
Decisions, decisions

Announcements
• Quiz 1 on Friday

- Study guide on course website

- Covers everything up to basic for loops

- No accumulators, indexing, or slicing

- Ninja session Weds. 7-10pm for quiz review

• Lab 2 due Saturday before midnight

- Does cover accumulators, indexing, slicing

Today’s plan
• Academic Integrity

• Go over roster.py

- Review for loops, indexing, slicing, string formatting

• Programs that “make decisions”

• Boolean type

• Comparison operators

• if statements, if-else statements

Academic Integrity
cs.swarthmore.edu/~mauskop/cs21/s17/index.php#integrity

http://cs.swarthmore.edu/~mauskop/cs21/s17/index.php#integrity

Don’t cheat!
• “Because plagiarism is considered to be so serious

a transgression, it is the opinion of the faculty that
for the first offense, failure in the course and, as
appropriate, suspension for a semester or
deprivation of the degree in that year is suitable; for
a second offense, the penalty should normally be
expulsion.”

• TL;DR - First offense: fail the course, second
offense: expulsion

Don’t cheat!
• Cheating in Intro CS courses is common here and

around the world.

• Why?

- We encourage collaboration, but the line
between collaboration and cheating can be fuzzy

- It’s easy to detect cheating

We encourage collaboration

• …But there’s a line

• Do talk to your classmates about concepts

• Do go over code from textbook or lecture together

• Do not look at or allow someone to look at lab code

• Same goes for Google and people not in the class

How to avoid cheating

• Start labs early so you have time to get help

• Go over non-lab programs with your classmates

• Turn, step, or walk away from computers when
working with classmates

It’s easy to catch cheaters

• We run a program that does it for us

• Changing variable names doesn’t fool the program

• Even if you could fool the program, you shouldn’t
cheat—that’s the ‘integrity’ part.

My challenge to you

• Prioritize learning and personal growth over getting
a good grade. The good grade will come naturally.

• Besides, cheating will likely hurt your quiz and
exam grades.

Back to roster.py

Programs that “make
decisions”

• Or are imbued by programmers with the
appearance of decision-making abilities

• Amazon: decide what book to recommend

• Google translate: decide on a translation of ‘mi
casa es su casa’

• Digital camera: decide whether that’s a face

• Chess AI: decide on next move

Basic decision making
• In programs, we start with decisions based on yes-no questions

• if-then decisions:

- “Is it raining? If yes, then carry an umbrella.”

- “Did the user click the ‘like’ button? If yes, register a ‘like’.”

• if-then-otherwise decisions:

- ‘Is it hot? If yes, wear shorts. If no, wear pants.’

- ‘The user pressed ‘j’. Are we in normal mode? If yes, move
the cursor up. If no, type the letter ‘j’.

Boolean: True/False
• Represents the answer to a yes-no question

• Data type with only two possible values:

- True / ‘Yes’

- False / ‘No’

• Named after logician George Boole

• It’s a bit like a bit

Comparison Operators
• Equal, not equal: ==, !=

• Inequalities: <, >, <=, >=

- Compare ints and floats based on numeric order

- Compare strings based on alphabetic order
(almost)

• These are like yes-no questions, evaluate to a
Boolean

if statement
• Syntax:

if <boolean expression>:

 <block A>

• Semantics: If the boolean expression evaluates to
True, then perform the instructions in <block A>
before continuing to next unindented instruction. If
the boolean expression evaluates to False, continue
immediately to the next unindented instruction.

if-else statement
• Syntax:

 if <boolean expression>:

 <block A>

 else:

 <block B>

• Semantics: if the boolean expression evaluates to True, perform
the instructions in <block A>. If not, perform instructions in
<block B>. Then continue with the next unindented instruction.

Example

Expanded notion of
accumulator

• Before: Combine the values in a sequence into a
single value.

• Now: Keep track of some quantity that may be
updated multiple times within a program. Usually
the update happens within a loop.

• Note: for loops can be used for many things
besides accumulation.

Next time: more logic

