lesting Algorithms

Announcements

* Lab 8 due tomorrow at midnight

- Ninja session tonight, 7-9pm
e [ab 9 (sorting) posted on Sunday
e Quiz 5 next Friday

- Includes searching and TDD, but not sorting

logay's Plan

Review selection sort and bubble sort
Insertion sort
Testing, timing, and importing algorithms

Compare sorting algorithms

Review: Bubble sort

Makes a series of passes through the list,
swapping pairs of consecutive values if the ‘left’
value is bigger than the ‘right’.

Each pass ‘bubbles’ the biggest remaining
unsorted value to its final position.

Once a pass of the list yields no swaps, we know
the list Is sorted.

O(n?2) run time

def bubbleSort(L):
n = len(L)
made_swap = True
while made_swap:
made_swap = False
for j in range(n-1):
if L[j] > L[j+1]:
swap(L, j, j+1)
made_swap = True

Review: Selection sort

 [For each index in the unsorted list, “select” the
value that will end up there in the sorted list, and
swap It into position.

* Jo do this selection look for the smallest value
among those that haven't yet been swapped into
position.

 O(n?)run time

def findIndexOfMin(L, i):
Purpose: Find the index of the smallest value in L,
not including values before index 1
Paramters: L — a list of values that can be ordered
1 — index where we start looking for minimum
Returns: index of the minimum value in L, starting at 1i

index0fMin 1
for j in range(i+l, len(L)):
if L[j] < L[index0fMin]:
index0fMin = j
return indexO0fMin

def selectionSort(L):
for i in range(len(L)-1):
index0fMin = findIndexO0fMin(L, 1)
swap(L, i, index0fMin)

INnsertion sort

e For each index, 1, from 1 to the end;

e Compare L[1] with the value onits left, L[1-1].
It L[1] i1s smaller, swap these two values.
Continue swapping L[1] to the left until it's
bigger than the value on its left.

INnsertion sort

e |nsertion sort works because after n repetitions of
the outer for loop, the first n+1 values are sorted,
even If they aren’t in their final position.

* Then we “Insert” the next value into its position in
this sorted sublist.

INnsertion sort
implementation

Recap

* Jest algorithms with many different kinds of input, use
assert to verify that tests pass.

e "Protect” the call to main so the same code can be either
run from the command line or imported:

it __name__ == "__main__":
main()

 Use the time () function to get the current time in
seconds.

Comparison

If you know something about the inputs you're likely
to get, it can influence your choice of algorithm,
even if they all have the same big O run time.
Selection: minimizes number of swaps

Insertion: good for almost sorted lists and small lists

Bubble: like insertion, but worse :(

sorting-algorithms.com

http://sorting-algorithms.com

Have a nice weekendq!

