
STOIC: Streaming Operating Systems in the Cloud
Riley Collins, Teo Gelles, Benjamin Marks, Alex Simms, and Kevin C. Webb

Department of Computer Science, Swarthmore College, Swarthmore, PA
{rcollin4,tgelles1,bmarks1,asimms1,kwebb}@cs.swarthmore.edu

Abstract—As cloud computing continues to increase in per-
formance, while simultaneously decreasing in cost, it comes as
no surprise that traditional computing tasks are frequently being
offloaded to cloud services. This paper presents STOIC, a service
model for booting and streaming an operating system from
public cloud infrastructure. Having booted with STOIC, users
can perform regular activities with few noticeable differences
between STOIC and more traditional methods of booting an OS.

STOIC makes minimal assumptions about the hardware and
software capabilities of the booting client and is compatible with
many popular cloud storage providers. We show that STOIC’s
file streaming is responsive and demonstrate several use cases in
which streaming an OS is beneficial when compared to alternative
file distribution methods.

I. INTRODUCTION

The rise of public cloud computing is transforming the
role of off-site infrastructure. Already, many public cloud
providers [1][2] and {platform, software, etc.} as a service
providers [3][4] promise infinite resources to anyone willing
to pay, with prices that are competitive with traditional infras-
tructure. Despite this clear trend, cloud computing remains
in its infancy, and many common computing tasks still lack
online analogs.

This work presents STOIC, a service model that allows
users to stream an operating system stored remotely in the
cloud and persistently maintain system configuration and data
between across reboots. A key insight making STOIC feasible
is that at any given time, most of the OS and file system is
not being used. Thus, STOIC transfers only a small amount
of data to initially boot the system, transparently fetching
more from the cloud as it is needed. With increases in con-
sumer bandwidth and main memory availability, an analogous
model already dominates the distribution of digital video (e.g.,
YouTube). Indeed, many users would likely balk at the idea of
fully downloading large video files to the disk, and we believe
that STOIC yields analogous benefits for OS distribution.

While we do not expect it to replace traditional disk-based
OS storage for most tasks, streaming an OS with STOIC
enables several interesting use cases:

OS service, with persistent storage: STOIC facilitates an
operating system as a service model in which a provider main-
tains a selection of standardized system images. Such a service
would allow end-host software maintenance to be outsourced
to the cloud. Combined with a persistent cloud storage system,
such a model decouples the OS from the hardware, permitting
users to work from any machine, regardless of location, with
their familiar files and operating environment.

Decoupling the OS and files from the hardware has the
potential to improve data security. A stolen or misplaced laptop
that exclusively relies on the cloud for its file system poses
no threat of information leakage. Additionally, a user might
choose to stream a privacy-preserving OS [5] (e.g., to avoid
government censorship), without leaving a trace on her device.

Software demonstration: Many software packages require
more environmental setup than can be provided by traditional
“double click to install and run” installers. For example, the
authors of Mininet [6] simplify its distribution by sharing a
preconfigured virtual machine image. Other packages (e.g.,
Hadoop [7]) expect substantial configuration prior to execut-
ing, posing a barrier to rapid evaluation and deployment.

With STOIC, users can quickly boot their PC (or a VM)
and stream an OS whose environment is preconfigured by
the software maintainer. Rather than transferring an entire
heavyweight VM image in advance, a STOIC user loads only
the necessary data on demand.

Internet of Things (IoT) devices: As the number of
always-connected devices increases, so too does the task
of managing their software. The STOIC model allows IoT
users to easily outsource software maintenance to the cloud,
potentially reducing device cost by curtailing the need for on-
board persistent storage. Further, users of prototyping devices
based on open-source software (e.g., Raspberry Pi) would
benefit from the flexibility of easily switching between op-
erating systems and preconfigured environments to find the
combination that best fits their prototype’s needs.

OS installation and diagnostics: Booting a device over the
Internet is convenient for infrequent tasks like OS installation,
especially as fewer devices are shipping with removable media
drives in favor of portability. We envision a publicly accessible
repository of boot options that would allow users to stream
Linux installers or diagnostic utilities.
This paper makes the following contributions:

• STOIC service model: We characterize the key compo-
nents of the STOIC architecture, their responsibilities, and a
cohesive vision for their adoption by cloud providers.
• Prototype implementation: We describe the design and

implementation of a fully-functional STOIC prototype. The
prototype introduces a few custom utilities that tie together
standard infrastructure software and protocols, making it easily
deployable on today’s cloud systems.
• Use-case evaluation: We demonstrate the advantages and

feasibility of STOIC by examining several realistic use cases
and illustrating their performance.

ClientLocal
Agent

Cloud
Service

Persistent
Storage

(optional)

(1) Client requests
bootstrap OS.

(2) Client receives
chainboot image
containing cloud
service location.

(3) Client requests
kernel from cloud.

(4) Client boots
received kernel.

(5) Client streams files read-only from
cloud service on demand. (steady state)

(6) Client reads and writes private
file modifications. (steady state)

If necessary for
client device.

LAN

Fig. 1: The STOIC architecture and remote boot procedure.

II. MODEL AND VISION

Clients following the STOIC model retrieve bootstrapping
data, boot an OS from cloud-sourced files, and mount user
file systems. The STOIC architecture divides the responsibility
for the process into three components: a booting client, a
local bootstrapping agent, and a cloud-based service offering
bootable operating systems and (optionally) persistent file
storage. Figure 1 summarizes STOIC’s components and the
boot procedure.

A. Local Bootstrapping

Many devices are equipped with vendor-supplied mech-
anisms for only local network booting and do not allow
users to feasibly modify the boot process (e.g., by writing
customized routines within the BIOS/EFI/firmware). Thus,
the local agent is a pragmatic addition to the STOIC model
to provide compatibility for such devices, which use it to
acquire a small bootstrapping image, locally boot the device,
and redirect its boot procedure to the proper wide-area cloud
service. For home users, the role of local agent would likely
be played by the ubiquitous home router/NAT/WiFi device.
For enterprises, the local agent’s functionality could easily be
incorporated into standard DHCP infrastructure.

The local agent component is not fundamentally necessary
to STOIC, and devices designed for wide-area bootstrapping
(or those with freely available firmware sources) would not
require one. However, eliminating the local agent for all de-
vices would necessitate changes to the behavior of traditional
PC BIOS/EFI beyond the scope of this project1, although such
work does exist for some PC hardware [9].

B. OS Selection

Having attained wide-area booting capabilities, the client
contacts the cloud service to obtain a list of the operating
systems that are available for streaming. The user selects an
OS, retrieves from the cloud only the minimal amount of data

1Apple’s OS X Internet Recovery [8] feature demonstrates the feasibility
of Internet booting directly from firmware, albeit in a far more restrictive
capacity.

necessary for booting it (the kernel and necessary hardware
drivers), verifies the data’s integrity, and subsequently boots
the retrieved kernel.

C. File Systems
To ensure that all subsequently accessed data is streamed on

demand, the client mounts its root file system directly from the
cloud service. We envision a common use case in which many
users wish to simultaneously boot from the same OS image
(e.g., to run a public OS installer or load a policy-compliant
corporate image). To facilitate such image sharing, STOIC’s
root file system defaults to being mounted read-only.

Users wishing to store persistent files can mount a writable
file system overlay from an alternate location. To ease us-
ability, utilities for mounting file systems from a variety of
sources could easily be provided in the read-only root file
system, prompting the user to select a cloud service and enter
their account credentials.

D. Persistent Storage Service Models
In general, we expect that users will have many disparate

use cases for STOIC, each of which may have contrasting
persistent file storage needs. Thus, we make no attempt to
prescribe a one-size-fits-all model for authorization, storage,
and payment. Instead, we broadly classify the availability of
an OS image and the user’s persistent storage strategy as either
public or private and describe how various combinations might
be used by a different category of user.

Public OS images are those that any user can load from a
well-known, publicly-accessible location. For public images,
obtaining persistent storage would be up to the user (e.g., local
disk or privately-funded cloud storage), although support for a
particular provider could be integrated into the public image.
In one model, a cloud service provider might attract users
to their platform by providing a free, publicly-available OS
that connects to the provider’s paid storage service to host
persistent file storage. Alternatively, images might be freely
available, containing curated “live CDs” like the publicly-
hosted operating system and software installation package
mirrors that currently serve the open source community.

By contrast, private images require users to authenticate
themselves prior to booting to protect against unauthorized
access. The costs of hosting and transferring data are attributed
to the individual or organization using the service. Being
protected, the image could automatically mount persistent
files at startup from a predetermined location, without user
intervention, to realize an “operating system as a service”
model akin to other services that have migrated to the cloud.

III. PROTOTYPE IMPLEMENTATION

This section describes our experiences in constructing
a fully-functional prototype implementation of the STOIC
model. The prototype’s components closely match the archi-
tecture depicted in Figure 1, with a few exceptions as noted
below. It represents a proof of concept for implementing
STOIC with largely off-the-shelf software and is designed
to serve traditional PC hardware (or PC-like VMs), which
necessitates a local agent component.

A. Booting from the Local Agent

Much of the prototype’s booting procedure is delegated to
PXE [10], the Pre-boot eXecution Environment. PXE is a
mature standard that is well-supported by most commodity
PCs available today, enabling a client machine to boot from a
server on its local network. STOIC clients connecting to their
local PXE server receive an open-source bootstrapping image,
iPXE [11], which enables booting from remote images.

Our prototype currently supports booting from two local
agent platforms, each of which represents a distinct operating
environment. The first corresponds to a home or small office,
where the local agent is a Banana Pi R1, a Linux device akin
to a Raspberry Pi with an embedded wireless Ethernet chipset
and a 5-port hardware switch, giving it roughly the same form
factor and processing capacity as a commodity home WiFi
router. Our success with this platform demonstrates that a
STOIC local agent could be easily incorporated into existing
home router firmware, making STOIC immediately available
to millions of users.

The second platform is a large-scale PXE installation used
by the computer science department at Swarthmore College.
Booting any of the approximately 100 PCs with STOIC
required only minor modifications to existing PXE-related
configuration files.

B. Cloud Backend

Having received the iPXE boot image from a local agent,
the client contacts a web server running on Amazon’s EC2
cloud service to fetch a list of available OS images. Our
current implementation supports only Linux, although there is
no technical barrier to booting other operating systems. Upon
selecting one of the options, the client retrieves and boots a
Linux kernel, initial RAM disk, and boot parameter string.

The initial RAM disk carries modular device drivers, and the
parameter string contains contact information to mount a root
file system via NFS. Like a “live CD”, the root FS is mounted
such that users can write to files in memory, but writes are not

persisted to the cloud, whose NFS is exported read-only. Our
prototype’s NFS server runs on the same EC2 host as the web
server. We selected NFS because it is well supported by Linux
and because, by its nature as a network file system, it does not
transfer file data until a file is accessed. While we recognize
that WAN-oriented file system techniques [12][13][14] may
improve performance in production, even NFS’s relatively
unsophisticated behavior satisfied the needs of our prototype
implementation.

C. Persistent Storage

Users wishing to make persistent file changes must provide
a writable device, which STOIC’s OS images mount as a
writable OverlayFS [15] transparent overlay on top of the root
file system. The writable device may be local (e.g., local disk,
USB flash drive, etc.) or remote. In the latter case, STOIC
uses custom cloud storage relay software, which forwards I/O
requests issued by the booted client to a cloud storage provider.
The persistent storage overlay stores only the differences from
the underlying read-only root file system.

Our prototype relay is implemented as a network block
device (NBD) [16] server. NBD provides a simple interface
akin to block devices in which a client may read/write fixed-
size blocks, each of which is uniquely numbered. The relay
receives block I/O requests from clients and forwards them to a
supported cloud storage provider via public APIs. In contrast
to Figure 1, our prototype relay software runs on the local
agent, though it could be incorporated into the read-only OS
image itself.

The relay is modular, supporting several cloud storage
backends, with implementations for Google Drive, Dropbox,
and Amazon S3. Most of our experiments with persistent
storage have used the S3 backend, as the other two are free
services that quickly rate limit data transfers. Backends may
require parameters, which specify service locations and accept
user authentication credentials. S3, for example, requires users
to provide a bucket name and authentication key pair.

We have implemented three performance optimizations for
the prototype relay. First, we avoid storing unused blocks
on the underlying cloud storage service to reduce storage
costs. Blocks are materialized at the cloud storage service on
demand during their initial write. The STOIC relay maintains
a small in-memory cache to record which blocks are currently
allocated.

Second, the relay employs a small data cache containing
the most recently read file system block(s). The cache defaults
to a small size, just a single block, to avoid overcommitting
memory-constrained platforms like in-home routers. Clearly
the cache size represents a tradeoff between performance
resource usage. We expect that larger deployments would
dedicate more memory to caching than our prototype.

Finally, to reduce request latency, the relay is multi-threaded
and asynchronous, allowing clients to issue multiple outstand-
ing NBD block requests in parallel. In a naı̈ve implementation,
this might raise the possibility that relay worker threads
could attempt to concurrently access the same remote blocks,

potentially executing requests out of order. STOIC avoids such
races by hashing each requested block number when assigning
requests to a thread. Thus, all requests for the same block will
enter a queue for one thread, preserving the intended request
ordering. Requests mapping to other threads are free to execute
independently in parallel.

D. Security
The STOIC model assumes that in a commercial deploy-

ment, the OS image server and cloud backend would be
secured against attack by the service provider, who is already
incentivized to properly identify whether or not a client has
proper authorization for billing purposes. Thus, we focus
on ensuring that the following two security guarantees are
implemented in STOIC: verifying the integrity of disk images
downloaded through iPXE and secure communication when
making reads and writes via the persistent storage relay.

The kernel and initial RAM disk files are transferred se-
curely over HTTPS. To verify their integrity, STOIC provides
cryptographic signatures alongside the OS images on the cloud
backend server. iPXE has configuration options that mandate
verification of disk images with signatures before booting, and
we embed the necessary certificates in the local agent’s iPXE
response.

Communication between the STOIC relay and persistent
cloud storage providers is encrypted for backends that supply a
HTTPS API (e.g., Amazon S3). Our prototype currently does
not encrypt all traffic served via NFS because it is assumed
to be a read-only, publicly accessible root file system. Such
traffic could easily be encrypted should protection be desired
in a production setting.

IV. EVALUATION

Our evaluation explores STOIC’s ability to stream an
operating system on demand from the cloud. We start by
demonstrating novel use cases. Then, we characterize STOIC’s
performance and cost. In our experiments, clients contained
16-core AMD Opteron 6128 processors and 16 GB of memory.
The STOIC cloud service backend was served from an Ama-
zon EC2 m4.large instance, with two 2.4 GHz Intel Haswell-
family processors and 8 GB of memory. The persistent storage
relay ran on a Banana Pi R1 router development board and
communicated directly with Amazon S3.

All tests were performed from Swarthmore College’s com-
puter science department network, which shares the college’s
1 Gbps connection to the Internet with the rest of the campus.
With our experiments, we aim to show that STOIC’s approach
is viable under good network conditions. Clearly connection
performance matters a great deal in STOIC performance
benchmarks. We typically see throughput rates of 35 to 60
Mbps from our AWS instance, which is reasonable for a home
user in a metropolitan area.

A. Use Cases
The most important aspect of our evaluation is a qualitative

illustration of the STOIC model’s capabilities. While perfor-
mance is likely to vary depending on network connectivity

and congestion, these use cases demonstrate STOIC’s novel
scenarios. Here, we highlight three examples of STOIC’s
interesting use cases in order of increasing complexity.

OS installation: The simplest STOIC use case is booting
an OS installation or recovery image. This example shows that
STOIC is on par with existing Internet-based booting projects
(e.g., Apple’s Internet Recovery [8]). Here, users select an
OS image to be used only once, with the intent of modifying
their local disks for subsequent local boots. Our STOIC
example serves the contents of an Ubuntu 15.04 installation
disk. Upon booting, the user is presented with a graphical
Linux environment, a transient in-memory file system, and
several guided options for OS installation, recovery, and other
administrative tasks.

Software trial / demonstration: Deploying software in
VM images and virtual “containers” is becoming an increas-
ingly popular means of software distribution [17], [18]. Such
containers are attractive to software maintainers because they
allow complete control over the software’s environment in
addition to the software’s behavior. For computational re-
searchers, they make reproducing experiments easier, since the
entire experimental environment is preserved [19]. One such
research-focused software project shipping software in a VM
is Mininet [6]. Mininet is a network emulator that simplifies
testing and evaluating software on a virtual network.

STOIC serves the Mininet VM’s contents as one of its
streamable OS images, making it easy for users wishing to ex-
periment with Mininet (or potentially any other containerized
software) to evaluate it without committing any permanent
storage. A STOIC user can easily boot a machine directly into
the environment created by Mininet’s authors in approximately
30-40 seconds. Furthermore, because STOIC streams only the
data necessary to serve user requests, much of the rarely-
used environmental data is not transferred, offering substantial
savings, which we quantify below.

For users not taking advantage of STOIC’s persistent storage
options, the trial image’s data simply disappears when the
user reboots. Alternatively, users can easily store all permanent
writes to Amazon S3 using the file system overlay described in
Section III. Thus, users wishing to return to the experimental
environment can modify any file, and only the file differences
need be safely stored by STOIC in S3. By booting the same
image and overlaying the same remotely-backed file system,
a user can restore earlier sessions with all file modifications
preserved.

An OS for a cluster, as a service: Beyond software trials,
one might wish to outsource the maintenance and configu-
ration of an OS to a third party, who offers the operating
system as a service. Our final STOIC use case is an example
of a cluster environment in which we have crafted a pair of
OS images, based on Ubuntu’s 15.04 live CD, that boot a pre-
configured MapReduce [20] cluster using Apache Hadoop [7].
STOIC allows a user with a rack of machines to boot into a
fully-configured Hadoop cluster in approximately five minutes.

The first image in the pair represents the master node,
and the user begins by selecting one node to boot using this

Ub Mi
0

20

40

60

80

100
O

S
im

ag
e

bo
ot

ti
m

e
(s

)

(a) Time to boot two
example OS images.

Ub Mi
0

200

400

600

800

1000

D
at

a
tr

an
sf

er
re

d
(M

B
)

Bytes transferred
Total OS image size

(b) The bytes transferred booting each OS
compared to their total image sizes.

Fig. 2: The time (a) and bytes transferred (b) during ten boots of
the Ubuntu (Ub) and Mininet (Mi) OS images. Error bars represent
standard deviations. Each image was tested on a different day, and
transfer rates varied due to transient network conditions.

image. Once the master has booted, it displays instructions
to the user directing them to run an included script, which
listens for connections from worker nodes. To eliminate user
interaction on each worker node, STOIC embeds the master’s
IP address in the worker OS image’s boot parameter string.
Other rendezvous possibilities, such as assigning the master
node a resolvable DNS name, could work as well.

With the master online, the user continues by booting any
number of machines with the worker image. Each worker
generates a unique host name and ssh key pair at start up,
which it sends to the master without any manual intervention.
When all the workers have been booted, the user informs the
script on the master, which disseminates the set of host names
and key pairs to every worker, allowing each node to execute
remote commands on the others via ssh.2 Finally, the master
node formats a new Hadoop file system and starts the Hadoop
daemons. At that point, the cluster is fully functional, and the
user can submit Hadoop jobs to the master node.

B. Boot Performance

An important aspect of STOIC’s performance is the time
it takes to boot an OS. To quantify boot performance, we
measured the boot time and number of bytes transferred while
booting the Ubuntu live CD and Mininet VM images described
above. Figure 2 shows the averages of these two metrics across
ten boots. The measurements in Figure 2a demonstrate that
STOIC boots quickly, with averages of 74 seconds and 35
seconds for Ubuntu and Mininet, respectively.

Related to boot time, STOIC would ideally transfer as few
bytes as possible during the boot process. Any remaining
data should be streamed on demand to allow the user to
begin working as quickly as possible. Figure 2b shows the
data transferred during the boot process for the same ten
experimental runs. It additionally compares those values with
the total size of each image. A streaming strategy is clearly

2This is a common remote execution model for Hadoop and other widely-
used cluster software.

TABLE I: A comparison of the theoretical and measured costs of
transferring files with STOIC’s persistent file storage.

Operation Cost

PUT 1,000 times $0.005
GET 10,000 times $0.004
Theoretical cost to upload a 100-MB file $0.004
Theoretical cost to download a 100-MB file $0.00031

Measured cost to upload 100-MB file $0.0041
Measured cost to download 100-MB file $0.00035

effective: a user could boot the Mininet image four times
before copying the same number of bytes as the total image.

C. Persistent Storage

To be of practical use, STOIC’s persistent file storage
mechanism must be both inexpensive and reasonably fast when
paired with commercial cloud storage providers. This section
examines the cost of transferring a large file from STOIC’s file
relay backed by Amazons S3 storage service. We measured
the time and monetary cost of writing a 100 MB file to S3
in 128 KB chunks and subsequently reading that file back. In
order to remove confounding effects of caching, we flushed
OS caches between the write and read phases. Thus, this test
effectively represents the worst-case I/O performance scenario
where there are no cache hits.

Table I quantifies the theoretical and observed costs as-
sociated with streaming a 100-MB file, using a 4-GB file
system overlay, through a STOIC relay. The values above
the divider show the Amazon pricing model and theoretical
costs of moving a 100-MB file using that model. Below that,
we show the averaged results of five experimental runs. The
transfer time was consistent, ranging from 41 to 49 seconds
for the 100-MB file, and the measured costs closely reflect the
theoretical minimums.

V. RELATED WORK

Thin clients and VDI. STOIC shares the goals of many
prior systems aimed at enabling resource-constrained “thin”
clients, namely remote storage and on-demand data streaming.
One of the objectives stated for the Multics project [21] was
to provide a computation service to users similar to electric
and telephone utilities. Another system, Sprite [22], supported
diskless workstations, which booted from a remote file system.
These and other systems laid the groundwork for STOIC,
but they existed under local network conditions that differ
significantly from today’s cloud computing model.

Efforts like SLIM [23] and Lai & Nieh’s wide-area thin
client performance analysis [24] describe an environment that
more closely resembles STOIC’s, and similar to our experience
with STOIC, their analyses show that streaming core system
data over the wide area can yield a high-quality, interactive
user experience. Both projects focus on outsourcing compu-
tation in addition to data storage, whereas STOIC assumes
that clients are typical commodity PCs (i.e., fully capable
processors) that wish to compute their own results and render
their own graphics.

The Collective [25] proposes an operational vision that is
most similar to that of STOIC. In the Collective, PCs serve as
simple virtual appliance transceivers (VATs) that download and
cache remotely-managed virtual appliance images. Remotely
stored user profiles track which users are permitted to access
each virtual appliance. Like STOIC, the Collective outsources
the management of system and application data to an external
party, leading to comparable benefits. In contrast to STOIC,
PCs in the collective are still assumed to boot from a local
storage device, and virtual applications are cached at on the
VAT’s local disk. STOIC makes no assumptions about the
availability or contents of local storage. Further, in the Collec-
tive, each application is managed separately, as an independent
VM container, whereas STOIC maintains an OS image at the
granularity of an entire file system.

More recently, Virtual Desktop Infrastructure (VDI) has
been gaining popularity in industry with services such as
VMWare’s Horizon [26] and Amazon’s Workspaces [27].
Like STOIC, such services are easily accessible to users via
public cloud providers. VDI differs from STOIC primarily in
the location of computation. With STOIC, client machines
perform their own processing, with the cloud representing
storage and OS data. On the other hand, VDI clients offload
computation to the cloud. We believe VDI and STOIC to be
complementary, with benefits and use cases for both models.

Remote OS Installation and recovery. Several projects and
commercial vendors have recently begun supporting Internet-
based OS installation and maintenance tasks. The most notable
example is Apple’s OSX Internet Recovery [8], which serves
as an OS data source for Apple hardware without removable
media [28]. Open source projects like Cloudboot [29] and
Netboot.xyz [30] provide similar functionality, via iPXE, to
commodity PCs. These systems differ from STOIC in that
they transfer an entire OS image prior to booting rather than
streaming files on demand. Furthermore, their goal is to write
an OS to a local disk and then disappear; they do not provide
persistent storage options.

Cloud operating systems. Many projects have recently
begun touting “cloud operating systems”, which mainly con-
centrate on web-based applications. Though their details vary
considerably, they relate to STOIC in that each is centered
around a notion of streaming remotely-accessible data over a
wide area. One such system is Google’s Chrome OS [31],
which provides a simple browser-based interface for web-
based software as a service applications. Others like Ze-
roPC [32] aim to launch a persistent, desktop-like environment
from within a user’s web browser tab. We believe that these
efforts, while interesting, are orthogonal to STOIC due to their
focus on browser-based data distribution.

VI. CONCLUSION

In the STOIC model, operating systems are distributed as a
service, and users to can optionally maintain persist files over
multiple sessions using their preferred storage service. STOIC
is efficient and readily compatible with existing cloud service
provider infrastructure.

With a straightforward prototype implementation built from
common, well-supported protocols, we have demonstrated
several practical STOIC use cases for end users, system
administrators, and software distributors. Further, we believe
that the steady decline in cloud computing costs will make
STOIC more attractive over time.

REFERENCES

[1] Amazon, “Elastic Compute Cloud (EC2),” http://aws.amazon.com/ec2.
[2] Microsoft, “Windows Azure,” http://www.windowsazure.com.
[3] Heroku, https://www.heroku.com.
[4] Salesforce.com, https://www.salesforce.com.
[5] Klint Finley, “Out in the Open: Inside the Operating System Edward

Snowden used to Evade the NSA,” Wired, 2014, http://www.wired.com/
2014/04/tails.

[6] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” in HotNets, 2010.

[7] The Apache Software Foundation, “Hadoop Project,” http://hadoop.
apache.org.

[8] Apple, “About OS X Recovery,” https://support.apple.com/en-us/
HT201314.

[9] A. Borisov, “Coreboot at Your Service!” Linux Journal, vol. 2009, no.
186, October 2009.

[10] Intel Corporation, “Preboot Execution Environment (PXE) Specifica-
tion,” 1999.

[11] iPXE, http://ipxe.org.
[12] Y. Dong, H. Zhu, J. Peng, F. Wang, M. P. Mesnier, D. Wang, and S. C.

Chan, “RFS: A Network File System for Mobile Devices and the Cloud,”
ACM SIGOPS OS Rev., vol. 45, no. 1, Feb. 2011.

[13] J. Liang, A. Bohra, H. Zhang, S. Ganguly, and R. Izmailov, “Minimizing
Metadata Access Latency in Wide Area Networked File Systems,” in
IEEE HiPC, 2006.

[14] A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-bandwidth
Network File System,” in ACM SOSP, 2001.

[15] Neil Brown, “Overlay Filesystem,” Linux Kernel Documentation, https:
//www.kernel.org/doc/Documentation/filesystems/overlayfs.txt.

[16] P. T. Breuer and A. Martn Lopez and Arturo Garca Ares, “The Network
Block Device,” Linux Journal, vol. 2000, no. 73es, May 2000.

[17] C. Sun, L. He, Q. Wang, and R. Willenborg, “Simplifying Service
Deployment with Virtual Appliances,” in IEEE SCC, 2008.

[18] D. Merkel, “Docker: Lightweight Linux Containers for Consistent De-
velopment and Deployment,” Linux Journal, vol. 2014, no. 239, March
2014.

[19] C. Boettiger, “An Introduction to Docker for Reproducible Research,”
SIGOPS Operating Systems Review, vol. 49, no. 1, January 2015.

[20] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in USENIX OSDI, 2004.

[21] F. J. Corbató, J. H. Saltzer, and C. T. Clingen, “Multics: The First Seven
Years,” in Proceedings of the May 16-18, 1972, Spring Joint Computer
Conference, 1972.

[22] M. Nelson, B. Welch, and J. Osterhout, “Caching in the Sprite Network
File System,” ACM TOCS, vol. 6, February 1988.

[23] B. Schmidt, M. Lam, and J. D. Northcutt, “The Interactive Performance
of SLIM: a Stateless, Thin-Client Architecture,” in ACM SOSP, 1999.

[24] A. Lai and J. Nieh, “On the Performance of Wide-Area Thin-Client
Computing,” ACM TOCS, vol. 24, May 2006.

[25] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam, “The Col-
lective: A Cache-Based System Management Architecture,” in USENIX
NSDI, 2005.

[26] VMWare, “Horizon,” http://www.vmware.com/products/horizon.html.
[27] Amazon, “Workspaces,” https://aws.amazon.com/workspaces.
[28] D. Frakes, “Hands on with Mountain Lion’s OS X Recovery and Internet

Recovery,” http://www.macworld.com/article/1167870, July 2012.
[29] Cloudboot, http://cloudboot.org.
[30] Netboot, http://netboot.xyz.
[31] S. Pichai and L. Upson, “Introducing the Google Chrome OS,”

Google Official Blog, 2009, https://googleblog.blogspot.com/2009/07/
introducing-google-chrome-os.html.

[32] ZeroPC, https://www.zeropc.com.

