Sorting Algorithms
Implemented



Announcements

* Lab 8 due Saturday at midnight

- Ninja sessions tonight and Friday night



logay's Plan

Review quiz 4

Review Monday's lecture
Implement a sorting algorithm
Go over selection sort code
Go over bubble sort code

Analysis



Quiz 4 Review

Q1: Value being mutated only appears once,
possibly with multiple arrows pointing to it

Q2: Need to use for i in range(len(L)) loop
Q3: response = raw_input(question)

Q4: append method takes one argument, mutates,
doesn't return anything



Review

* An in-place sorting algorithm uses O(7) extra
space beyond the list being sorted. Such an

algorithm can't create a new list, it must mutate the
ist passed In.

* [These algorithms proceed by orchestrating a series
of swaps that result in the list being sorted.



swap function

def swap(L, i, j):
Purpose: swaps the values at 1 and j 1n list L
Paramters: L — a list
i, j — valid indices for L
Returns: nothing, but mutates L
temp = L[i]
L[i] = LI[j]
L[j] = temp




Implement a sort
in w10-sorting/sorts.py



Selection sort

For each valid position, 1, in the list:

1. Find the index of the smallest value in the
sublist from 1 to the end of the list. Call this

iIndex min.

2. Swap the values at i and min.



Selection sort

def selectionSort(L):

Purpose: sorts the given list in place
Paramters: L — a list of items that can be ordered

Returns: nothing, but mutates L

n = len(L)
for i in range(n):
min = 1

for j in range(i+1, n):
if L[j] < L[min]:
min = j
swap(L, i, min)




Bubble sort

Do the following n times to sort a list, L, of length n:

 Examine each pair of consecutive values in L. If

the left value is bigger than the right value, swap
them.



Bubble sort

def bubbleSort(L):
n = len(L)
for 1 in range(n):
for j in range(n-1):
if L[] > L[j+1]:
swap(L, j, j+1)



Bubble sort

Repeat the following until an entire pass of L yields
NO Swaps:

 Examine each pair of consecutive values in L. If

the left value is bigger than the right value, swap
them.



Bubble sort

def bubbleSort(L):
n = len(L)
made_swap = True
while made_swap:
made_swap = False
for j in range(n-1):
if L[j] > L[j+1]:
swap(L, j, j+1)
made_swap = True



AnalysIs

e Selection sort: O(n?)
 Bubble sort: O(n?¢)

* \We can make minor optimizations, but the big O
run time won't change.



Visualizations

o https://visualgo.net/sorting

* https://www.cs.swarthmore.edu/~knerr/teaching/
topics/sort.html

o https://www.youtube.com/watch?
v=ly/QPjUT5B4#t=0m48s



https://visualgo.net/sorting
https://www.cs.swarthmore.edu/~knerr/teaching/topics/sort.html
https://www.youtube.com/watch?v=lyZQPjUT5B4#t=0m48s

