Analysis of Algorithms
Announcements

- Lab 7 due Saturday at midnight
 - Run update21, use quotes.txt for testing
- Quiz 4 is on Friday
 - Review at ninja session tonight
Today’s plan

• Go over quiz 4 topics
• Review linear search and binary search
• Algorithm analysis
Quiz 4

• Be able to understand, use, implement functions that:

 - Are called for their side effects (printing, getting input, mutating a list, etc.)

 - Are called for their return value

 - Are called because they have a useful side effect and a useful return value

• Be able to draw stack diagrams for programs that call such functions
Quiz 4

• Ways to mutate a list:
 - Index assignment
 - Methods like .append() that mutate
 - Existing functions like shuffle() that mutate
 - New, user-defined functions that do mutation using one of the above
Quiz 4

• Don’t focus on top-down design, except that you should be able to understand programs with multiple functions

• Don’t focus on file i/o
def mystery(L):
 for i in range(len(L)):
 if L[i] % 2 == 0:
 L[i] = L[i]**2
 # DRAW STACK HERE

def main():
 myList = range(1,6)
 print(myList)
 mystery(myList)
 print(myList)

main()
Linear search

• Search task: determine if a value, x, appears in a list, L

• Algorithm: go through the items in L one at a time. If you find x, return $True$. If you get through all the items without finding x, return $False$.

• Worst-case run time proportional to length of list

• It’s what the in operator does
def linearSearch(x, L):
 ...
 Purpose: determine if x appears in the list L
 Parameters: x - value we're searching for
 L - list that might contain x
 Returns: True if x is in L, False otherwise
 ...
 for item in L:
 if x == item:
 return True
 return False
def linearSearchIndex(x, L):

 Purpose: determine the index at which x appears in L
 Parameters: x – value we're searching for
 L – list that might contain x
 Returns: index at which x appears in L or None if x
does not appear in L

 for i in range(len(L)):
 if L[i] == x:
 return i
 return None
Binary search

• Search task: determine if a value, x, appears in a sorted list, L

• Algorithm: keep track of the lowest and highest indices where x might appear (lo and hi). Repeatedly examine the value at the midpoint between lo and hi (mid), returning $True$ if this value is equal to x or updating the range of possible indices if it is not. If this range of indices ever becomes empty, return $False$.

• Worst-case run time proportional to logarithm of length of list
def binarySearch(x, L):
 lo = 0
 hi = len(L)-1

 while lo <= hi:
 mid = (lo + hi)/2
 if L[mid] == x:
 return True
 elif L[mid] < x:
 lo = mid + 1
 else:
 hi = mid - 1

 return False
Trace binary search

• Show chart with values for \textit{lo}, \textit{mid}, and \textit{hi} as they update in binary search algorithm
Analysis of algorithms

• We have multiple algorithms for accomplishing the same task—how do we choose which one to use?

• Speed or run time is a big consideration; there are other considerations, like memory usage, simplicity, and generality.
Run time analysis

• Just use Python’s built-in timer?
 - `linearSearch(5, [1, 3, 5])`: 5 microseconds
 - `binarySearch(5, range(1000000))`: 15 microseconds

• Let’s make it a fair comparison:
 - `linearSearch(5, range(1000000))`: 8 microseconds
 - `binarySearch(5, range(1000000))`: 15 microseconds
Run-time analysis

• Ok, but let’s consider the worst case:

 - $\text{linearSearch}(10000001, \text{ range}(10000000))$: 40000 microseconds (or 40 milliseconds)

 - $\text{binarySearch}(10000001, \text{ range}(10000000))$: 14 microseconds

• Ok, but computers vary in terms of speed. And other programs running at the same time will have an effect. And the speed of computers increases over time.
Run-time analysis

• Timing can be useful, but it’s not the best way to compare algorithms. Instead we look for a mathematical function that equals the number of steps an algorithm takes in terms of the size of the input to the algorithm, n. We typically start by considering the worst case.

 - linear: $2n + 1$, binary: $4\log n + 3$

• Ok, but now it depends on the size of n. We typically look at what these functions do as n goes to infinity (like a limit from math) and take only the fastest-growing term, ignoring constant factors

 - linear: $O(n)$, binary: $O(\log n)$
Final analysis

• Binary search is faster, but only works for sorted lists.

• Linear search is easier to implement and thus less likely to contain a bug. It works for any list. For small lists, the difference in run time isn’t noticeable.
Good luck studying!