
Linked Lists -
Run time analysis

Announcements
• Lab 11 will be handed back Friday

• Final review sessions next week

- Wednesday: me

- Thursday: Prof. Newhall

- Friday: Jeff

- Times and locations TBD

Today’s plan

• Go over quiz 6

• Review Monday

• Run-time analysis of linked lists

• Comparison with Python lists

Review
• We can remove the head of a linked list by

advancing the self.head pointer.

• Once we can add at the head and tail and remove
at the tail (all in O(1) time) we have a data structure
that is sufficient for a number of applications.

- Linked lists will outperform Python lists for
applications that only need these operations.

• Traversing a linked list takes O(n) time.

Python lists vs. linked lists
• To understand difference between Python lists and

linked lists we need to talk about how these data
structures are laid out in memory.

• Imagine your computer’s memory as a row of
consecutively numbered lockers where each
“locker” can hold a single piece of data: int, str,
float, etc.

- We refer to a locker’s number as its address

Address Value

8000

8001

8002 "A"

8003 "B"

8004 "C"

8005

8006

8007

…

Python list

Address Value

8000 "C"

8001 None

8002 "A"

8003 8006

8004

8005

8006 "B"

8007 8000

…

linked list

“Python list of length
3 starting at 8002”

“Linked list starting at
8002”

Indexing

• You can index into a Python list with a constant, O(1),
number of operations. To get the ith item, L[i]

1. Calculate: start address + i

2. Retrieve item at this address

• With a linked list we can’t just jump to the ith item,
we have to follow links. This is O(n).

7

Indexing
Address Value

8000

8001

8002 "A"

8003 "B"

8004 "C"

8005 "D"

8006 "E"

8007

8008

• To get item at index 3 in
Python list starting at
address 8002 we
calculate:

 8002 + 3 = 8005

Then retrieve item at
address 8005, "D"

8

Address Value

8000 12

8001 3.4

8002 "A"

8003 "B"

8004 "C"

8005 1

8006 2

8007 3

…

Python list

Address Value

8000 "C"

8001 NULL

8002 "A"

8003 8006

8004

8005

8006 "B"

8007 8000

…

linked list

“Python list of length
3 starting at 8002”

“Linked list starting at
8002”

A Python list may not have room to grow:

Python list Linked list

Insert at beginning O(n) O(1)

Insert at end O(n)* O(1)

Remove from
beginning O(n) O(1)

Remove from end O(1) O(n)

Get item at index O(1) O(n)

Sorting a linked list
• Because indexing in a linked list is O(n), the

swapping step alone is O(n) and the sorting
algorithms we learned will be slower than O(n2).

• But we can use a modified version of insertion sort
to achieve O(n2) for linked lists.

• Binary search will not work, again because
indexing is O(n).

Python lists > linked lists?

• If indexing (sometimes called random access) or
space efficiency is important, Python lists
outperform linked lists.

- Indexing is necessary to do a swap in a sorting
algorithm or to do binary search

Linked lists > Python lists?

• If we want a data structure that is first-in, first-out
(a queue/line) or last-in, first-out (a stack) linked
lists will outperform Python lists.

It depends…

• Choose based on the requirements of your
particular application:

- Which operations do I need?

- Is space efficiency a concern?

More linked list methods
• getAtIndex(index): return the item at a particular index

• find(x): search for x, returning True if it’s found, False otherwise

• insertSorted(item): assuming the linked list is in sorted order, insert a
new item while maintaining the sort.

• removeTail(): remove last item

• testStructure(): test the integrity of the linked list structure, i.e.
following links gets you from self.head to self.tail with self.size
nodes along the path.

• recursive versions of getAtIndex(index) and find(x)

• See lab 12

