Wrapping up Recursion

Announcements

- Lab 10 (recursion) posted
- Due Saturday at midnight

Today's plan

- Catalogue several different forms of recursion
- Recursion gotchas
- Recursive binary search

Recursing over ints

- Typical base case: $\mathrm{n}==0$ or $\mathrm{n}==1$
- Typical general case: use fn(n-1) in solution for fn(n)
- Practice sheet: \#1, \#4

Recursing over ints

def factorial(n):

if $n==1:$
return 1
else:
return $n *$ factorial(n-1)

Recursing over lists

- Typical base case: $\operatorname{len}(\mathrm{L})==0$ or $\operatorname{len}(\mathrm{L})==1$
- Typical general case: Use L[0] and fn(L[1:]) to solve fn(L)
- Practice sheet: \#2, \#3, \#9, \#10

Find the bug

def recursiveLinearSearch(x, L):

if len(L) == 0:
return False
else:

$$
\begin{aligned}
& \text { if } L[0]==x: \\
& \text { return True } \\
& \text { else: } \\
& \text { recursiveLinearSearch(x, L[1:]) }
\end{aligned}
$$

Recursing over lists

def recursiveLinearSearch(x, L):

if len(L) == 0:
return False
else:
if L[0] == x:
return True
else:
return recursiveLinearSearch(x, L[1:])

Recursing over strings

- Typical base case: s ==""
- Typical general case: use $s[0]$ and $f n(s[1:])$ to solve fn(s)
- Practice sheet: \#6, \#7, \#8

Recursing over strings

```
def countLetter(s, l):
    if s == "":
        return 0
    elif s[0] == l:
    return 1 + countLetter(s[1:], l)
    else:
    return countLetter(s[1:], l)
```


How to approach recursion

1. Identify what we're recursing over. For this example, let's imagine it's a string and our function is called foo(s).
2. Solve the base case, foo("").
3. Imagine you have a working version of foo. Ask yourself what foo(s[1:]) would return. Combine it with $s[0]$ to figure out the return value for foo(s).
4. Don't forget the return statements

Multiple general cases

- Often within the general case, we want to examine $\mathrm{n}, \mathrm{L}[0], \mathrm{s}[0]$, etc. in an if statement.

def countHeads(n):

if $n==0$:
return 0
else:
flip = choice(['heads', 'tails'])
if flip == 'heads':
return 1 + countHeads(n-1)
else:
return countHeads(n)

Recursive graphics

- Fractals are self-repeating images. You can zoom in on a fractal and see a sub-image that closely resembles the original image.
- They appear in nature: trees, lightning, river tributaries...
- When we generate a fractal using computer graphics, it is natural to use recursion.

$$
\underset{A}{A}
$$

Multiple recursive calls

- Solve the problem with solutions to multiple smaller sub-problems:
- Merge sort
- Fractals
- Exponential growth

Returning new lists

def reverse(L):

if len(L) == 1:
return L
else:
return reverse(L[1:]) + L[:1]

Modifying a list in place

- Do the recursion over an integer that represents the index.
- The list and the index are both parameters.
- Use a wrapper function to avoid passing in the initial index.

Modifying lists in-place

def squareOddIndicesH(L, index):

if index == len(L):
return
else:
if index \% 2 == 1:
L[index] = L[index]**2
squareOddIndicesH(L, index+1)
def squareOddIndices(L): squareOddIndicesH(L, 0)

Recursion gotchas

- If you forget the base case, the function will continue calling itself indefinitely, until the stack reaches its maximum size. This also happens if your sub-problem is the same size as your original problem, e.g. foo(n) instead of foo(n-1).
- RuntimeError: maximum recursion depth exceeded
- With functions that are called for their return value, it is easy to forget the 'return'

Recursive binary search

- Pass 'lo' and 'hi' as additional parameters.
- Update the range of indices when you make the recursive call.
- Recursion makes sense here because binary search is repeatedly breaking the search down into a binary search on a smaller list.
def binarySearchH(x, L, lo, hi):

```
if lo > hi:
```

return False
else:

$$
\begin{aligned}
& \text { mid }=(\text { lo+hi) } / 2 \\
& \text { if } L[\text { [mid] }==x: \\
& \text { return True } \\
& \text { elif } L[\text { mid }]<x:
\end{aligned}
$$

return binarySearchH(x, L, mid+1, hi)
else:
return binarySearchH(x, L, lo, mid-1)
def binarySearch(x, L):
return binarySearchH(x, L, 0, len(L)-1)

See you Wednesday!

