
Recursion

Announcements

• Lab 9 (sorting) posted; due Saturday at midnight

• Quiz 5 on Friday

- Study guide posted

Today’s plan

• Review Friday’s lecture

• Merge sort, O(n log n) sort that can be defined
using recursion

• Idea of recursion

• What the stack looks like during recursion

Review: insertion sort
• “Insert” nth value into position so that the first n+1

values in the list are in sorted order.

Review
• Put call to main() in protected block so it gets called if

the program is run from command line, but not if it’s
imported:

if __name__ == "__main__":
main()

• Put assert statements in main() to test an algorithm
with a variety of inputs

• Use the time() function to figure out how much time
elapsed during an algorithm’s execution

Merge sort
• Observation: if we have two sorted lists, combining

them into one sorted list is a linear-time, O(n),
algorithm.

• Algorithm: split the list in half, sort each half
separately, merge them back together

• Run time: we can split the list in half a logarithmic
number of times, each merge is linear, so the
overall algorithm is O(n log n)

• Note: merge sort is not in place

Back to timesorts.py

Algorithm run-times
• O(1): indexing, arithmetic

• O(log n): binary search

• O(n): linear search, merging two lists

• O(n log n): merge sort

• O(n2): insertion sort, selection sort, bubble sort

Idea of Recursion
• A function that calls itself in its own definition!

- This doesn’t work with definitions for words

- But it does (miraculously) work for code—we’ll
see how

- “To understand recursion, you must understand
recursion”

Idea of Recursion
• A recursive function has one (or more) base case and

one (or more) general case.

- The base case is a version of the problem that can
be solved immediately.

- The general case can be solved by using the
answer to a smaller version of the same problem.
We’re not solving the problem right away, but we are
getting closer to a solution

- Like mathematical induction (or falling dominoes)

Another example

How does this work?

How does this work?
• Essentially we are working with multiple “copies” of

the same function.

• We have seen how a function can be called more
than once with different parameters

• We have seen that you can call a function which
itself calls a function

• Recursion puts these two ideas together. Let’s see
how it plays out on the stack…

More than once with
different parameters

Function that calls a function

Recursive Function
Draw stack when base case is reached:

