
Course Recap

Announcements
• Final is on Saturday, May 6

- 7-10pm in Science Center 101

- Study guide is posted

• Review sessions next week

- Wed, 1pm in Sci Cen 181 (me)

- Thu, 2:30pm in Sci Cen 183 (Prof. Newhall)

- Fri, TBD (Jeff)

Today’s Plan

• Review Linked Lists

• Talk about final exam

• Big ideas

• Course evaluations

Linked list recap
• Each item in a linked list corresponds to a node

• A node has two parts, corresponding to the two
instance variables for our Node class:

• self.item / self.data: the value in the list

• self.next: the next Node in the list or None to
signify the end of a list

Linked list recap
• If we have access to the first node of a linked list, we can

access all the other nodes by following the self.next links

• To make implementing certain methods faster and more
convenient, our LinkedList class also keeps track of the
last node and the number of nodes:

• self.head: the first Node in the list

• self.tail: the last Node in the list

• self.size: the number of Nodes/values in the list (an int)

Linked list structure
• We may ask you to draw the structure of a linked

list on the final:

"A" "B" "C" None

self.head self.tail

self.size 3

Linked list methods
• Be able to recognize and understand code that

implements various methods for the LinkedList class.

• Be able to implement methods for the LinkedList class.

• This includes inserting and removing, especially at the
head or tail and methods that do a traversal.

- Traversal relies on an accumulator variable, sometimes
named current

• How to call linked list constructor, call methods

Linked list run times
Python list Linked list

Insert at beginning O(n) O(1)

Insert at end O(n)* O(1)

Remove from
beginning O(n) O(1)

Remove from end O(1) O(n)

Get item at index O(1) O(n)

Final exam
• 3 hours, closed book

• What’s on it: linked lists, classes, recursion,
searching, sorting, functions, loops, conditionals,
types, operators, expressions, string formatting,
getting and validating input, and more…

• What’s not on it: graphics, file i/o, vim, unix

• Good to know: top-down design

Be able to:
• Compute expressions and identify their types

• Write a complete, multi-function program

• Trace a multi-function program, showing output and
drawing the stack

• Write a class and/or methods for a class; write code
that uses a class

• Write recursive functions; draw stack diagram for a
recursive function

• Identify the run-time of an algorithm:

- O(1), O(log n), O(n), O(n log n), or O(n2)

• Show steps in searching and sorting algorithms, know
run times of searching and sorting algorithms.

• Write and understand methods for a linked list, write
code that uses a linked list, identify run time of linked
list methods, draw linked list structure.

• Find and fix bugs in code

Be able to:

Big ideas of the course
• Binary representation of data

- With n bits we can represent 2n things

- e.g. 8 bits or 1 byte to represent a number
between 0 and 255 -> 3 bytes for an RGB pixel

- We can reuse the same bits to store any other
type: bool, int, float, string, list, object, etc.

Big ideas
• The four parts of a program:

- Getting user input: raw_input, reading files,
keypresses, mouse clicks, and more…

- Computation: everything from simple arithmetic to
complex algorithms, moving data around, using data
structures

- Producing output: print, writing files, graphics,
animation, and more…

- Repetition: main loop of program

Big ideas
• Top-down design

- Write main() first, delegating tasks to functions that don’t yet exist

- It’s good to start with a plan, understanding that you may have to change
the plan (in CS and in life)

• Incremental development

- Write each function one at a time, testing and debugging as you go

• Testing and debugging

- Assume you’ll make some mistakes on the first attempt; have strategies to
find and correct these mistakes.

- Programming requires humility.

Big ideas
• Abstraction and interfaces:

- Computers are incredibly complex—if we had to understand the entire
machine and all its software to get anything done, nothing would ever
get done.

- Interfaces abstract away some of this complexity, allowing us to
harness the power of the computer without needing to understand
every detail.

- e.g. functions, classes, unix shell

- We can layer abstractions on top of each other: use an existing
interface in creating a new one.

- This facilitates collaboration.

After CS 21
• More CS courses:

- CS 31: how your computer works, executes a program, programming
mostly done in C

- CS 35: follow-up to CS 21, learn to implement and analyze more data
structures, object-oriented programming in C++

- Upper-level courses: graphics, artificial intelligence, machine learning,
natural language processing, theory of computation, programming
languages, software engineering, operating systems, and more…

• Learn more about Python/programming on your own

• Write a program of your own design.

Use coding for good

• Programming is a powerful skill.

• Like any powerful skill it can be used for good or
for evil.

• Use it for good. If you put programs out into the
world, think about the impact they will have.

Thank you!

• Thanks to Zoe, Nhung, and Rye.

• Thanks to you for all your hard work.

• Thanks for filling out the course evaluation (it’s very
helpful for us)

Enjoy summer break!

