Course Recap



Announcements

* Final is on Saturday, May ©
- 7-10pm in Science Center 101
- Study guide is posted
* Review sessions next week
- Wed, 1Tpm in Sci Cen 181 (me)
- Thu, 2:30pm in Sci Cen 183 (Prof. Newhall)

. Fri, TBD (Jeff)



logay's Plan

Review Linked Lists
Talk about final exam
Big ideas

Course evaluations



| inked list recap

 Each item in a linked list corresponds to a node

* A node has two parts, corresponding to the two
instance variables for our Node class:

e self.i1tem/self.data: the value in the list

e self.next:the next Node in the list or None to
signify the end of a list



| inked list recap

* It we have access to the first node of a linked list, we can
access all the other nodes by following the self.next links

* To make implementing certain methods faster and more
convenient, our LinkedL1ist class also keeps track of the

last node and the number of nodes:
e self.head: the first Node in the list
e self.tail:the last Node in the list

e self.size: the number of Nodes/values in the list (an int)



| Inkeda list structure

 We may ask you to draw the structure of a linked

list on the final:

self.head

\4

self.tall

\4

self.size —

None




LInked list methods

Be able to recognize and understand code that
implements various methods for the LinkedList class.

Be able to implement methods for the LinkedList class.

This includes inserting and removing, especially at the
head or tail and methods that do a traversal.

- Traversal relies on an accumulator variable, sometimes
named current

How to call linked list constructor, call methods



L Inked list run times

Python list Linked list
Insert at beginning O(n) O(1)
Insert at end O(n)”* O(1)
Ri@é)ivnemf@m o) ()
Remove from end O(1) O(n)

Get item at index O(1) O(n)




FInal exam

3 hours, closed book

What's on it: linked lists, classes, recursion,
searching, sorting, functions, loops, conditionals,
types, operators, expressions, string formatting,
getting and validating input, and more...

What's not on it: graphics, file i/o, vim, unix

Good to know: top-down design



Be able to:

Compute expressions and identity their types
Write a complete, multi-function program

Trace a multi-function program, showing output and
drawing the stack

Write a class and/or methods for a class:; write code
that uses a class

Write recursive functions; draw stack diagram for a
recursive function



Be able to:

|dentify the run-time of an algorithm:
- O(1), O(log n), O(n), O(n log n), or O(nF)

Show steps in searching and sorting algorithms, know
run times of searching and sorting algorithms.

Write and understand methods for a linked list, write
code that uses a linked list, identity run time of linked
list methods, draw linked list structure.

Find and fix bugs in code



Big iIdeas of the course

* Binary representation of data
- With n bits we can represent 2" things

- e.9. 8 bits or 1 byte to represent a number
between 0 and 255 -> 3 bytes for an RGB pixel

- We can reuse the same bits to store any other
type: bool, int, float, string, list, object, etc.



BIg 1deas
e [he four parts of a program:

- Getting user input: raw_1input, reading files,
keypresses, mouse clicks, and more...

- Computation: everything from simple arithmetic to
complex algorithms, moving data around, using data
structures

- Producing output: print, writing files, graphics,
animation, and more...

- Repetition: main loop of program



BI1g 1deas

e Top-down design
- Write main() first, delegating tasks to functions that don't yet exist

- It's good to start with a plan, understanding that you may have to change
the plan (in CS and in life)

e Incremental development
- Write each function one at a time, testing and debugging as you go
e Testing and debugging

- Assume you’ll make some mistakes on the first attempt; have strategies to
find and correct these mistakes.

- Programming requires humility.



BIg 1deas

 Abstraction and interfaces:

- Computers are incredibly complex—if we had to understand the entire
machine and all its software to get anything done, nothing would ever
get done.

- Interfaces abstract away some of this complexity, allowing us to
harness the power of the computer without needing to understand
every detall.

- e.g. functions, classes, unix shell

- We can layer abstractions on top of each other: use an existing
interface in creating a new one.

- This facilitates collaboration.



After CS 21

e More CS courses:

- CS 31: how your computer works, executes a program, programming
mostly done in C

- CS 35: follow-up to CS 21, learn to implement and analyze more data
structures, object-oriented programming in C++

- Upper-level courses: graphics, artificial intelligence, machine learning,
natural language processing, theory of computation, programming
languages, software engineering, operating systems, and more...

e [ earn more about Python/programming on your own

* Write a program of your own design.



Use coding for gooad

* Programming is a powerful skill.

* Like any powerful skill it can be used for good or
for evil.

* Use it for good. If you put programs out into the
world, think about the impact they will have.



Thank you!

* Thanks to Zoe, Nhung, and Rye.
* Thanks to you for all your hard work.

* Thanks for filling out the course evaluation (it's very
helpful for us)



Enjoy summer break!



