
Top-down Design

Announcements

• Lab 6 due Saturday

• Quiz 3 on Friday

Today’s plan

• Go over quiz topics

• Top-down design

• (Design patterns pushed to Friday after quiz)

Quiz 3 topics
• Topics from quiz 1 and 2

• No graphics, methods, or mutation

• while loops

- Infinite loops

- Condition updated within loop (to avoid infinite loop)

- More general than for loops

Quiz 3 topics
• Functions

- Defining functions (with parameters)

- Return values

- Calling functions (with arguments)

• The stack (without mutation)

- Drawing diagrams

- The scope of a variable

Practice stack diagram

• Show what stack would look like at position
indicated

• Show output from the program (on next slide)

Circle click correction

• We should have considered the radius when
calculating which circle was nearest.

Top-down design
• Write main() function before you do anything else,

creating a “wish list” of functions that would make
the job of writing main() easier.

• Think about functions in terms of inputs and
outputs, don’t worry about implementation details.

• main() needs to orchestrate the program’s data
flow—initializing data, saving return values,
passing arguments, etc.

Top-down design example

main() manages
• main() is like a manager, asking employees to prepare reports,

perform tasks.

• A good manager gives employees the information they need to
do their jobs, and explains what information they should report
back when the job is done. Similarly, main() gives functions the
input data they need to perform a task, and sets up an
expectation for what the function should return.

• Like a good manager, main() doesn’t micro-manage, letting
functions decide how they want to accomplish the requested
task.

• This hierarchy can have many levels, i.e. you can write functions
that call other functions and use top-down design again.

Top-down design +
Incremental Development

• Once you’ve written main(), create a function
stub for each of the function calls that appear in
this main().

• These functions shouldn’t be fully implemented, but
they should allow the still-incomplete program to
run without errors.

• That way, you can incrementally implement one
function at a time, testing it before moving on to the
next function.

Revisiting rps

