
Searching Algorithms

Announcements

• Lab 7 is due Saturday, March 25 (not March 28)

• Quiz 4 is on Friday, study guide has been posted

• You will hear back from me about TDD today, if you
haven’t already

Today’s Plan

• mastermind.py (searching)

• Linear search

• Binary search

mastermind.py - TDD

Can we write a function
that acts like in operator?

Linear search

• Go through the items in a list/sequence, L, one-by-
one comparing with the searched-for value, x

• If x isn’t there, we have to check every item in L
before we can be sure.

Why won’t this work?

Linear search

assessGuess w/ search

Linear search
• Task: find value in a list

• Algorithm: compare x with each item in L one-by-
one. If there’s an item that’s equal to x, return True.
If we get to the end of L without finding such a
value, return False

• So the run time of the algorithm is proportional to
the length of the list.

Can we do better?
• Normally, no. But if L is sorted, then we do have a

faster algorithm. (We’ll talk on Wednesday about
how we measure the speed of an algorithm.)

• Remember the ‘guess my number’ program?

• Idea: each time we compare x with an item in L, we
either have found x or we can cut the number of
candidates in half.

Binary search

• Task: find value in a list (same as linear search)

• Condition: list must already be in sorted order

Binary search
• Algorithm:

1. Keep track of the smallest possible index where x might be
(lo) as well as the highest possible index where the value
might be (hi). Initially lo = 0 and hi = len(L) - 1

2. Calculate the index midway between lo and hi (mid).

3. Examine the item at index mid. If it’s the same as x, return
True. Else if it’s less than x, set lo = mid + 1 and return
to step 2. Else it’s bigger than x, set hi = mid - 1 and
return to step 2.

4. If lo ever becomes bigger than hi, return False

