Sorting

Announcements

- Quiz 4 will be handed back Wednesday
- Lab 8 is posted; due Saturday at midnight

Today's plan

- Continue with run time analysis practice
- Describe task of sorting
- Exercise: design a sorting algorithm
- Exercise: Implement a sorting algorithm
- https://www.cs.swarthmore.edu/~mauskop/ cs21/s17/practice/9F.html

Sorting

- Take a list of elements of the same type, which can be ordered.
- Rearrange the elements of the list so that all the original elements are there, but now in nondecreasing (or sorted) order.
- For now, we want to do this in-place, that is, without needing to use an extra list.

Sorting applications

- Prepare a list for binary search
- Present information to a user in sorted order
- Gather stats like mode, median
- Do an equality check for two sets
- And many more...

Exercise: design sorting algorithm

In-place sorting

- Do the sort without using more than $\mathrm{O}(1)$ extra memory.
- Relies on the idea of swapping the values at two indices in a list.

Buggy swap

def buggySwap(L, i, j):

$$
\begin{aligned}
& L[i]=L[j] \\
& L[j]=L[i]
\end{aligned}
$$

swap function

def $\operatorname{swap}(L, i, j):$
11III
Purpose: swaps the values at i and j in list L Paramters: L - a list
i, j - valid indices for L
Returns: nothing, but mutates L IIIII
temp $=\mathrm{L}[\mathrm{i}]$
L[i] = L[j]
$L[j]=$ temp

Aside: shuffling

- Once we know how to swap we can re-implement the shuffle function

```
def shuffle(L):
```

 IIIII
 Purpose: randomly shuffles the contents of list L Paramters: L - a list
Returns: nothing, but mutates L
"!"
$\mathrm{n}=$ len(L)
for i in range(0, $\mathrm{n}-1)$:
j = randrange(i, n)
swap(L, i, j)

Exercise: implement sorting algorithm

