CS 21 Final Review

About the Final

o Saturday, 7-10pm in Science Center 101
 Closed book, closed notes

* Not on the final: graphics, file 1/O, vim, unix

Expect Questions That Ask You To:
* Evaluate Python expressions and identity their
types

* [Jrace a program, drawing stack diagram and
showing output

* Write a complete Python program with multiple
functions

 Write recursive functions, draw the stack for a
recursive function

Expect Questions That Ask You To:

Trace the execution of searching or sorting algorithms,

identify their big O run times

Write methods for a class, ook at a class definition and

understand how to use It.

Write/understand methods for Linked
inkedList class, draw structure of a
0ig O run times for operations on Pyt
iInked lists.

Find and fix bugs in a function

List class, use
inked list, identify

Non lists and

lypes
int
float
olele]
string (also a sequence)
ist (also a sequence)

None

objects belonging to various classes

Arithmetic Operators

» Addition / Concatenation: +
» Multiplication / Replication: *
o Subtraction: -
e Division: /

- Integer division
 Remainder: %

* Promotion: an int gets promoted when combined with a float

Comparison Operators

Equality: ==

Inequality: !=

Greater than: >

Greater than or equal to: >=
Less than: <

Less than or equal to: <=

| ogical Operators

 and: True if both operands are True, False
otherwise

 or: True If either operand is True, False
otherwise

* not: True if lone operand is False, False if it's
True

Seqguence Operators

* |ndexing: seq[i1ndex|]

e Slicing: seq[start:stop],
seg[start:stop:step]

* in operator: tests for membership, different from
for loop’s 1n

Variables and Assignment

oa:7

Q)
[
Q)
+
=

e A + = l
e Can’t refer to a variable before it's initialized
- For loop variables are initialized implicitly

- S0 are function parameters

Practice: identity value anao
type for each expression
on the next slide.

e Assume:
e X =1
« s = “swarthmore”
- L = [[7, 29, O], [-4, 13], [9, 9, 5]]
e 1 + 2.0
1/ 2
« 1.0 / 2
e 21 % 10
e S[2:4]
- len(L)
« Llen(L[1])

- L[1][0] + L[2][2]

Conditionals / Branching

e if
e if /else
e if/elif/elif/.../elif/else

e Nested conditionals

| O0PS

 for loops
- for 1 1n range(len(seq)):
- for 1 i1n range(n):
- for ch in str:
- for item in lst:
 while loops
- while [boolean expression]:

- while True:

| O0PS

* Nested loops
 Accumulators
Initialize accumulator variable once betore loop
- Update accumulator variable inside loop

- use final value after loop ends

Bullt-in functions

print(message)

- string formatting

raw_input(prompt)

conversion functions: int, float, str

- validation with try/except or str.isdigit()
type () — useful for studying

len(seq)

range(start, stop, step)

Functions from a module/library

« from random import x*
« random()
- randrange(start, stop, step)

- choice(seq)

Defining Functions

 Arguments in function call match parameters in function
definition based on order

e Parameters and variables defined within a function are
local to that function.

- Can’t be referred to outside of the function

- This is what we depict with frames in a stack diagram

* Specitying a return value

- Or None by default

Mutable vs. Immutable

e Strings, ints, floats, and bools are immutable. They can never be modified,
only used to compute something new.

* Lists and objects are mutable. They can be mutated in the following ways:
- Index assignment: L[1] = L[1]+1

- calling a method that mutates, like L.pop (index) or
L.append(item)

- passing a list or object to a function that does mutation
* We use the stack to depict mutability vs. immutability.

- When we mutate we don't cross out any arrows

Practice: draw stack at line
iINndicated and show all output
from program on next slide.

def mystery(s, initialCount):
count = initialCount
for i in range(len(s)):
if s[i] in "aeiou":

s[i] = "-"

count += 1
Draw stack here
return count

def main():
myList = ["t", "e", "a"]
X =0
result = mystery(myList, x)
print(myList)
print("Result: %d" % result)

main()

Recursive Functions

e A recursive function calls itself with a different, somehow
smaller set of arguments.

e This is instead of using a loop.
* Recursive functions have a base case and a general case

- The base case is a very small version of the problem,
which can be solved right away.

- The general case breaks the problem down into a
smaller version of the same problem. Uses the solution
to the smaller problem in solving the original problem.

Recursive Functions

e Sequences:
- typical base case: len(L) == 0or len(L) ==

- typical general case: do something with L[0], combine it with result of
recursive callon L[1:]

e Ints:
- typical base case:n == Qorn ==

- typical general case: do something with n, combine it with result of
recursive call on n-1

o Take a “leap of faith” when writing the code for the general case. Assume the
function will eventually do what you expect, and ask yourself what f(L[1:])
or f(n-1) will return.

Recursion practice

* Write a recursive function, length (L), that returns
the length of a list L without using the len
function.

 Write amain() function that calls Llength (L) on
some list of length 3. Draw the stack diagram as it
would look when the base case of the Llength (L)
function is reached.

Searching

* Does the value x appear in the list L?

- linear search
- list doesn't need to be sorted
- O(n) run time

- binary search
- list does need to be sortea
- O(log n) run time
- Repeatedly cuts in the half the range of indices where x might be found

- Know how low, mid, and high variables update

Sorting

e O(n?) sorts:

- selection sort: select item that should go at position i and
swap it directly into place.

- bubble sort: swap consecutive items that are out of order so
biggest items “bubble” up

- Insertion sort: insert next item so beginning of list stays sorted
 O(nlog n) sort:

- merge sort: repeatedly split in halt until you have lists of size
1, which are already sorted, then merge back together

Practice algorithm traces

 Binary search for3in (-4, 1,3, 7,8, 10, 12, 17, 20].
Show how low, mid, and high update.

* [Jrace selection sorton |7, 2, 10, 5, O]

» Trace bubble sort on [9, 10, 1, 2]

Using classes and methods

* We call constructors to create objects, then call
methods on those objects to interact with them

e Strings and lists have methods even though we
don't create them by calling a constructor

- str.isdigit(), Llst.append(“x”),
lst.pop(0)

Syntax for classes and methods

Constructor with no arguments
myList = LinkedList()

Constructor with arguments
pl = Point(x, y)

Method with no arguments
s.isdigit()

Method with arguments
L.append(27)

Defining classes

A class definition is comprised of method definitions

The __1init__ method is what actually gets executed when the

constructor Is called. It initializes the instance variables
(self.whatever).

The __str__ method returns a string representation of the object,

usually based on the values of its instance variables. This gets
called when the object is printed or converted to a string.

There are also getter methods, which return the value of an instance
variable

And setter methods, which update the values of one or more
iInstance variables.

Defining classes

o Every method definition must have self as its first

parameter. This gives the method the ability to access or
change the instance variables. When we call a method,
we don't list selt as an argument.

 We don’t know the order in which methods will be called
(other than __1nit__ being called first) so our methods

must make sure that all instance variables are up-to-date
betore they return

- l.e. the turn method for the bug class had to update
self.bugand self.heading

For the class definition on
the next slide:

Create a LibraryBook with title “Pride and
Prejudice” and author “Jane Austen”. Storeitina
variable called book.

Show what print (book) would display.
Define a method checkOut (newBorrower) which
updates whatever instance variables need to be updated

after someone new checks the book out.

Write code to register “David” checking the book out
and returning it followed by “Tia” checking the book out.

class LibraryBook(object):

def _init_ (self, title, author):
self.title = title
self.author = author
self.checkedOut = False
self.borrower = ""
self.pastBorrowers = []

def str_(self):
s = "%s by %s\n" % (self.title, self.author)
if self.checkedOut:
s += "Checked out by %s" % self.borrower
else:
s += "Not checked out"
return s

def returnBook(self):
self.checkedOut = False
self.pastBorrowers.append(self.borrower)
self.borrower = ""

L Inkea LiIsts

 Each item in the list corresponds to a node. A node
contains the item and a pointer to the next node. We can
start at the first node and follow links to all the other nodes.
It a node’s next point is None, we've reached the end.

e Node class
- self.data, self.next

e | inkedList class

- self.head, self.tail, self.size

L Inkea LiIsts

* Be able to draw the structure, showing
self.head, self.tai1l, and self.size

 Be able to identity various methods: insertions,
removals, traversals

* Be able to compare run times of linked list
operations and Python list operations.

L Inked LiIsts

Python list Linked list
Insert at beginning O(n) O(1)
Insert at end O(n)* O(1)
o oW o0
Remove from end O(1) O(n)

Get item at index O(1) O(n)

Practice: identity in words
what each of the
following methods does.

def methodl(self, item):
newNode = Node(item)
if self.size == 0:
self.head = newNode
self.tail = newNode
else:
newNode.setNext (self.head)
self.head = newNode
self.size += 1

def method2(self, item):

newNode = Node(item)

if self.size == 0:
self.head = newNode
self.tail = newNode

else:
self.tail.setNext(newNode)
self.tail = newNode

self.size += 1

More Linked List practice

* Write code that creates an empty linked list, stores
it in a variable called LL, prepends “A” and “B”,

appends “C” and “D”, and then prints out the
inked list.

 Draw the structure of LL at this point.

 Write a method getAtIndex (index) which

returns the item at the specified index in a linked
ist. Show how you would use it to get the item at
iINndex 2 In a linked list called LL

Top-down design

o Write the main () function first, creating a wish list of
functions

* Implement those functions one at a time
 Common functions for our top-down designs:
- A function that gets and validates user input
- A function that helps with complicated computation

- A function that prints output neatly

Write a program to help a hiker setting out on a multi-day hike.
This program should:

e Prompt the user for daily distances hiked.

e Continue asking for daily distances until the user enters a -1.
e Validate input to ensure the user enters integers.

e Store the daily distances in a list.

e Print a table summary with two columns: day and distance.
e The output should be neat and easy to read.

e Print total distance hiked and average distance hiked per day.
¢ Have at least two functions besides main() (more if you would like).

Here is an example of the full program (user input in bold):

» Daily miles hiked: 15

Daily miles hiked: 18

+ Daily miles hiked: twelve
- Enter a valid integer!

10

11

13

Daily miles hiked: 12
Daily miles hiked: 0
Daily miles hiked: -1

day hiked (miles)

1 15
2 18
3 12
4 0

. Total miles hiked over 4 days: 45
+ Average miles hiked per day: 11.25

Practice writing a full program

Write a program to help a hiker setting out on a multi-day hike.
This program should:

e Prompt the user for daily distances hiked.

e Continue asking for daily distances until the user enters a -1.
e Validate input to ensure the user enters integers.

e Store the daily distances in a list.

e Print a table summary with two columns: day and distance.
e The output should be neat and easy to read.

e Print total distance hiked and average distance hiked per day.

e Have at least two functions besides main() (more if you would like).

Here is an example of the full program (user input in bold):

: Daily miles hiked: 15

- Daily miles hiked: 18

- Daily miles hiked: twelve
Enter a valid integer!

« Daily miles hiked: 12

- Daily miles hiked: 0O

« Daily miles hiked: -1

v day hiked (miles)

1 15
2 18
3 12
4 0

.« Total miles hiked over 4 days: 45
.+ Average miles hiked per day: 11.25

Good luck!!

