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Abstract

Autonomous agents make frequent use of knowledge in
the form of categories — categories of objects, human
gestures, web pages, and so on. This paper describes a
way for agents to learn such categories for themselves
through interaction with the environment. In particu-
lar, the learning algorithm transforms raw sensor read-
ings into clusters of time series that have predictive
value to the agent. We address several issues related
to the use of an uninterpreted sensory apparatus and
show specific examples where a Pioneer 1 mobile robot
interacts with objects in a cluttered laboratory setting.

Introduction

“There is nothing more basic than categorization to our
thought, perception, action, and speech” (Lakoff 1987).
For autonomous agents, categories often appear as ab-
stractions of raw sensor readings that provide a means
for recognizing circumstances and predicting effects of
actions. For example, such categories play an important
role for a mobile robot that navigates around obsta-
cles (Tani 1996), for a machine-vision system that rec-
ognizes hand gestures (Darrell, Essa, & Pentland 1996),
for a simulated agent that maneuvers along a high-
way (McCallum 1996), and for a human-computer in-
terface that automates repetitive tasks (Das, Caglayan,
& Gonsalves 1998). Like Pierce and Kuipers (1997),
Ram and Santamaria (1997) and others, e.g., (Iba 1991;
Thrun 1999), we believe that sensorimotor agents can
discover categories for themselves. Thus, the focus of
this paper is an unsupervised method by which a mobile
robot deduces meaningful categories from uninterpreted
sensor readings.

Previously, we demonstrated a technique for extract-
ing sensory concepts from time series data (Rosenstein
& Cohen 1998). Our results were from a simple pur-
suit/avoidance game where two simulated players fol-
lowed one of several deterministic movement strategies.
The simulator recorded the distance between players
throughout many games, and the resulting time se-
ries were transformed by an unsupervised learning al-
gorithm into clusters of points. In effect, the algorithm
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found categories of sensorimotor experience, i.e., clus-
ters of time series with similar patterns. This paper
shows that a cluster-based approach to learning such
categories scales to a more complicated robot domain
with diverse kinds of sensors and real-world effects such
as measurement noise, wheel slippage, and sonar reflec-
tions.

The learning algorithm, which we describe in detail
in the next section, returns a prototype (Rosch & Lloyd
1978), or best example, for each category. For this work,
prototypes are time series computed by averaging the
members of a category or cluster. For example, Fig-
ure 1 shows a prototype based on seven instances of a
Pioneer 1 robot bumping into a wall. By recognizing
that its current situation is a match to the time series
in Figure 1, the robot can predict that its bump sensor
will go off a short time later. Below we provide evi-
dence that sensory categories of this sort allow an agent
to carve its world in some meaningful way. Since our
robot refers to its prototypes with arbitrary symbols —
not words like WALL or CONTACT — the meaning from
such categories comes from the predictions it can make
about sensor readings.

From Sensors to Categories

For a mobile robot operating in an environment of
even modest complexity, sensory categories supply a
needed level of abstraction away from raw sensor
readings (Mahadevan, Theocharous, & Khaleeli 1998;
Michaud & Mataric 1998; Pierce & Kuipers 1997;
Ram & Santamaria 1997). Since our objective is that
agents discover such categories for themselves — with-
out supervision — we make use of clustering techniques
that offer a general, unsupervised framework for catego-
rizing data. However, the following subproblems exist,
and this section outlines our solution to each one: event
detection, time series comparison, sensor comparison,
and sensor weighting.

Event Detection

Agents in continuous-time settings typically generate
tremendous amounts of sensor data. Temporal abstrac-
tion is needed to focus a learning algorithm on the most
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Figure 1: Prototype for seven instances of the Pioneer 1 mo-
bile robot (a) bumping into a wall. Component time series
are (b) translational velocity in mm/s, (c¢) forward sonar in
mm, and (d) bump sensor (on or off). Gray regions indicate
the level of prototype variability (one standard deviation
from the mean).

pertinent parts of a robot’s lifetime. For instance, a fi-
nite state machine representation can isolate key times
when a robot encounters a landmark (Kuipers & Byun
1991; Mataric 1992) or branch point (Tani 1996). An-
other way to emphasize the most relevant parts of along
time series is to apply a suitable amount of compression
and expansion along the time axis. For instance, Dar-
rell et al. (1996) used a dynamic time warping (DTW)
algorithm to perform this very sort of temporal ab-
straction when categorizing human gestures. Schmill et
al. (1999) also utilized DTW to learn categories and op-
erator models for a mobile robot. Dynamic time warp-
ing algorithms have the advantage of classifying time
series in a velocity-independent fashion, although DTW
represents a costly preprocessing step for clustering al-
gorithms (Keogh 1997).

The alternative used here involves the real-time de-
tection of events, i.e., key points in the sensor history.
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Figure 2: Event detection templates and sample correla-
tions. The templates are (a) sharp edge, (b) long sharp edge,
(c) slope-then-plateau, and (d) plateau-then-slope. The cor-
relation values are for the data in Figure 1 where the tem-
plates were centered at the time of the rising edge for the
bump switch. Shaded cells indicate values that are strong
enough to trigger an event.

Our premise is that sensorimotor agents, such as infants
and mobile robots, possess the innate ability to detect
unexpected changes in sensor readings. A similar ap-
proach was taken by Das et al. (1998), who employed
“triggers” as a way to isolate time series segments for
a human-computer interface. In their application, a
trigger such as the “Select All” command in a word
processing program splits a prototype into two pieces:
a prefix pattern for recognizing context and a suffix for
predicting the user’s next action. Our approach differs
from theirs in that events act as signals for cluster anal-
ysis, rather than explicit decision points pulled out of
existing clusters.

To recognize events, our learning algorithm makes use
of simple rules that detect simple, conspicuous patterns
such as the rising edge from a bump switch, the sud-
den change in wheel velocity when a robot stalls, or the
Jjump in vision readings when an object suddenly disap-
pears. These rules were implemented by computing the
correlation of the most recent sensor readings with one
of four templates (a short time series pattern) shown in
Figure 2. Whenever one of the correlation values ex-
ceeds a threshold, an event signal triggers the learning
algorithm to grab a five-second window of sensor read-
ings centered on the event, and this multivariate time
series then becomes a new instance for cluster analysis.

Time Series Comparison

History-based categories alleviate the real-world diffi-
culties associated with hidden state, i.e., partially ob-
servable environments (McCallum 1996; Michaud &
Mataric 1998; Ram & Santamaria 1997; Rosenstein &



Cohen 1998). One way to build such categories is to
perform clustering of measurement seguences, although
clustering algorithms originally designed for individual
feature vectors must be extended to handle finite sensor
histories. In other words, one must devise a means for
time series comparison.

Every clustering algorithm, of which there are
many (Everitt 1980), requires a measure of instance
similarity, or dissimilarity, to guide its decisions about
cluster membership. When designing a measure of dis-
similarity for time series, one might take into account
many different criteria, such as amplitude scaling, time-
axis scaling, or linear drift (Keogh & Pazzani 1998).
Our choice yields a very fast and simple algorithm,
where we consider two time series, X = {21, 22, ..., 2m }
and Y = {y1,92,.-.,¥m}, as vectors and quantify dis-
similarity as the Euclidean distance! between them:

dissimilarity = |XT - YT|| =

Our choice of Eq. (1) was motivated by our previ-
ous work with a dynamics-based simulator (Rosenstein
& Cohen 1998) and with the method of delays, a tech-
nique based on theory about dynamics. (See (Schreiber
& Schmitz 1997) and references therein for other ways
to classify time series by dynamics.) The method of de-
lays transforms part of a time series to a point in delay-
coordinate space, where delay coordinates are just suc-
cessive measurements taken at a suitable time interval
(Rosenstein, Collins, & De Luca 1994). Takens (1981)
proved that delay coordinates preserve certain geomet-
ric properties of a dynamical system, even when ac-
cess to the underlying state space is limited to a low-
dimensional projection. The relevance for cluster anal-
ysis is that nearest neighbors in state space remain near
one another in delay-coordinate space.

Sensor Comparison

One difficulty in working with robots is the variety of
sensors. For instance, the Pioneer 1 mobile robot used
in this study has sonars that measure distance in mil-
limeters, infrared break beams that return one of two
discrete values, and a vision system that computes an
object’s size, among other things, in square-pixels. How
should a clustering algorithm weigh the contributions of
uninterpreted sensors with different units and different
ranges of values? Furthermore, how should the algo-
rithm deal with sensors that are both continuous and
categorical, such as the sonars which normally give real-
valued measurements but also return a large default
value when no objects are present?

We propose a two-step solution: (1) Cluster individ-
ual sensor histories as described above, thereby creat-

!Our implementation actually makes use of the squared
distance, which gives the same results using just m mul-
tiplications and 2m — 1 additions or subtractions for each
dissimilarity computation.

GRIP-FRONT-BEAM Pattern Alphabet

GRIP-FRONT-BEAM  Signatures

Smalt Cup: I\ —_
Sall Ball: [\ —_—

Large Cup: ’ R

Figure 3: Pattern alphabet and representative signatures
from seven interactions with each of three objects. Gray re-
gions indicate the level of pattern variability (one standard
deviation from the mean). The interaction with the small
cup best matches the first alphabet pattern, which accounts
for 82.9% of the aggregate similarity. Comparatively, the
ball exhibits an improved match with both patterns, yet
the net effect is an increased emphasis in the second alpha-
bet pattern (from 17.1% to 26.6%). Unlike the large cup,
both the ball and the small cup trip the front break beam
momentarily before reaching the back of the robot’s gripper.
The small cup and ball differ in that the ball rolls away once
the robot comes to a stop (passing through the front break
beam a second time).

ing a small alphabet of patterns specific to each sen-
sor. (2) Construct a unit- and scale-independent sig-
nature that stores the pattern of similarity between a
newly observed time series and each member of the al-
phabet. For robot navigation and exploration, Kuipers
and Byun (1991) defined the signature of a “distinctive
place” as a subset of feature values that are maximized
at the place. In general, signatures can be built for sen-
sory categories, which may or may not involve physical
locations. Moreover, the feature set, i.e., the alphabet
patterns, need not be specified in advance, but rather
can be learned by the agent from its raw sensor read-
ings. For instance, Thrun (1999) used artificial neu-
ral networks and Bayesian statistics to extract features
from a robot’s sensor/action histories.

As an example, Figure 3 shows the alphabet of pat-
terns for the sensor GRIP-FRONT-BEAM (one of two in-
frared break beams between the robot’s gripper pad-
dles). With the alphabet size set to two, the first
two patterns encountered make up the initial alpha-
bet, with each subsequent pattern forcing one iteration
of an agglomerative clustering algorithm (Ward 1963)



Y.
-

I /
\¥ o
3l ™

o] [y

sensor
bit vector

O .-

raw sensory
input

time series E Time Series
segment Clusterin;

e

- pattern
- alphabets
e
Signature|
Creation
0.829
. event
. signatures

Signature
Clustering

Category Hierarchy
and Prototypes

Figure 4: Schematic of the algorithm for learning time series categories from uninterpreted sensors. The first step, event
detection, isolates a new segment of sensor readings and forms the input for the remaining algorithm steps. The purpose of
time series clustering and signature creation is to convert each segment of sensor readings into a vector of unit- and scale-
independent signatures. The final step forms clusters of signature vectors and supplies not only a category hierarchy but also
a means for averaging the raw time series into a prototype for each category.

and thereby updating the alphabet to reflect the contri-
bution of the new pattern. The signatures in Figure 3
are the result of several interactions with objects that
fit the Pioneer’s gripper. In each case, the slots in the
signature were filled by computing the similarity (the
reciprocal of dissimilarity) between the corresponding
alphabet pattern and the recent history of GRIP-FRONT-
BEAM. The actual values were also normalized by the
total similarity for the signature. Thus, a signature is
much like a unit vector in the space of alphabet pat-
terns, with the projection onto each axis indicating the
degree of match with the corresponding pattern. No-
tice in the figure that the small cup and the ball have
similar (though consistently distinct) signatures which
are vastly different from the large cup’s signature. One
could recognize the objects in Figure 3 based solely on
the GRIP-FRONT-BEAM signature, although one must
account for other sensors in more complex examples.
One limitation of the current algorithm is the need
to specify the alphabet size in advance. Moreover, the
same alphabet size is used for simple types of sensors
(such as the break beams which show simple rising and
falling edges) as for rich types of sensors (such as the
sonars which respond to arbitrary movement patterns
of the robot and its environment). One obvious way
around this limitation is to customize each alphabet size
to match the capabilities of the sensor, much like the
approach taken with the event detectors. However, our
previous results for a pursuit/avoidance game (Rosen-
stein & Cohen 1998) lead us to speculate about another
alternative. We found that prediction of the game out-
come was adversely affected when the number of clus-
ters, i.e., the alphabet size, was too small, whereas little

benefit was gained by increasing the number of clusters
beyond a certain point. Thus, one could initialize the al-
phabet size to a large, conservative value, wait until the
alphabet patterns stabilize, and then gradually shrink
the alphabet by combining patterns until some perfor-
mance criterion degrades to an unsatisfactory level.

Sensor Weighting

For any given event, only a small subset of a robot’s
sensors may contribute to the time series patterns that
characterize the event. More generally, a learning al-
gorithm should weigh the importance of each sensor
when deciding if two patterns belong to the same cat-
egory. For example, when grasping a small object a
robot should place the greatest emphasis on its gripper,
with little or no attention paid to battery level. Ma-
hadevan et al. (1998) solved this problem with feedfor-
ward neural networks and supervised learning, whereas
Schmill et al. (1999) handpicked the sensors that receive
the same non-zero weight before utilizing an unsuper-
vised clustering algorithm.

The final step in our approach to learning sensory
categories applies another stage of clustering, but this
time with weighted signatures as the input rather than
raw time series. Specifically, this second pass of cluster
analysis computes the dissimilarity between the sth and
jth event patterns by taking a weighted average of the
individual signature dissimilarities:

N
dissimilarity;; = 2 k=1 (w;;;v +wjk) - 1Sk S]k", @)
2k (Wik + wjik)
where N is the number of sensors and, S;; is the ith
signature for the kth sensor, with weight w;;. Each
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Figure 5: Category hierarchy for five interactions with each
of six objects. The signature alphabet size was set to one
for each sensor.

merge operation by the clustering algorithm creates an-
other node in a cluster hierarchy, with new signatures
and weights computed as an average of the constituents
(adjusted for the sizes of the merged clusters). In a par-
allel operation, the raw time series used to create the
signatures are also merged to give a prototype as in
Figure 1. However, these time series play no direct role
in the computation of Eq. (2).

To initialize the weights when a cluster has just one
member (a new instance of sensor signatures) the learn-
ing algorithm makes use of the event detectors de-
scribed previously. In particular, all the sensors that
exhibit sudden changes within a 800 ms window are con-
sidered to be part of the same event and their weights
are set to one; all other weights are set to zero. Es-
sentially, the initial weights form a bit vector where 1
and 0 indicate, respectively, activity and no activity for
the corresponding sensor. For example, bumping into
a wall as in Figure 1 causes several sensors, like the
forward sonars, the bump switch, and the velocity en-
coders, to have initial weights of one, but others, like
the battery level and the gripper break beams, to have
initial weights of zero. Although we found encouraging
results with this straightforward approach that adds lit-
tle computational cost, we imagine that some situations
may require a more sophisticated weight initialization
procedure. For instance, we make no attempt to adjust
for correlated sensors such as the robot’s five forward
sonars. (The sonars carry, in effect, five times the influ-
ence of the bump switch which also returns information
about frontward objects.)

Summary

Figure 4 is a schematic of the entire learning algorithm
which runs both incrementally and in real time as the
robot interacts with its environment (although the re-
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Figure 6: Category hierarchy for five interactions with each
of six objects. The signature alphabet size was set to two
for each sensor.

sults in this paper are for post-processed data sets). On
the left, raw sensor readings are made available to the
robot at a rate of 10 Hz, with the event detectors contin-
uously monitoring the time series for abrupt changes.
When an event occurs, the algorithm collects a five-
second segment of sensor readings and constructs a bit
vector that indicates the active sensors. These data are
passed to the clustering algorithms for additional anal-
ysis. First, the new time series are used to update the
pattern alphabet for each sensor. Next, these same time
series are converted to a set of signatures for subsequent
clustering (with the bit vector acting as the initial sen-
sor weights in Eq. (2)). On the right, the final output
is a hierarchy of sensory categories with each category
represented by a prototype like the one in Figure 1.

Interaction With Objects

We tested the algorithm depicted in Figure 4 by record-
ing sensor data while the Pioneer robot interacted ran-
domly with various objects, such as a ball, a cup, and
a bucket. To control the robot we designed a sim-
ple SEEK-AND-APPROACH behavior, where the Pioneer
turns a random amount, approaches the object closest
to its line of sight, stops moving shortly after making
contact, and then reverses direction for a randomly cho-
sen time. Objects were recognized with the help of the
robot’s “blob” vision system that detects patches of red
pixels in its image plane. Each object was given an oth-
erwise indistinguishable red mark, so sensory categories
were based on the nature of the interaction, not fea-
tures from a detailed analysis of the visual scene. We
ran the SEEK-AND-APPROACH controller repeatedly un-
til the robot interacted at least five times with each of
six objects.

Figures 5 and 6 are representative cluster hierarchies
that summarize the output of the learning algorithm.



Notice that sensory experiences with the same object
tend to cluster together at the lowest levels of the bi-
nary tree. Further up the hierarchy, the nodes represent
abstractions of these individual experiences. For exam-
ple, in Figure 5 all the graspable objects (the ball, the
cups, and the leg of a desk) fall in the same branch
of the tree and all the ungraspable, immovable objects
(the wall) fall in another branch. Recall that labels
such as “graspable” and “immovable” are meaningful to
ourselves but may as well be arbitrary symbols to the
robot. They symbolize prototypes, i.e., average time
series.

Figures 5 and 6 differ in the size of the pattern alpha-
bet used to construct the signatures. In Figure 5 the
alphabet size was one, forcing each event’s list of signa-
tures to be equivalent to the corresponding bit vector
constructed by detecting unexpected changes in sen-
sor readings. Notice that the event detectors alone are
capable of discriminating several categories of experi-
ences. However, each bit must be expanded to a sig-
nature with at least two slots — as in Figure 6 — in
order to tease apart some interactions such as those for
the ball and the cups (which trigger both break beams
but no other sensors). A small pattern alphabet always
sufficed in our experiments, although we expect more
complicated environments to require larger alphabets.

Prototypes serve not only as representatives for sen-
sory categories, but also as state abstractions or goals.
At any given time, the robot can determine its state by
running a simple nearest neighbor algorithm that finds
the best match between its recent sensor history and
each of the prototypes. More generally, one can view
the distance to the nearest neighbor as an indication of
progress toward a goal state.

For example, suppose the robot’s goal is to locate a
small ball. Figure 7 shows the relative distance from the
most recent sensor readings to several prototypes as the
Pioneer approaches a ball. Initially, no progress is made
toward each of the prospective goal states because they
all involve activation of the break beams which are qui-
escent until about 0.5 s before the event is first detected.
Moreover, the best match for the quiescent beams is the
small cup since its prototype has the shortest activation
time for GRIP-FRONT-BEAM. Similarly, the large cup
is the worst match since its prototype has the longest
activation times for both GRIP-FRONT-BEAM and GRIP-
REAR-BEAM. Once the first beam breaks progress is
made toward each prototype (which hurts the relative
distance to the small cup as shown in Figure 7). At
about 1.8 s after the initial event the rear break beam
deactivates as the ball rolls away from the robot. Until
this time, the robot’s impoverished sensory apparatus
is unable to distinguish the ball from the superordinate
category that also includes the small cup.

Discussion

Sensory categories and their prototypes not only act
as states that support recognition and prediction, but
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Figure 7: Relative distance to several prototypes. Shown are
averages for five instances of the Pioneer robot approaching
a small ball and then stopping a short time after making
contact.

also serve as operator models. In this paper we took the
former view and focused on prototypes as state abstrac-
tions and goals, although several researchers augmented
sensory prototypes for control purposes as well. For ex-
ample, Schmill et al. (1999) recorded a mobile robot’s
current activity as part of the prototype data structure.
The result was an operator model for a STRIPS-like
planner where the prototype was split into two parts
that correspond to pre- and post-conditions for the
stored activity. Similarly, Ram and Santamaria (1997)
used a case-based reasoning approach to control a mo-
bile robot for a navigation task. Their system made use
of continuous cases that store time series of sensor in-
puts and control outputs; given a desired sensory state,
a case library can be queried for the sequence of control
commands most likely to achieve that state.

Whether we view them as state abstractions or oper-
ator models, sensory categories may provide the foun-
dation upon which to form abstract, propositional con-
cepts. Mandler postulated that to build such a founda-
tion, humans make use of an innate mechanism for sen-
sory analysis that searches for regularities and preserves
the continuous nature of perception (Mandler 1992).
The unsupervised approach proposed here performs a
similar form of sensory analysis for mobile robots. In
particular, our implementation finds clusters of similar
time series patterns and builds prototypes that retain
the characteristics of the original sensor traces. We have
yet to show a path from sensory categories to highly ab-
stract concepts, although autonomous agents can still
accomplish a great deal with prototypes.

Interestingly, prototypes and categories play a cru-
cial role in human intelligence yet the act of categoriza-
tion is often automatic and unconscious (Lakoff 1987).
We regularly take categories for granted until forced to
reason about them explicitly, such as when designing a
feature set that helps a mobile robot navigate a clut-



tered office environment. Then we realize how difficult
it can be to list the properties, from the robot’s per-
spective, of simple categories like corridors, doorways,
desks, and waste buckets. Supervised learning offers
one common solution, where a person classifies the in-
stances for subsequent category induction by a machine
learning algorithm. This research is part of an effort to
push the classification process inside the machine, free-
ing scientists and engineers from much of the tedious
work when designing autonomous agents.
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