
Analysis of Algorithms



Announcements

• Lab 7 due Saturday at midnight 

- Run update21, use quotes.txt for testing 

• Quiz 4 is on Friday 

- Review at ninja session tonight



Today’s plan

• Go over quiz 4 topics 

• Review linear search and binary search 

• Algorithm analysis



Quiz 4
• Be able to understand, use, implement functions that: 

- Are called for their side effects (printing, getting 
input, mutating a list, etc.) 

- Are called for their return value 

- Are called because they have a useful side effect 
and a useful return value 

• Be able to draw stack diagrams for programs that call 
such functions



Quiz 4
• Ways to mutate a list: 

- Index assignment 

- Methods like .append() that mutate 

- Existing functions like shuffle() that mutate 

- New, user-defined functions that do mutation 
using one of the above



Quiz 4

• Don’t focus on top-down design, except that you 
should be able to understand programs with 
multiple functions 

• Don’t focus on file i/o





Linear search
• Search task: determine if a value, x, appears in a 

list, L 

• Algorithm: go through the items in L one at a time. 
If you find x, return True. If you get through all the 
items without finding x, return False. 

• Worst-case run time proportional to length of list 

• It’s what the in operator does



Linear search



Linear search variation



Binary search
• Search task: determine if a value, x, appears in a sorted 

list, L 

• Algorithm: keep track of the lowest and highest indices 
where x might appear (lo and hi). Repeatedly examine 
the value at the midpoint between lo and hi (mid), 
returning True if this value is equal to x or updating the 
range of possible indices if it is not. If this range of 
indices ever becomes empty, return False. 

• Worst-case run time proportional to logarithm of length of 
list





Trace binary search
• Show chart with values for lo, mid, and hi as they 

update in binary search algorithm



Analysis of algorithms

• We have multiple algorithms for accomplishing the 
same task—how do we choose which one to use? 

• Speed or run time is a big consideration; there are 
other considerations, like memory usage, simplicity, 
and generality.



Run time analysis
• Just use Python’s built-in timer? 

- linearSearch(5, [1, 3, 5]): 5 microseconds 

- binarySearch(5, range(1000000)): 15 microseconds 

• Let’s make it a fair comparison: 

- linearSearch(5, range(1000000)): 8 microseconds 

- binarySearch(5, range(1000000)): 15 microseconds 



Run-time analysis
• Ok, but let’s consider the worst case: 

- linearSearch(10000001, range(1000000)): 
40000 microseconds (or 40 milliseconds) 

- binarySearch(10000001, range(1000000)): 
14 microseconds 

• Ok, but computers vary in terms of speed. And other 
programs running at the same time will have an effect. 
And the speed of computers increases over time.



Run-time analysis
• Timing can be useful, but it’s not the best way to compare 

algorithms. Instead we look for a mathematical function that 
equals the number of steps an algorithm takes in terms of the 
size of the input to the algorithm, n. We typically start by 
considering the worst case. 

- linear: 2*n + 1, binary: 4*log n + 3 

• Ok, but now it depends on the size of n. We typically look at what 
these functions do as n goes to infinity (like a limit from math) 
and take only the fastest-growing term, ignoring constant factors 

- linear: O(n), binary: O(log n)



Final analysis

• Binary search is faster, but only works for sorted 
lists. 

• Linear search is easier to implement and thus less 
likely to contain a bug. It works for any list. For 
small lists, the difference in run time isn’t 
noticeable.



Good luck studying!


