Recursion



Announcements

 [Lab 9 (sorting) posted; due Saturday at midnight
* Quiz 5 on Friday

- Study guide posted



loday's plan

Review Friday’s lecture

Merge sort, O(n log n) sort that can be defined
using recursion

|dea of recursion

What the stack looks like during recursion



Review: Insertion sort

* “Insert” nt" value into position so that the first n+1
values in the list are in sorted order.

def insertionSort(L):
n = len(L)
for i in range(1, n):
position = 1i
while position > @ and L[position-1] > L[position]:
swap(L, position, position-1)
position —= 1




Review

e Putcalltomain() in protected block so it gets called it
the program is run from command line, but not if it's
imported:

if _ _name__ == "_ main__":
main()

o Put assert statements in main() to test an algorithm
with a variety of inputs

 Use the time () function to figure out how much time
elapsed during an algorithm’s execution



Merge sort

Observation: it we have two sorted lists, combining
them into one sorted list is a linear-time, O(n),
algorithm.

Algorithm: split the list in half, sort each halt
separately, merge them back together

Run time: we can split the list in halt a logarithmic
number of times, each merge is linear, so the
overall algorithm is O(n log n)

Note: merge sort is not in place



def merge(L1l, L2):
L = []
indexl = 0
index2 = 0
while index1l < len(L1) and index2 < len(L2):
if L1[index1] < L2[index2]:
L.append(L1[index1])
index1l += 1
else:
L.append(L2[index2])
index2 += 1
if index1l == len(L1):
L += L2[index2:]
else:
L += L1[index1:]
return L







Back to timesorts.py



Algorithm run-times

O(1): indexing, arithmetic

O(log n): binary search

O(n): linear search, merging two lists
O(n log n): merge sort

O(n2): insertion sort, selection sort, bubble sort



|dea of Recursion

e A function that calls itself in its own definition!
- This doesn’t work with definitions for words

- But it does (miraculously) work for code—we'll
see how

- “To understand recursion, you must understand
recursion”



¢

7

-~

T e
L

R Toe
:

R A

re
'

*

. -
w5

"
g <
e

A







|dea of Recursion

* A recursive function has one (or more) base case and
one (or more) general case.

- The base case is a version of the problem that can
be solved immediately.

- The general case can be solved by using the
answer to a smaller version of the same problem.
We're not solving the problem right away, but we are
getting closer to a solution

- Like mathematical induction (or falling dominoes)



Another example

def sumToNum(n):

Purpose: Return the sum of the integers from 1 to n
Paramters: n — a positive integer
Returns: the sum
if n ==
return 1
else:

return n + sumToNum(n-1)



How does this work'?

def sumToNum(n):
if n ==
return 1

else:
return n + sumToNum(n-1)

sumToNum(4)

4 + sumToNum(3)

4 + 3 + sumToNum(2)

4 + 3 + 2 + sumToNum(1)
4 + 3 +2 +1

10




How does this work'?

Essentially we are working with multiple “copies” of
the same function.

We have seen how a function can be called more
than once with different parameters

We have seen that you can call a function which
itself calls a function

Recursion puts these two ideas together. Let's see
how it plays out on the stack...



\Vlore than once with
different parameters

def add5(n):
return n + 5

def main():
a =/
print(add5(a))
b =6
print(add5(b))

main()



Function that calls a function

def add5(n):
return n + 5

def add5List(L):
for i in range(len(L)):
L[i] = add5(L[i])

def main():
L = [1, 2, 3]
add5List (L)
print(L)

main()



Recursive Function

Draw stack when base case Is reached:

def sumToNum(n):
if n ==
return 1
else:
return n + sumToNum(n-1)

def main():
result = sumToNum(4)
print(result)



