
CS 21 Final Review

About the Final

• Saturday, 7-10pm in Science Center 101

• Closed book, closed notes

• Not on the final: graphics, file I/O, vim, unix

Expect Questions That Ask You To:

• Evaluate Python expressions and identify their
types

• Trace a program, drawing stack diagram and
showing output

• Write a complete Python program with multiple
functions

• Write recursive functions, draw the stack for a
recursive function

• Trace the execution of searching or sorting algorithms,
identify their big O run times

• Write methods for a class, look at a class definition and
understand how to use it.

• Write/understand methods for LinkedList class, use
LinkedList class, draw structure of a linked list, identify
big O run times for operations on Python lists and
linked lists.

• Find and fix bugs in a function

Expect Questions That Ask You To:

Types
• int

• float

• bool

• string (also a sequence)

• list (also a sequence)

• None

• objects belonging to various classes

Arithmetic Operators
• Addition / Concatenation: +

• Multiplication / Replication: *

• Subtraction: -

• Division: /

- Integer division

• Remainder: %

Promotion: an int gets promoted when combined with a float

Comparison Operators
• Equality: ==

• Inequality: !=

• Greater than: >

• Greater than or equal to: >=

• Less than: <

• Less than or equal to: <=

Logical Operators

• and: True if both operands are True, False
otherwise

• or: True if either operand is True, False
otherwise

• not: True if lone operand is False, False if it’s
True

Sequence Operators

• Indexing: seq[index]

• Slicing: seq[start:stop],
seq[start:stop:step]

• in operator: tests for membership, different from
for loop’s in

Variables and Assignment
• a = 7

• a = a + 1

• a += 1

• Can’t refer to a variable before it’s initialized

- For loop variables are initialized implicitly

- So are function parameters

Practice: identify value and
type for each expression

on the next slide.

• Assume:

• x = 1

• s = “swarthmore”

• L = [[7, 29, 0], [-4, 13], [9, 9, 5]]

• 1 + 2.0

• 1 / 2

• 1.0 / 2

• 21 % 10

• s[2:4]

• len(L)

• len(L[1])

• L[1][0] + L[2][2]

Conditionals / Branching

• if

• if / else

• if / elif / elif / … / elif / else

• Nested conditionals

Loops
• for loops

- for i in range(len(seq)):

- for i in range(n):

- for ch in str:

- for item in lst:

• while loops

- while [boolean expression]:

- while True:

Loops
• Nested loops

• Accumulators

- Initialize accumulator variable once before loop

- Update accumulator variable inside loop

- use final value after loop ends

Built-in functions
• print(message)

- string formatting

• raw_input(prompt)

• conversion functions: int, float, str

- validation with try/except or str.isdigit()

• type() — useful for studying

• len(seq)

• range(start, stop, step)

Functions from a module/library

• from random import *

• random()

• randrange(start, stop, step)

• choice(seq)

Defining Functions
• Arguments in function call match parameters in function

definition based on order

• Parameters and variables defined within a function are
local to that function.

- Can’t be referred to outside of the function

- This is what we depict with frames in a stack diagram

• Specifying a return value

- Or None by default

Mutable vs. Immutable
• Strings, ints, floats, and bools are immutable. They can never be modified,

only used to compute something new.

• Lists and objects are mutable. They can be mutated in the following ways:

- index assignment: L[i] = L[i]+1

- calling a method that mutates, like L.pop(index) or
L.append(item)

- passing a list or object to a function that does mutation

• We use the stack to depict mutability vs. immutability.

- When we mutate we don’t cross out any arrows

Practice: draw stack at line
indicated and show all output
from program on next slide.

Recursive Functions
• A recursive function calls itself with a different, somehow

smaller set of arguments.

• This is instead of using a loop.

• Recursive functions have a base case and a general case

- The base case is a very small version of the problem,
which can be solved right away.

- The general case breaks the problem down into a
smaller version of the same problem. Uses the solution
to the smaller problem in solving the original problem.

Recursive Functions
• Sequences:

- typical base case: len(L) == 0 or len(L) == 1

- typical general case: do something with L[0], combine it with result of
recursive call on L[1:]

• Ints:

- typical base case: n == 0 or n == 1

- typical general case: do something with n, combine it with result of
recursive call on n-1

• Take a “leap of faith” when writing the code for the general case. Assume the
function will eventually do what you expect, and ask yourself what f(L[1:])
or f(n-1) will return.

Recursion practice

• Write a recursive function, length(L), that returns
the length of a list L without using the len
function.

• Write a main() function that calls length(L) on
some list of length 3. Draw the stack diagram as it
would look when the base case of the length(L)
function is reached.

Searching
• Does the value x appear in the list L?

- linear search

- list doesn’t need to be sorted

- O(n) run time

- binary search

- list does need to be sorted

- O(log n) run time

- Repeatedly cuts in the half the range of indices where x might be found

- Know how low, mid, and high variables update

Sorting
• O(n2) sorts:

- selection sort: select item that should go at position i and
swap it directly into place.

- bubble sort: swap consecutive items that are out of order so
biggest items “bubble” up

- insertion sort: insert next item so beginning of list stays sorted

• O(n log n) sort:

- merge sort: repeatedly split in half until you have lists of size
1, which are already sorted, then merge back together

Practice algorithm traces

• Binary search for 3 in [-4, 1, 3, 7, 8, 10, 12, 17, 20].
Show how low, mid, and high update.

• Trace selection sort on [7, 2, 10, 5, 0]

• Trace bubble sort on [9, 10, 1, 2]

Using classes and methods

• We call constructors to create objects, then call
methods on those objects to interact with them

• Strings and lists have methods even though we
don’t create them by calling a constructor

- str.isdigit(), lst.append(“x”),
lst.pop(0)

Syntax for classes and methods

Defining classes
• A class definition is comprised of method definitions

• The __init__ method is what actually gets executed when the
constructor is called. It initializes the instance variables
(self.whatever).

• The __str__ method returns a string representation of the object,
usually based on the values of its instance variables. This gets
called when the object is printed or converted to a string.

• There are also getter methods, which return the value of an instance
variable

• And setter methods, which update the values of one or more
instance variables.

Defining classes
• Every method definition must have self as its first

parameter. This gives the method the ability to access or
change the instance variables. When we call a method,
we don’t list self as an argument.

• We don’t know the order in which methods will be called
(other than __init__ being called first) so our methods
must make sure that all instance variables are up-to-date
before they return

- i.e. the turn method for the bug class had to update
self.bug and self.heading

For the class definition on
the next slide:

• Create a LibraryBook with title “Pride and
Prejudice” and author “Jane Austen”. Store it in a
variable called book.

• Show what print(book) would display.

• Define a method checkOut(newBorrower) which
updates whatever instance variables need to be updated
after someone new checks the book out.

• Write code to register “David” checking the book out
and returning it followed by “Tia” checking the book out.

Linked Lists
• Each item in the list corresponds to a node. A node

contains the item and a pointer to the next node. We can
start at the first node and follow links to all the other nodes.
If a node’s next point is None, we’ve reached the end.

• Node class

- self.data, self.next

• LinkedList class

- self.head, self.tail, self.size

Linked Lists

• Be able to draw the structure, showing
self.head, self.tail, and self.size

• Be able to identify various methods: insertions,
removals, traversals

• Be able to compare run times of linked list
operations and Python list operations.

Linked Lists
Python list Linked list

Insert at beginning O(n) O(1)

Insert at end O(n)* O(1)

Remove from
beginning O(n) O(1)

Remove from end O(1) O(n)

Get item at index O(1) O(n)

Practice: identify in words
what each of the

following methods does.

More Linked List practice
• Write code that creates an empty linked list, stores

it in a variable called LL, prepends “A” and “B”,
appends “C” and “D”, and then prints out the
linked list.

• Draw the structure of LL at this point.

• Write a method getAtIndex(index) which
returns the item at the specified index in a linked
list. Show how you would use it to get the item at
index 2 in a linked list called LL

Top-down design
• Write the main() function first, creating a wish list of

functions

• Implement those functions one at a time

• Common functions for our top-down designs:

- A function that gets and validates user input

- A function that helps with complicated computation

- A function that prints output neatly

Practice writing a full program

Good luck!!

