
Wrapping up
Recursion

Announcements

• Lab 10 (recursion) posted

- Due Saturday at midnight

Today’s plan

• Catalogue several different forms of recursion

• Recursion gotchas

• Recursive binary search

Recursing over ints

• Typical base case: n == 0 or n == 1

• Typical general case: use fn(n-1) in solution for
fn(n)

• Practice sheet: #1, #4

Recursing over ints

Recursing over lists

• Typical base case: len(L) == 0 or len(L) == 1

• Typical general case: Use L[0] and fn(L[1:]) to
solve fn(L)

• Practice sheet: #2, #3, #9, #10

Find the bug

Recursing over lists

Recursing over strings

• Typical base case: s == “”

• Typical general case: use s[0] and fn(s[1:]) to solve
fn(s)

• Practice sheet: #6, #7, #8

Recursing over strings

How to approach recursion
1. Identify what we’re recursing over. For this

example, let’s imagine it’s a string and our function
is called foo(s).

2. Solve the base case, foo(“”).

3. Imagine you have a working version of foo. Ask
yourself what foo(s[1:]) would return. Combine it
with s[0] to figure out the return value for foo(s).

4. Don’t forget the return statements

Multiple general cases

• Often within the general case, we want to examine
n, L[0], s[0], etc. in an if statement.

Recursive graphics
• Fractals are self-repeating images. You can zoom

in on a fractal and see a sub-image that closely
resembles the original image.

• They appear in nature: trees, lightning, river
tributaries…

• When we generate a fractal using computer
graphics, it is natural to use recursion.

Multiple recursive calls

• Solve the problem with solutions to multiple smaller
sub-problems:

- Merge sort

- Fractals

• Exponential growth

Returning new lists

Modifying a list in place

• Do the recursion over an integer that represents the
index.

• The list and the index are both parameters.

• Use a wrapper function to avoid passing in the
initial index.

Modifying lists in-place

Recursion gotchas
• If you forget the base case, the function will

continue calling itself indefinitely, until the stack
reaches its maximum size. This also happens if
your sub-problem is the same size as your original
problem, e.g. foo(n) instead of foo(n-1).

- RuntimeError: maximum recursion
depth exceeded

• With functions that are called for their return value,
it is easy to forget the ‘return’

Recursive binary search

• Pass ‘lo’ and ‘hi’ as additional parameters.

• Update the range of indices when you make the
recursive call.

• Recursion makes sense here because binary
search is repeatedly breaking the search down into
a binary search on a smaller list.

See you Wednesday!

