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Abstract

This paper describes the implementation and evalu-
ates the performance of several cache block replace-
ment policies. All of the policies were initially imple-
mented in C using the SimpleScalar cache simulator.

By default, the SimpleScalar cache simulator in-
cludes a Least Recently Used (LRU) policy, a
First-In, First-Out (FIFO) policy, and a Random
policy. These options were expanded to include
a page-replacement LRU approximation algorithm,
Clock[1]. A simplified version of a more complex
page-replacement algorithm, ClockPro[2] was also
implemented. Finally, two versions of a replacement
policy based on spatial locality were added.

1 Introduction

1.1 Motivation

Memory accesses are an essential part of the proces-
sor pipeline, and because they are very frequent, they
should be as fast as possible. The fastest kind of
memory is the cache. Unfortunately, caches are also
very small. In order for the cache to be most use-
ful, it should contain data that is most likely to be
used again in the near future. Also, the contents of
the cache should be dynamically updated as likely
data changes. Data in the cache is stored in sec-
tions called data blocks. Typically, the cache is
divided into sets, each set having the capacity to
store n blocks where n is the associativity of the
cache. Cache replacement policies determine which
data blocks should be removed from the cache when
a new data block is added.

The SimpleScalar cache simulator includes LRU,
FIFO, and Random replacement policies. Random
is the most simple of these policies; when a cache
data block is to be replaced, it simply selects a block
from the appropriate set to replace randomly. LRU
replacement decides that the block that was least re-

cently used is unlikely to be used again in the near
future and replaces that block. FIFO takes a slightly
different approach, and decides that the oldest block
(the one that entered the cache first) will not be used
again soon, and replaces that block.

All of these approaches are flawed. Random is un-
predictable, and is likely to perform poorly. Further-
more, there is not necessarily a correlation between
how old the block is and whether or not it will be used
again soon. The lack of direct correlation here makes
FIFO less than optimal. LRU is generally a good
choice for block replacement. Unfortunately, it is not
feasible to implement in hardware. LRU requires ei-
ther maintaining an ordered list of when data blocks
were accessed (which requires too much space in hard-
ware) or keeping timestamp information about when
the block was last accessed (too much maintenence
and comparison).

1.2 Alternatives

There are a variety of ways to address the flaws inher-
ent to the three algorithms included in SimpleScalar.
The Clock algorithm attempts to make LRU sim-
pler, perhaps even feasible in hardware. ClockPro
attempts to improve upon both LRU and Clock by
evaluating frequency of access in addition to recency
of access. In addition, algorithms based on examin-
ing spatial locality, or how close instructions are to
the currently executing instruction in the code, may
provide additional insight into possible performance
enhancements.

2 Alternative Cache Block Re-
placement Algorithms

2.1 Clock

The simple clock hand algorithm is a simple LRU es-
timation algorithm that provides a reasonably good
LRU estimation with low costs in added hardware
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Figure 1: A diagram of state in the Clock algorithm.
The clock hand is currently pointing a a block with
its clockbit set, so the clockbit will change to 0 and
the clock hand will advance to the next block. It
will replace the next block because that clockbit is
already 0.

and processing time. We implemented two variations
of the simple clock hand algorithm. The 1 bit clock
hand algorithm and The 2 bit clock hand algo-
rithm. Since these have tradeoffs in efficiency vs.
complexity and size on cache, we decided to imple-
ment and investigate both these algorithms despite
their apparent similarity.

2.1.1 Description of 1 bit Clock

The Clock algorithm attempts to approximate LRU.
Originally intended for page-replacement inside an
operating system, it has been adapted to fit Sim-
pleScalar. In a cache, each data block stores some
information. It has data, a tag letting the hardware
know what data is stored in the block, and a bit that
represents whether or not the block is valid. Clock
adds two pieces of data. One is a bit called the clock-
bit which represents whether or not the block has
been used recently. FEach block must have its own
clockbit. Additionally, each set must have a clock-
hand which keeps track of what block has been ex-
amined most recently.
The Clock Hand LRU algorithm

On Start ():

clock_block = first block
On Memory Lookup ():
If clock_block is in cache:
clock_block.clockbit =1
Else:
curr_block = NULL
While curr_block =— NULL:
If clock_block.clockbit = O0:
curr_block = clock_block
Else:
clock_block.clockbit
clock_block =

=0
clock_block .next

If curr_block is dirty: write

Find accessed block in memory
Return fetched block to CPU
Replace curr_block with fetched one

2.1.2 Analysis of the Clock Hand algorithm

The clock hand algorithm works on the principle of
keeping track of the most recent access of blocks.
Since the clock hand initially starts at the begin-
ning, it works as a FIFO implementation, however,
by adding a clock bit to keep track of which cache
block was accessed before the hand made it all the
way around the set, it adds LRU estimation. The
best case scenario for this algorithm is when the block
the hand is currently pointing to is fit for replace-
ment. In such a case, the algorithm is O(1). In the
worst case scenario, all the clock bits would be set
and therefore, the clock hand would have to move
through every block once, making it O(n). However,
such cases would be expected to occur rarely. The
most significant weakness of this algorithm is that it
keeps track of a history that lasts only as long as one
revolution of the clock hand.
Strengths

e Simple to implement

e Only 1 extra bit per block and 1 address pointer
per set is required

e A better estimation algorithm than FIFO
Weaknesses
e Weak LRU estimation since it has a short history

e Does not account for frequency of access



2.2 The 2 bit Clock Hand Algorithm

This algorithm has the advantage of being able to
keep track of a longer history compared to the 1 bit
clock hand algorithm. The functionality of this algo-
rithm is essentially the same as the 1 bit Clock Hand
algorithm, however with a 2 clock bits rather than 1
clock bit.

2.2.1 A description of the algorithm

There is only one difference between this algorithm
and the 1 bit clock hand algorithm. There are two
clock bits, and they are both set and unset one at
a time during access and clock rotation respectively.
The first time a cache block is accessed, the first clock
bit is set. The second time, the second clock bit is
set. In this way, this is analogous to having a 2 bit
saturating counter keeping track of block accesses.
When seeking a block to replace, the algorithm checks
to see how many clock bits are set. If two bits are
set, it unsets one and advances to the next block. If
one bit is set, it unsets it and progresses to the next
block. When no bits are set, the algorithm picks the
block for replacement.

2.2.2 Analysis of the algorithm

As mentioned earlier, the purpose of this algorithm is
to extend on the 1 bit clock hand algorithm to keep
a longer history. The history kept by the two bits
increases to two revolutions of the clock hand com-
pared to one. Similarly, we could keep adding bits
and increasing the history tracked by the clock hand.
However, with increasing number of bits being ded-
icated to storing things other than data blocks, the
cache utilization decreases. The worst case scenario
for this algorithm is O(2n), although again, this is
very rare, more so than for the 1 bit clock.
Strengths

e Better LRU estimation than 1 bit Clock Hand
due to longer history

e More sensitive to frequency of access of blocks
than the 1 bit clock

e Simplicity of the algorithm
Weaknesses

e Requires two bits to keep track of history, de-
crease cache utilization

2.3 ClockPro
2.3.1 Description of ClockPro

ClockPro attempts to improve upon both LRU and
Clock by considering frequency of access in addition
to recency of access. To do so, it categorizes a block
as either hot or cold. Hot blocks are accessed fre-
quently, and cold blocks are not. The categorization
is done live, and blocks can switch between the two
categories. ClockPro also uses the same basic clock-
bit and clockhand structure of the Clock algorithm.
It also uses a test period. The test period tracks how
old the block is in the cache.

The full clockhand algorithm includes three clock-
hands as well as implementation for nonresident
blocks, or blocks whose history remains cached while
the data stored by the block is no longer stored in
the cache. In SimpleScalar, a simplified version of
this algorithm using only two of the clock hands and
not including support for nonresident blocks was im-

plemented.
The ClockPro Algorithm

On Start ():
cold_block = first block
hot_block = first block

On Memory Lookup ():
curr_block = NULL
If block is in cache:
Set clockbit
Return block to CPU
Else:
While curr_block = NULL:
If cold_block.clockbit = 0:
curr_block = cold_block
Else if cold_block.test — 1:
Turn cold hand block hot
Unset the clockbit
Run Hot Hand Algorithm
Else:
cold_block.clockbit = 0
cold_block = cold_block.next
If curr_block is dirty: write
Find accessed block in memory
Return fetched block to the CPU
Replace curr_block with fetched one

Hot Hand Algorithm ():
curr_block = NULL
While curr_block = NULL:
If hot_block is cold:
hot_block.text = 0

Else if hot_block.clockbit =— 0:



Turn the block cold

Else:
hot_block.clockbit = 0
hot_block = hot_block.next

hot hanﬂ
ﬁand

Figure 2: A diagram of state in the ClockPro algo-
rithm. The cold hand is searching for a block to re-
place. The clockbit of the first block is set, so it
becomes a hot block and a hot block must change
into a cold block. The hot hand finds the hot block
to replace. In this case, it will have to unset the cur-
rent bit, but move to the next block before finding
a suitable replacement. Then the cold hand will re-
place the next cold block with an unset bit for the
new incoming block.

2.3.2 Analysis of the ClockPro Algorithm

The ClockPro algorithm expands on Clock because it
tracks the frequency of use in addition to the recency
of use. The clock bit of each block tracks how re-
cently it was used. The ability to turn blocks hot or
cold represents whether they are accessed frequently.
The best case scenario in this algorithm is when the
clockbit of the block pointed to by the cold hand is
unset. In that case, it is O(1) because that block is
simply replaced. In the worst case scenario here, all
of the clockbits are set and the first cold block is in its
test period. In this case, the cold block turns hot, the
hot hand must circle all the way around the clock to
find a replacement, then the cold hand must circle all
the way around to finally find a cold block to replace.
This is still O(n). Such a case would be rare. This

version of ClockPro could be improved by keeping
more state information about the nonresident blocks.
Strengths

e Considers frequency as well as recency
e Easier to implement than LRU

e Ounly 3 extra bits (clockbit, test, hot) per block
and 2 (or 3 in the full version) extra address
pointers per set is required

e Performs better than Clock
Weaknesses

e More complicated than Clock

e While adding support for non-resident blocks
could theoretically perform better than LRU in
some cases, it would take up more space per set

2.4 Spatial Locality Algorithms

LRU algorithms are effective because of temporal lo-
cality of data accesses. However, they do not ac-
count for the spatial locality of data accesses, which is
another important factor in determining which data
blocks are most likely to be accessed next. There-
fore, we implemented two spatial locality algorithms
to gauge the effectiveness of spatial locality based
algorithms. The spatial locality algorithms we im-
plemented used spatial locality exclusively to decide
which block on cache was to be replaced.

2.4.1 Description of first Spatial Locality al-
gorithm

This algorithm calculated the distance between the
address of the block being requested currently and all
the blocks on the set. It then picked the block that
was furthest from current block as the candidate for
replacement.

Spatial Locality 1

On memory lookup (mem-_addr):
max_distance=0
furthest=NULL
for each block in set:
dist=abs(this_block .addr—mem_addr)
if dist> max_distance:
max._distance = dist
furthest=this_block
if furthest.dirty=true:
write furthest to memory
Fetch mem_addr from memory
Replace furthest with fetched block



2.4.2 Analysis of Algorithm

The sole purpose of this algorithm is to find the block
in the set which is furthest away from the currently
accessed block. This algorithm is very simplistic in its
assumption that memory address distance is the sole
factor in determining the likelihood of future access.
For example, it does not consider the fact that the an
address that comes after the currently accessed mem-
ory address is likelier to be accessed than one that
came before. This algorithm is always O(n), however,
this is only because it was implemented in software.
On hardware, all distance comparisons could be done
simultaneously.
Strengths

e Simple implementation
Strengths

e Simplistic assumptions regarding memory ac-
cesses.

e Slow on software, requires N comparatos per set
of N in hardware

2.4.3 Description of Second Spatial Locality
algorithm

After running tests, we found the first spatial local-
ity algorithm to perform much worse than expected,
as we will see in the results section. We therefore
decided to address one significant problem with the
first algorithm, the fact that it doesn’t treat address
that come after the current one differently from the
addresses that come before.

Therefore, we modified the first spatial locality al-
gorithm so that it would pick the block whose address
precedes the address of the current access rather than
whichever one is furthest. However, we introduced a
threshold factor to balance the distance and the di-
rection of the address.

Spatial Locality 2

On Memory lookup (mem_addr):
max_pos_dist=0
max_neg_dist=0
furthest_pos=NULL
furthest_neg=NULL
for each block in set:

dist=this_block .addr—mem_addr
if (dist < 0 &
dist < max_neg._dist):
max_neg_dist=dist
furthest _neg=this_block

else if distance > max_pos_dist:
max_pos_dist=dist
furthest_pos=this_block
if max_neg_dist < —1 *THRESHOLD:
to_replace=furthest_neg
else if max_pos_dist > THRESHOL:
to_replace=furthest_pos
else:
to_replace=furthest_neg

2.4.4 Analysis of Algorithm

This algorithm improves on the previous one by
weighting negative distance more heavily than pos-
itive distance. It also uses a threshold so that if
the positive distance is much greater than the neg-
ative distance, it picks the positive distance as the
appropriate candidate for replacement. However, af-
ter implementing this algorithm we found that finding
this threshold was difficult without a lot of statisti-
cal analysis of addresses accesses, and also that this
algorithm didn’t improve much over the poor perfor-
mance of the previous algorithm.

3 Hardware Implementation

One of the goals of our project was to implement
algorithms that were more feasible to implement in
hardware than a perfect LRU would be. We chose
the clock hand algorithms because we believed that
they were implementable in hardware as well as being
good LRU approximators.Therefore, we implemented
the clock hand algorithm in Verilog and tested its
functionality to test our assumption that it was fairly
easy to implement in hardware. We implemented the
1 bit clock hand algorithm in hardware because it
was the simplest to implement. Since the 2 bit clock
hand algorithm and the clock pro algorithm have very
similar implementational details, and therefore, if the
1 bit clock hand algorithm can be implemented in
hardware, the other two could also be implemented
in hardware.

Our implementation for the 1 bit clock hand algo-
rithm in Verilog worked and was simple to implement.
The Verilog code and the simulation showing it’s cor-
rect functionality are in the Appendix of this paper.
The algorithm we implemented was the same as de-
scribed in the Clock Hand Algorithm section of this
paper. For simplicity we used 1 bit data and each
block in the cache was made up of the 1 bit clock
bit and the 1 bit data. The clock hand algorithm



stores the cache address of the block it is pointing to
and progresses through the addresses, jumping back
to the starting address after the last address. We did
not simulate an entire cache and decided to simulate
only one four way associative set.

The implementation has shown us that it is in fact
possible to implement the clock hand algorithm for
cache replacement. It requires the clock hand im-
plementational hardware to be added for each set,
assuming the cache is set associative. This does take
up extra space on the cache, but it is much better
than implementing a perfect LRU. We do not know
what algorithm real cache’s use and how complex
their implementations are, so we cannot comment on
the relative complexity or efficiency of our implemen-
tation. However, we have shown that it is in fact
implementable in hardware.

4 Results

The general trend with results in order of lowest to
highest miss rates is LRU, ClockPro, Clock, FIFO,
then Slocal(Spatial locality). Usually, algorithms
perform better with 8-way set associativity than with
4-way set associativity. Note that we include only
one of our Slocal algorithms because both algorithms
tended to perform very similarly with rarely any dif-
ference between them.

Some notable exceptions to the above general rule
are the floating point Art benchmark and the inte-
ger GCC benchmark. In these benchmarks, ClockPro
was the best performer, followed by Clock, then LRU
and FIFO. Of some interest is the exception shown
by Twolf, the only case where Clock and ClockPro
have a higher miss rate than FIFO. Worth noting,
however, is that the miss rate difference is 0.0001.

In general, changing the set associativity makes
more of a difference in the integer benchmarks; the
only one that it does not noticeably change is Twolf.

The trend of 8-way set associativity having bet-
ter performance than 4-way set associativity was ex-
pected. Additionally, the trend of Clock’s miss rate
being between FIFO and LRU was also expected.
ClockPro was a less certain element. Theoretically, if
the support for non-resident blocks was included, it
should perform better than LRU. Since non-resident
block support was not implemented, it is more of an
LRU approximation algorithm with more state and
history than Clock, so one might expected it to per-
form in between Clock and LRU.

Note that Slocal results were not included in the

integer benchmark tests. Trends with high miss rates
continued, and not including Slocal results allows for
greater precision in graph display. The Slocal results
were surprising in some ways since the policy per-
formed so poorly. We expected Spatial Locality and
Temporal locality to have equal effect on which cache
blocks were going to be accessed soon, however, this
is clearly not the case. Our second spatial locality
algorithm should have done much better, however it
was hard to come up with a good weighting factor
between positive and negative direction memory ad-
dress blocks and with a lot more experimentation, we
could probably improve on the results we have using a
very similar algorithm. However, we are lead believe
spatial locality replacement algorithms by themselves
will not perform as well as temporal locality, i.e, LRU
replacement algorithms.

Finally, our attempt to simulate implementing
Clock in the Quartus simulator shows that Clock
can be implemented fairly easily in hardware, unlike
LRU. Also, since ClockPro needs a slight increase in
state over Clock, ClockPro is also implementable in
hardware.

5 Conclusion

It is important to have a good cache replacement pol-
icy so that the CPU can minimize cache miss rates.
LRU is a very good policy, but is unfortunately im-
possible to implement in hardware. FIFO is a bad
policy, but easy to implement in hardware. Fortu-
nately, the Clock and ClockPro algorithms provide
performance similar to LRU and are possible to im-
plement in hardware. While ClockPro is slightly
more complicated than Clock and requires more hard-
ware, it also performs better. Spatial Locality is
a cool concept, but unfortunately does not seem to
work very well on its own.

6 Future Work

There are three main interesting possibilities for fu-
ture work. One is implementing Clock or ClockPro in
hardware with a real cache for testing purposes. This
would allow us to more completely evaluate the per-
formance trade off between the extra hardware and
the better miss rates.

Additionally, it would be interesting to implement
support for non-resident blocks in the ClockPro algo-
rithm and see if the increased data helps it perform
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better than LRU more consistently.

Finally, combining an algorithm that examines spa-
tial locality with an algorithm that examines tempo-
ral locality would also be an interesting experiment.
This may be especially relevant for an instruction
cache. However, because the spatial locality performs
so badly, it seems that taking it into additional con-
sideration would not be helpful.
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Appendix A: Quartus Code for
Clock Hardware Implementation

module ClockHand (Clk, block , write ,

access ,addr ,show);

input Clk, write ,block ,access;

input [0:1] addr; // address of access

output [0:7] show; // show the cache

// data is 1 bit

// two bit data storage.

// First bit is clock bit

// second bit is data.

//wire [0:1] d.0,d-1,d-2,d.3;

reg [0:1] d0,d1,d2,d3;

reg [0:2] hand;

// hand starts out pointing to 00

always @ (posedge Clk)

end
end
else if (hand==2’b01)
begin
if (d1[0]==1)
begin
d1<=d1&2’b01;
hand<=2"b10;
end
else
begin
d1<={1'b0, block };
hand<=2"b10;
end
end
else if (hand==2'b10)
begin
if (d2[0]==1)
begin
d2<=d2&2’b01;
hand<=2’b11;
end
else
begin
d2<={1"b0, block };
hand<=2’b11;
end
end
else if (hand==2’b11l)
begin
if (d3[0]==1)
begin
d3<=d3&2’b01;
hand<=2"b00;
end
else
begin
d3<={1'b0, block };
hand <=2"b00;
end
end
end
if (access)

begin .
if (write) //b(;zirfliccess, set clock bit
begin -
. o if (addr==2"b00)
lfbih?gd__2 b00) do[0]<=1"b1; // set
ifg(dO[()]——l) else if(addr==2"b01)
beein T d1[0]<=1’bl; // set
d0<g_d0&27b01 else 1f(addr::2’b10)
hand <=2"b01; 6132[0]<:1 bl; // set
end d3[0]<=1’bl; // set
else end
begin end
d0<={1"b0, block }; - _ '
hand <=2"b01 ; assign show={d0,d1,d2,d3};



endmodule

Appendix B: Quartus Waveform
File for Clock Hardware Imple-
mentation



