
More linked lists

Announcements

• Lab 12 is optional, but doing it will be a good way
to practice linked lists for the final exam

- Labs will meet this week, but are also optional

• The final exam is on Saturday, May 6

- 7-10pm in SCI 101

Today’s plan
• Review linked lists

• More linked list methods:

- removeHead()

- __str__

- getAtIndex(index)

Review

• A linked list is a data structure that’s an
alternative to a Python list.

• It has a similar interface, but a different
implementation.

• The run times of the operations in this shared
interface will vary based on the implementation.

Linked list structure
• Linked list of strings “A”, “B”, “C”

"A" "B" "C" None

self.head self.tail

self.size 3

Review

• Each item in a linked list corresponds to a node.
We represent this with a Node class that has two
instance variables:

• self.data (sometimes called self.item)

• self.next (defaults to None)

Review
• A linked list is a chain of nodes that connect to

each other through their self.next fields. We
represent linked lists with the LinkedList class. It
has three instance variables:

• self.head

• self.tail

• self.size

Removing from the front

"A" "B" "C" None

self.head self.tail

"X"

self.size 4

Removing from the front

"A" "B" "C" None

self.head self.tail

"X"

self.size 4

Removing from the front

"A" "B" "C" None

self.head self.tail

self.size 3

removeHead() method

• Watch out for the case where self.size == 1

Back to linked list motivation
• Now we can insert at the front or back and remove from the

front, all in constant time.

• There are applications where we don’t need to access the
middle of a list, and these constant-time operations are
enough:

- Orders to be filled by a restaurant, customer service
requests (or any other queue)

- The function stack!

• For such applications, linked lists will outperform Python lists.

Traversing a linked list
• Use a while loop that continues until the current
Node is equal to None

• (Can also use a for loop since we know the number
of nodes)

• Traversal will be used in a number of methods:

- __str__, searching, indexing, etc.

Traversing a linked list

"A" "B" "C" None

self.head self.tail

self.size 3

current

Traversing a linked list

"A" "B" "C" None

self.head self.tail

self.size 3

current

Traversing a linked list

"A" "B" "C" None

self.head self.tail

self.size 3

current

Traversing a linked list

"A" "B" "C" None

self.head self.tail

self.size 3

current

