer inverse models competing for attention. Fig. 11 gives a
summary of the performance of the attention mechanism for
each of the behaviours. In all conditions, all behaviours were
recognised correctly. Results of the final confidence value of the
demonstrated action are shown for all experimental conditions.
Percentages are calculated by making a relative comparison
between each confidence value and the corresponding one
from the plain version of the architecture without the attention
mechanism.
5. Discussion

The key contribution of this paper is the introduction of
a novel way of exerting top-down control to the attention
mechanism, using a competitive, parallel implementation of
the simulation theory of mind. Our experiments demonstrate
that the addition of an attention mechanism which arbitrates
among the state requests of multiple inverse models results
in a significant amount of computational savings, without
significant loss of separability between the inverse models.
This is particularly true with a combination of a conservative
approach (initially equal-share, RR) switched to a more
aggressive one (HCAW) when a strong candidate is found.
As expected, taking into consideration the environmental
context (condition RR-HCAW-A) further improves the results
by removing inapplicable inverse models. We expect that the
combination of our system with a joint attention mechanism
[31] which extracts the gaze of the demonstrator, and through
it, attempts to infer the focus of attention of the demonstrator
will further reduce the number of applicable inverse models.
We intend to pursue this in future work.

The savings in our current implementation, although
significant, are only computational given that saccades within
our system take place within the image and do not involve
camera movements. However, should the situation require
camera movements to locate the state information requested,
these savings would increase given the additional cost
associated with each camera movement. The fact that at the
motor level, resources will always need to be shared, makes
our architecture useful even for implementation on parallel
machines that could afford to process, from a computational
perspective, more than one inverse model at a time.

One point worth discussing is the “resource-slice” that the
winning inverse model is given at each iteration by the attention
mechanism. Although in this particular set of experiments we
have used one single frame, and we perform one iteration
of the arbitration mechanism at each frame, that does not
imply it is the only solution. We have found that for some of
the experimental conditions, it has the undesirable effect of
linking the numbers of inverse models with the frame rate: for
example, if the number of inverse models increases and the
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F

Fig. 10. Evolution of the confidence values using the RR-HCAW-A condition.

ig. 11. Confidence for each behaviour for each condition as a percentage of the confidence reached with no attention present.
attention system is working in the RR condition, the rate that
each inverse model will be processed (and thus, the accuracy
of its predictions) decreases. On the positive note, using
the applicability initialisation (RR-HCAW-A condition), the
number of inverse models that are involved is reduced, reducing
this problem, but it would be interesting to experiment with
different resource-slices, and methods of allocating resources.
Our current implementation utilises an arbitration mechanism
that takes into consideration the requests blindly, without
considering what they represent; for example, more than one
inverse model can be asking for the same information, the
state of the arm. We are currently considering a further
optimisation method that allocates resources according to the
current popularity of state requests across the inverse models.
A “working memory” mechanism can also maintain a number
of recent states and immediately return them when they are
required. Furthermore, path planning algorithms can also be
utilised so future requests are optimised topographically (for
example, if three inverse models are requesting the state of the
head, arm and leg of a human, these will be served in that order,
irrespective as to whether the order that the requests were made,
or their priorities) to minimise lengthy saccades.

6. Conclusions

We reviewed our approach to the development of
architectures that incorporate distributed, hierarchical networks
of inverse and forward models, and described how HAMMER
can be used to perceive a demonstrated action. We
performed computational experiments demonstrating how
different resource allocation strategies in the control of attention
can influence the performance of HAMMER.

The novelty of our approach lies in the idea that the features
that the observer will choose to attend are the ones that (s)he
would have to control if (s)he was in the same situation and
would have to perform the same action. This is compatible
with recent biological evidence [32] on the use of action
plans in action recognition. This stems naturally from the
simulation approach to action perception [11], which has been
the main inspiration underlying our work, and provides a timely
opportunity to study the interplay between the two important
topics of attention and action perception.
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