
Linked Lists

Announcements
• Lab 11 is due tomorrow

• Quiz 6 is on Monday

- Emphasis on sorting and recursion

• Ninja session tonight, 7-9pm

• The final is in two weeks!

- Will cover class definitions and linked lists

Today’s Plan

• Highlight quiz 6 topics

• Recap of defining classes

• Intro to linked lists

Quiz 6 Topics

• Understand sorting algorithms, especially bubble
sort and selection sort

- Know the order in which swaps will happen

- Understand what the code is doing

• Know run times for various algorithms

Algorithm run times
• O(1): indexing a list, arithmetic

• O(log n): binary search

• O(n): linear search

• O(n log n): merge sort

• O(n2): bubble sort, selection sort, insertion sort

Quiz 6 topics

• Drawing the stack for a recursive function call

• Writing recursive functions

- The “leap of faith” approach.

- Look at examples of recursion over ints, lists, and
strings.

Recursion rules of thumb

Type Base case General case

int n == 0 or n == 1 Combine n and a
recursive call on n-1

sequence len(seq) == 0 or
len(seq) == 1

Combine seq[0] and a
recursive call on

seq[1:]

Classes recap
• The methods for a class create an interface for

interacting with instances of that class.

• There are two perspectives on a class: that of the
person implementing the class and that of the person
using the class. (Sometimes the same person.)

• The “bookkeeping” is hidden behind the class
interface from the person using the class. This makes
the class more convenient to use. Bookkeeping
involves creating and maintaining instance variables.

Classes recap
• Other than __init__, which is called first, methods may

be called in any order. Make sure your instance variables
stay current regardless.

• When you implement a method ask yourself: did this
method change any of my instance variables?

• Choose the minimal set of instance variables that allows
you to implement the methods listed in the class interface.
If you hang on to extra instance variables you’ll have to do
extra work to keep these current as well.

Classes recap

• Instance variables are kept in the self parameter:
self.x, self.y, self.bug, self.heading,
etc.

• To call a method from within another method the
syntax is self.method_name() not
method_name(self).

Linked lists
• Can we use classes to create something like a list?

- Yes, linked lists are an alternative data structure to
Python’s built-in lists.

- Linked lists and Python lists share a similar interface.

- “Beneath the hood” they are different; some operations
are faster with linked lists, others with Python lists.

- Choose which data structure you want based on the
features of a particular application.

List interface
• Operations:

- Create an empty list

- Append a new item onto end of list

- Get the length of a list

- Access values in a list

- Remove an item from a list

- Search through a list

- Sort a list

- Change an item in a list

Linked list structure
• Each item in a linked list corresponds to a “node”

• A node is a bicameral (two-chambered) cell:

- One chamber holds the item

- Other chamber points to the next node

• If we have the first node, we can access every
node in the linked list by following the chain of
links.

Linked list structure
• Linked list of strings “A”, “B”, “C”

"A" "B" "C" None

Linked list structure
• Linked list of strings “A”, “B”, “C”

"A" "B" "C" None

self.head self.tail

self.size 3

Construction
"A" "B" "C" None

node1 node2 node3

Adding “X” to the front

self.size 3

"A" "B" "C" None

self.head self.tail

Adding “X” to the front

self.size 3

"A" "B" "C" None

self.head self.tail

"X" None

Adding “X” to the front

self.size 3

"A" "B" "C" None

self.head self.tail

"X"

Adding “X” to the front

self.size 3

"A" "B" "C" None

self.head self.tail

"X"

Adding “X” to the front

self.size 4

"A" "B" "C" None

self.head self.tail

"X"

Adding to the front
• To insert a new item:

1. Create a new node with the item in its first chamber.

2. Point new node’s second chamber to the former
first node.

3. Update self.head to point to new node

4. Increment self.size

• If the list is empty update self.tail also

Adding to the front

Adding to the back

• It’s like adding to the front, except now we need to
update ‘next’ for the last node (self.tail)

Traversing a linked list

"A" "B" "C" None

self.head self.tail

self.size 3

current

Traversing a linked list

"A" "B" "C" None

self.head self.tail

self.size 3

current

Traversing a linked list

"A" "B" "C" None

self.head self.tail

self.size 3

current

Traversing a linked list

"A" "B" "C" None

self.head self.tail

self.size 3

current

Traversing a linked list
• Use a while loop that continues until the current
Node is equal to None

• (Can also use a for loop since we know the number
of nodes)

• Traversal will be used in a number of methods:

- __str__, searching, indexing, etc.

