
ParaVis: A Library for Visualizing and Debugging Parallel Applications

Andrew Danner, Tia Newhall, Kevin C. Webb

Computer Science Department, Swarthmore College
Swarthmore, PA USA

{adanner, newhall, kwebb}@cs.swarthmore.edu

Abstract—This paper presents ParaVis, a visualization li-
brary designed to aid programmers’ understanding of their
parallel programs and to help them identify bugs with paral-
lelization. ParaVis is particularly targeted for programmers
who are first learning parallel programming or learning a
new parallel language. It provides easy-to-use C and C++
interfaces to create 2D animations of parallel computation
that help programmers understand parallel data decomposition
patterns. These visualizations are also helpful in illustrating
errors in parallel programs. Additionally, because students
often find visualization fun, the use of our library often results
in students developing interesting extensions to problems, thus
promoting a deeper understanding and richer experience with
parallel computing. Currently we provide support and sample
implementations for pthreads, OpenMP, CUDA, and sequential
applications. To test its effectiveness for parallel computing
education, we deployed ParaVis for lab assignments in both
intermediate and upper level courses. We present example
applications, and evaluate the use of the library across our
undergraduate CS curriculum.

Keywords-visualization library; parallel computing; CS Ed-
ucation; CUDA; pthreads; OpenMP

I. INTRODUCTION

In the multi-core era, explicit parallel computing is now

required to take full advantage of common hardware devices

(e.g., multi-core CPUs and GPUs) and the increasingly

pervasive parallel and distributed platforms (e.g., clusters

and the cloud). At the same time, the era of big data

and data-intensive computing has expanded the need for

parallel and distributed solutions to applications that span

an increasingly broad range of fields. Together these trends

motivate the growing importance of teaching parallel and

distributed computing throughout the computer science cur-

riculum, as reflected in a new parallel and distributed core

knowledge area added in the ACM/IEEE Task Force’s 2013

CS Curriculum [2]. The increasing importance of teaching

parallel and distributed computing throughout the undergrad-

uate curriculum has led to efforts to create parallel and

distributed computing curricular resources. Most notably,

the NSF/IEEE-TCPP 2012 Curriculum Initiative on Parallel

and Distributed Computing [28] defines detailed curricular

requirements and recommendations. It supports projects to

help faculty increase the coverage of parallel and distributed

computing in their curricula.

Unfortunately, developing and debugging parallel pro-

grams can often be challenging, especially for programmers

learning a new parallel language or paradigm. To help aid

in the initial exploration of parallel computing, we present

ParaVis, a visualization library that aims to make debugging

of parallel programs easier and more enjoyable through 2D

animations of a simple color buffer. The use of visualization

provides rapid feedback regarding the correctness of the par-

allel algorithm, particularly when a large number of parallel

workers makes printing to the console too verbose to debug

efficiently. Additionally, many students find visualization

fun, and the use of ParaVis encourages further exploration,

experimentation, and potentially a deeper understanding of

the underlying parallel language.

ParaVis is designed to be easy to use so that no experi-

ence with graphics or image formats is necessary, allowing

students and programmers to focus on learning parallel

concepts. It currently supports writing visualizations and

animations using pthreads, OpenMP, CUDA, or sequential

programming techniques. Such flexibility allows program-

mers to choose a preferred parallel programming model

and also easily enables them to make comparisons across

multiple models. The library is primarily written in C++,

but it’s easily extended to support visualizations in C. In the

remainder of this paper, we position ParaVis with respect to

related work, characterize the library in the context of small

examples, and describe our experiences with integrating it

into our curriculum.

II. RELATED WORK

There have been numerous efforts to develop specific

parallel and distributed undergraduate curricula [6], [16],

[23] and resources for teaching [3], [13]. ParaVis fits into this

broad area as a tool for teaching new parallel languages and

paradigms, currently targeting languages for single machine

parallelism (multi-core CPUs or GPUs).

Previous work has shown that visualization often aids

in learning programming and in developing computational

thinking skills [1], [5], [26]. Some efforts focus on us-

ing visualization specifically to teach parallel program-

ming [12], [25] and to illustrate parallelization and parallel

algorithms [17], [21], [24].

Like ParaVis, the thread-safe graphics library (TSGL)

project [8] implements a library that can be used for multi-

threaded graphics applications. A primary motivation for

TSGL is to provide a tool for building visualizations that

326

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00062

can help students understand multi-threaded parallelization.

While our work is similarly motivated, we target a broader

range of parallel languages and programming paradigms

beyond threads. ParaVis also provides a higher-level, simple

interface that hides graphics library details from the user.

There is also a large body of work on using visual-

ization to aid in correctness verification, debugging, and

performance analyses of parallel programs [9], [15], [18],

[20]. Such work in parallel tools highlights the necessity of

adopting visualization towards understanding performance

and correctness in parallel applications. Furthermore, such

tools have also been used as a learning resource to help

novice students learn parallel computing techniques and

understand their parallel computations [19]. While ParaVis

is not in the same category of parallel tools development, it

similarly helps students to identify the causes behind many

bugs as they learn parallel programming and new parallel

programming models.

III. VISUALIZATION LIBRARY

ParaVis is written in C++ using Qt 5.9 and OpenGL

4.1 for the visualization components. A typical user of our

library does not need to know either of these rather large and

complex software packages. We abstract many of the details

of the visualization framework away through a QTViewer
class that handles creating the graphical window, driving the

animation, and supporting basic keybindings for pausing an

animation, taking a screenshot, or quitting an application.

Instead, a programmer typically interacts with a DataVis
class, or more precisely, a class derived from the DataVis
base class to implement a new visualization or animation.

The primary role of this class is to provide a member

variable which stores an image buffer: a flattened 2D array of

red, green, blue tuples that the user will modify through an

update method of the DataVis class. By writing parallel

code in update and connecting a DataVis object to a

QTViewer, programmers can quickly create parallel 2D

visualizations and animations using ParaVis. To illustrate

that the library is easy to use, Figure 1 shows the com-

plete main function using the primary classes needed for

a sample application. In addition to this short boilerplate,

a programmer only needs to write a small user defined

class, e.g., DemoOMPVis, that writes values to an image

buffer. No additional Qt5, OpenGL, or other visualization

steps are needed. After providing some more details on how

the DataVis class works in ParaVis below, we describe the

custom components a programmer must write for a particular

parallel application.

The DataVis base class is extremely lightweight, spec-

ifying only an interface that says there should be a pointer

to a flattened 2D array of pixels called the image buffer and

an update method to update those pixels. For pthreads

and OpenMP applications, the image buffer resides in CPU

memory, while for CUDA applications, it is more efficient to

#include <qtViewer.h>
#include <pthreadVis.h>
int main(int argc, char **argv) {

QTViewer viewer(argc, argv,
600, 500, "OpenMP Demo");

int width = 200;
int height = 200;
DataVis* vis =

new DemoOMPVis(2, width,height);

viewer.setAnimation(vis);
return viewer.run();

}

Figure 1. The full main function for a sample OpenMP visualization
with ParaVis components shown in bold. A programmer writes specific
OpenMP details in DemoOMPVis::update to update the pre-allocated
image buffer, but no Qt5 or OpenGL knowledge is needed to use this library.

store the buffer directly on the GPU. We therefore provide

two derived classes; DataVisCPU, and DataVisCUDA,

that allocate space for the image buffer on the CPU and

GPU, respectively. Both classes can be initialized by speci-

fying the initial width and height of the data to visualize, or

by specifying the name of an image file, e.g, a .png, .jpeg,

or .gif file, to pre load into the image buffer.

Since the visualization is application specific, the

update method’s implementation is the programmer’s re-

sponsibility. Once the update method is implemented,

the programmer connects the visualization to a QTViewer
using the setAnimation method call (see, e.g. Figure

1), and then calls run. By default, run will repeatedly

call the provided update method until the user exits

the application. Animations can run for a fixed number

of steps by providing a number of steps to run, with a

value of 1 performing only a single frame visualization

with no animation. We provide source code, further detailed

documentation of the library, and full examples online [10].

A. Writing a new visualization

To visualize a full parallel application using ParaVis in

C++, the user first chooses a parallel framework and a

writes a new class that derives from DataVisCPU or

DataVisCUDA. Several applications are described in Sec-

tion IV, and code snippets for all supported frameworks

are available online [10]. For simplicity, we describe how

a user could write a new OpenMP application. The pro-

grammer would first create a new class, e.g., DemoOMPVis
that inherits from DataVisCPU. Since the DataVisCPU
automatically creates the image buffer on the CPU, the

programmer only needs to focus on writing an application-

specific update method in the DemoOMPVis class. An

example is sketched in Figure 2. In the OpenMP context,

the programmer would likely add pragmas to parallelize a

327

void DemoOMPVis::update() {
int c, off;
unsigned char val;
#pragma omp parallel for \

private(c, off, val)
for(int r=0; r<h; r++){

for(c=0; c<w; c++){
/* compute offset,

color val */
buffer[off].b = val;

}
}

}

Figure 2. OpenMP code writing to the blue channel of the image buffer
by parallelizing over rows

loop that writes a color to each pixel in the image buffer.

If the user wants to animate the image over a sequence

of steps, this is easy to support by adding a variable to

the DemoOMPVis class that stores some counter that is

incremented once per update call and used to vary the image.

Since the update method does not specify how to update

the image buffer, any sequential or parallel approach can be

used. Currently, we have sample applications using sequen-

tial programming, OpenMP, pthreads, and CUDA. It should

be fairly straightforward to add other SMP parallel models,

e.g, OpenACC and OpenCL. Since Qt5, OpenGL, and the

underlying CMake build system are all cross-platform, we

have compiled and run ParaVis on Linux, Mac OSX, and

Windows operating systems.

B. The ParaVis C interface

In addition to being flexible to parallel programming

model choice for C++ programmers, the simplicity of the

DataVis interface and the underlying image buffer data

structure allows us to easily implement C wrappers around

the C++ interface to export C interfaces to ParaVis. While

we have not yet written C library interfaces for all paral-

lel frameworks, we describe ParaVis’s current C interface

for pthreads below, and anticipate similar C interfaces for

OpenMP and CUDA.

The pthreads C interface to ParaVis is implemented as a

thin layer on top of our C++ implementation. C programmers

interact with ParaVis by passing a visi_handle to library

functions. Internally, our library uses the visi_handle
to refer to a C struct encapsulating the underlying C++

DataVis object associated with a visualization.

A C pthreads programmer who wants to use ParaVis, first

adds a call to the init_pthread_animation function

that returns a visi_handle that is passed to subsequent

library calls. As an example, a partial pthreads application

showing ParaVis calls is shown in Figures 3 through 7.

/* state to pass to each spawned thread */
struct appl_data {

/* add image buffer and handle fields: */
visi_handle handle;
color3 *image_buff;
};

#define NUMTIDS 4
int main(int argc, char *argv[]) {

int cols, rows, iters, numtids, i;
visi_handle myhandle;
color3 *image_buff;
static char visi_name[] = "pthreads!";
struct appl_data thread_info[NUMTIDS];
pthread_t all_ptids[NUMTIDS];

/* init common thread info */
cols = rows = iters = 100;
numtids = NUMTIDS;
local_init_state(&thread_info[0],

rows, cols, numtids, iters);

Figure 3. Setting up common information for each thread in a user defined
appl_data struct.

/* main thread gets handle and
image buffer from library */

myhandle =
init_pthread_animation(numtids,

rows, cols, visi_name);
image_buff =

get_animation_buffer(myhandle);

thread_info[0].handle = myhandle;
thread_info[0].image_buff = myhandle;

Figure 4. Getting a C-style handle from the ParaVis library using
init_pthread_animation and extracting the image buffer data using
get_animation_buffer.

In Figure 3, a programmer declares some ParaVis vari-

ables needed by each thread. The appl_data struct

is a application-specific struct with thread-specific data

passed to every thread on pthread_create. The function

local_init_state that initializes application-specific

parts of the the appl_data struct. To use ParaVis, the

struct should include a visi_handle and a pointer to the

color3 * image buffer (the 2D array of r, g, b tuples that

threads modify in an application-specific way).

The main thread calls init_pthread_animation to

initialize the visualization and to get the visi_handle.

It then calls get_animation_buffer to get a pointer

to the library-allocated image buffer, both shared by all

application threads (shown in Figure 4.)

Next, the main thread spawns application worker threads,

328

/* create threads and pass a
copy of handle to each thread
through its thread_info field */

for (i = 0; i < numtids; i++) {
// init common fields
thread_info[i] = thread_info[0];
// init thread specific fields
thread_info[i].mytid = i;
pthread_create(&all_ptids[i], NULL,

local_thread_main,
(void *)(&thread_info[i]));

}

Figure 5. Creating individual threads in main() running user defined
local_thread_main and usingthread_info.

/* after spawning threads, main thread
triggers animation on handle */

run_animation(myhandle, iters);

/* wait for exit, cleanup*/
for (i = 0; i < numtids; i++) {

pthread_join(all_ptids[i], NULL);
}

Figure 6. Running a C animation with the run_animation library
method.

making calls to pthread_create, passing each the

visi_handle and image buffer (shown in Figure 5.) The

function local_thread_main is the application-specific

main function for each spawned thread, which will include

code to repeatedly update its portion of the image buffer and

inform ParaVis when it is ready to be displayed.

Finally, after spawning worker threads, the main thread

makes a call to ParaVis function run_animation once

before it waits for worker threads to exit, as shown in

Figure 6. If the main thread is also a worker thread

(i.e. it also calls local_thread_main), then exactly

one thread needs to make a call to run_animation to

start the animation. If the number of iterations passed to

run_animation is a positive integer, the library stops the

animation after the number of iterations. If it is passed 0,

it runs until explicitly stopped by the user. The application

should be designed so that each thread exists for the lifetime

of the animation—a thread should not exit before the number

of iterations passed to run_animation.

The functions init_pthread_animation,

get_animation_buffer, and run_animation
only need to be called once by the main thread. The

application-specific local_thread_main function

additionally needs to be modified to include code to update

portions of the image buffer and to notify ParaVis that is is

ready for a new image frame to be rendered.

ParaVis provides a draw_ready(handle) function

void *local_thread_main(void *args) {
struct appl_data *myinfo =

(struct appl_data *)args;
for(i=0; i < myinfo->numiters; i ++) {

/* ... */
my_update(myinfo->image_buff,...);
draw_ready(myinfo->handle);

Figure 7. Each thread updates its part of the shared image buffer and calls
draw_ready to inform the library to update the figure. Only after every
participating thread calls draw_ready, will the full image be rendered
by the library.

that acts as a synchronization barrier to updates to the

image. In the application code, threads update their por-

tion of the image in parallel and each makes a call to

draw_ready(handle) when it has completed its up-

date (an example is shown as a call to the my_update
function in the thread iteration loop in Figure 7.) Internally,

draw_ready contains pthreads barrier synchronization

that blocks all application threads until all have called

draw_ready, signifying that the entire image is ready for

rendering on the screen.

ParaVis’s C pthreads interface is designed so that pro-

grammers can easily add visualization to an existing pthreads

application; by just adding a few library function calls to

their program, and an application-specific function that sets

r, g, b values in the 2D image buffer, pthreads programmers

can add visual animation of their applications using ParaVis.

Currently, we support C interfaces for pthreads and se-

quential applications. We plan to implement C interfaces

for the CUDA and OpenMP support to ParaVis soon.

IV. EXAMPLES OF USING VISILIB

We have used ParaVis in several of our courses, and

we describe in detail some examples of our use so far.

Additionally, we plan to expand its use in future course

offerings.

A. CUDA

The development of ParaVis was inspired by prior work

of co-authors Newhall and Danner with CUDA visualiza-

tions [22]. We describe two CUDA assignments that use

ParaVis in a Computer Graphics and a Parallel and Dis-

tributed Computing course below. The primary TCPP [28]

concepts covered in both example assignments are: Stream-

GPU architectures; GPGPU computing; synchronization;

heterogeneous systems; SPMD; and memory management.

1) Transparent Circle Rendering: We used ParaVis to

introduce CUDA in our Computer Graphics course [10].

This course emphasizes core 3D modeling and ray tracing

elements of computer graphics using a modern OpenGL

approach and programmable shaders that run in parallel on

the GPU. Students learn early in the semester that the GPU

is programmable and highly parallel, but OpenGL handles

329

most of the data decomposition and students only have to

write short shader programs that run on a single vertex or

single pixel. Students also gain experience using the graphics

window as a debugging tool for diagnosing problems with

their shader code. Late in the semester we use CUDA to

explore parallel data decomposition patterns more deeply.

Using ParaVis, students developed a CUDA visualization

that rendered and animated a list of transparent circles in

parallel. The assignment was a simplified version of similar

project from Carnegie Mellon University [11]. The initial

program input consists of a list of circles, each specified by

their center, size, and radius. Using multiple CUDA kernels,

students determine which circles overlapped which pixels

in an image buffer and blended the color of all the circles

overlapping a single pixel into one color. A lab requirement

was to use a common alpha blending method in computer

graphics in which the output color is dependent on the order

in which the circles are processed. Students were asked to

blend the circle colors in the order that they appear in the

original list.

Figure 8. Visualization of transparent circle rendering of 200 random
circles using CUDA application in ParaVis.

This assignment presents a challenge when attempting

to implement a parallel solution. A first attempt might

parallelize over circles and process each pixel that intersects

a given circle without any synchronization. However, this

results in the blending order being visibly wrong. Instead,

parallelizing over pixels, and determining sequentially if

each circle overlaps a given pixel yields correct blending

results which can be easily verified with our library. Fig-

ure 8 shows one such rendering. Once the basic renderer is

complete, students can write a separate CUDA kernel that

moves all the circles by some amount and re-renders the

scene, providing ample opportunities for fun visual effects

and scalability experiments.

2) Fire Simulator: The fire simulator lab assignment

teaches students CUDA programming in an upper-level

undergraduate Parallel and Distributed Computing course

Figure 9. Visualization of CUDA Fire Simulation Program

(PDC). This is a seminar-style course were students read and

discuss research papers, and propose and carry out a large

independent project. This lab is assigned early in the course

to teach students CUDA prior to their independent course

projects. The most recent offering of PDC used a previous

version of ParaVis, and this assignment is also discussed in

our previous work [22].

The application is a parallelization of a discrete event

simulation [27] program. It simulates a two-dimensional

grid world consisting of forests and lakes. Each grid cell

is classified as water, forest, fire, or burnt. Forest cells

transition to fire cells based on some probability if one or

more of their neighbors are on fire. Fire cells transition to

burnt cells after some number of time steps. Each step of

the CUDA computation computes in parallel the values for

all cells for the next time step. To animate their simulation,

students implement a CUDA kernel to update the ParaVis

image buffer based on the current grid cell values.

Figure 9 shows a screen dump of one step of the simula-

tion. Off the ParaVis webpage [10], we have videos of this

application in action.

B. Pthreads

We recently introduced a pthreads version of ParaVis to

our Introduction to Computer Systems course. This course

covers a vertical slice through a computer’s hardware and

software systems, and it’s designed to be accessible to

students who have only completed a CS 1 course (or AP

equivalent). It’s required for all majors and minors in our

department, and for most of our students, it’s their first

exposure to C. One of the primary goals of this course is to

introduce our students to parallel computing, and we specif-

ically focus on shared memory programming with pthreads.

It includes many topics from the TCPP [28] curriculum,

with a focus on covering the core skill sets (Architecture,

Programming, and Algorithms).

330

Figure 10. A screen capture of ParaVis illustrating Conway’s Game of Life.
The foreground shows five gliders (black), and each of the eight threads
draws a unique background color according to the region of the board it
has been assigned.

We assign two forms of Conway’s Game of Life to our

students during the semester:

1) In the middle of the semester, as a serial program.

In this version, the student’s are primarily concerned

with memory management (i.e., allocating and freeing

two-dimensional game boards) and the basic rules of

the simulation.

2) At the end of the semester, as a parallel program.

In this version, students are required to extend their

serial form of the game by implementing all the

necessary thread creation, synchronization, and game

board partitioning mechanisms. More details of the

assignment are available online [10].

Both versions utilize ParaVis to visualize the simulation,

and it’s particularly helpful in illustrating how to partition

the game board among the threads. Figure 10 shows a screen

capture of an eight-thread, column-wise partitioning of the

board in which each thread draws a unique background

color. We have found that representing the board in this

format helps students to comprehend thread boundaries and

the regions in which threads require information sharing.

Additionally, this depiction facilitates debugging for thread

partitioning errors, making it quickly apparent if threads are

operating over unintended regions of the board.

C. OpenMP

While we have support for OpenMP, we do not yet have

any classroom tested applications that use OpenMP. Anec-

dotally however, we found ParaVis helpful in debugging a

simple demo application using OpenMP. Our demo started

from a simple sequential application that updated values

in a 2D grid using a basic double for loop. A naı̈ve first

attempt might use OpenMP to add a simple #pragma omp
parallel for ahead of the outer for loop, expecting

OpenMP to assign multiple threads to different rows and

Figure 11. A screen capture of ParaVis visualizing an OpenMP demo of
a vertical scrolling gradient. The left half of the image includes necessary
private(...) variable tags in the parallel for pragma. Without the tags,
errors appear visually as noise as shown in the right half.

accelerate our code. This does have the expected effect

of accelerating the computation, and a student may think

that this speedup indicates that the OpenMP solution works

correctly. However, when connected to ParaVis and display-

ing the results, we find noise in the visualization when we

attempt to color a simple scrolling vertical gradient as seen

in the right half of Figure 11. With the visual feedback

of ParaVis, a programmer can discover that OpenMP only

makes private copies of the outer loop variable for each

thread. Since the demo code had additional variables inside

the body of the loop that needed to not be shared, adding

an additional private(...) clause to the outer pragma

makes the code work correctly as seen on the left half of

Figure 11 while still providing speedup.

The examples described in the CUDA and pthreads sec-

tion could also be adapted to work for OpenMP, but we

found that CUDA and pthreads were the preferred choice

for the course and application in their respective context.

Our library allows the flexibility to choose the parallel

programming model that works best for you.

D. Other Applications

Thus far, we found our library to be helpful in three

of our courses and we plan to expand its use in future

course offerings. We believe the library would have broad

appeal in the EduPar community. A quick scan of recent

Peachy assignments indicates there are number of exam-

ples that combine parallelism and visualization for e.g.,

fractals [7], image processing [14], and simulations [4].

By separating out the details of rendering and animating

images and providing a easy-to-use interface, our library can

lower the barrier to developing new parallel visualizations

or debugging existing parallel implementations.

331

V. EVALUATION

To evaluate ParaVis, we characterize the experiences of

students who have taken the three courses in which we

adopted it. In all three courses, students found ParaVis to

aid their debugging efforts while making the content more

accessible and enjoyable.

We first used ParaVis in the pthreads Game of Life

assignment in Fall semester of 2018. The 52 students in the

class found ParaVis to be especially helpful for debugging.

Most commonly, it has assisted students in tracking down

two forms of partitioning problems. In the first problem,

students fail to fully divide the board amongst the threads,

leaving regions of the board completely unaccounted for.

Such regions will clearly appear as uninitialized noise in the

visualized output. The other error stems from accidentally

assigning multiple threads to operate over the same region

(e.g., their start/end rows numbers are off by one). In

that case, a region’s color may change sporadically during

execution as threads compete to update it.

Similarly, students found using ParaVis to be helpful in

debugging the CUDA fire simulator lab. The fire simulator

lab has been completed by 63 students over three different

offerings of the course. The visualization helped students to

easily discover errors with CUDA grid, block and thread

mappings to application data that missed or overlapped

portions of the 2D world simulation. Errors with CUDA

thread mapping to data elements are common, particularly

when first learning to program in CUDA. The visualization

helped students to discover that they had these types of

errors, and it often additionally helped them identify the

parts of their program that were likely causes of the errors.

For example, when students visually saw missing portions

of the world not getting updated or saw the fire not correctly

spreading into some portions of the world, this immediately

pointed them to errors in their CUDA threads mapping logic.

Other bugs, such as missing cudaMemCopy of initial state,

or not correctly implementing the fire spreading function,

were also easily identified by the visualization not looking

as expected.

In addition to helping with debugging, students really

enjoyed this lab, we believe in large part because of the

visualization. More than 80% of students implemented ex-

tensions to the required parts of this lab assignment, and

many implemented impressive extensions that simulate more

realistic burning functions, create interesting starting worlds,

and visualize the fire simulation in more realistic ways.

These “just for fun” extensions resulted in students gaining

more expertise and comfort with CUDA programming. After

adding this lab assignment to the course, many students

use CUDA in their independent course projects. We believe

that their learning CUDA in this context helps them to

gain enough expertise to view it as another resource for

implementing their independent course projects. In the initial

offering of this course, we did not included the CUDA fire

simulation lab assignment, and only 10% of final course

projects used CUDA. We assigned this lab in the three

subsequent offerings of the course, and the percentage of

final projects that used CUDA increased significantly—in

the three semesters we assigned the CUDA fire simulator

lab, 50%, 50% and 40% of final projects used CUDA.

In the computer graphics course visual debugging is used

throughout the course and the use of ParaVis was essential

to verifying the correctness of the students’ CUDA lab on

rendering transparent circles. Students could quickly verify

if the blending order was incorrect on small static test sam-

ples, and could also verify proper data decomposition of the

2D array when working with larger sets of moving circles. In

a class of 13 students, one listed “Visual debugging” as one

of the best things about the course, while a second student

listed learning about “CUDA and parallel programming” as

the best thing about the course. Though this exercise was

just a portion of the only CUDA assignment in the course,

one group used it as the starting point for their self-designed

final project to build a CUDA renderer for 3D metaballs /

iso-surfaces.

VI. CONCLUSION AND FUTURE DIRECTIONS

ParaVis is a visualization library that is specifically de-

signed to aid in learning new parallel programming lan-

guages, understanding parallel computation, and helping

with debugging parallel applications. Our initial experi-

ences using it in both intermediate and upper-level courses

demonstrated that it is a helpful tool for fostering student

understanding and for helping students learn parallel pro-

gramming. Students also generally enjoy the visualization

part of the assignments, often resulting in their spending

more time working on the lab assignments and thus gaining

further experience and expertise with the parallel language.

Currently, our library targets visualizing shared memory

and GPU parallelism on a single machine, with C and

C++ interfaces for pthreads, OpenMP, and CUDA (and

sequential) applications. It should be fairly easy to extend

support to similar SMP parallel models such as OpenCL

or OpenACC. Additionally, with community interest and

support, we could incorporate more language bindings in-

cluding python and fortran. Because our library targets single

machine parallelism, it exports a single image buffer that

is shared amongst all parallel workers. In order to add

support for non-shared memory parallelism (such as MPI),

a different image buffer abstraction and sharing interface

would need to be added.

332

REFERENCES

[1] The Alice Programming Environment. https://www.alice.org.

[2] ACM/IEEE-CS Joint Task Force. Computer science curric-
ula 2013. www.acm.org/education/CS2013-final-report.pdf,
2013.

[3] Joel Adams, Richard Brown, and Elizabeth Shoop. Patterns
and exemplars: Compelling strategies for teaching parallel
and distributed computing to CS undergraduates. In Parallel
and Distributed Processing Symposium Workshops and PhD
Forum IPDPSW, 2013 IEEE 27th International, May 2013.

[4] Joel C. Adams. Using the Monte Carlo pattern to simulate
a forest fire. In Proc. Workshop on Parallel and Distributed
Computing Education, 2018.

[5] L. P. Baldwin and J. Kuljis. Learning programming using
program visualization techniques. In Proceedings of the 34th
Annual Hawaii International Conference on System Sciences,
Jan 2001.

[6] Cordelia M. Brown, Yung-Hsiang Lu, and Samuel Midkiff.
Introducing parallel programming in undergraduate curricu-
lum. In Parallel and Distributed Processing Symposium
Workshops and PhD Forum IPDPSW, 2013 IEEE 27th In-
ternational, May 2013.

[7] Martin Burtscher. Computing a movie of zooming into a frac-
tal. In Proc. Workshop on Education for High-Performance
Computing, 2018.

[8] Joel C.Adams, Patrick A.Crain, Christopher P.Dilley, Chris-
tiaan D.Hazlett, Elizabeth R.Koning, Serita M.Nelesen, Javin
B.Unger, and Mark B. Vande Stel. TSGL: A tool for
visualizing multithreaded behavior. Journal of Parallel and
Distributed Computing, 118, Part 1:233–246, August 2018.
doi:10.1016/j.jpdc.2018.02.025.

[9] Christopher D. Carothers, Brad Topol, Richard M. Fujimoto,
John T. Stasko, and Vaidy Sunderam. Visualizing parallel
simulations in network computing environments: A case
study. In Proceedings of the 29th Conference on Winter
Simulation, WSC ’97. IEEE Computer Society, 1997.

[10] Andrew Danner, Tia Newhall, and Kevin Webb. https://www.
cs.swarthmore.edu/paravis/, 2019.

[11] Kayvon Fatahalian. Assignment 2: A Simple CUDA Ren-
derer. http://15418.courses.cs.cmu.edu/spring2017/article/4,
2017.

[12] J. A. Fulcher. Visualization as a key element in learning. In
Proceedings of IEEE Region 10 International Conference on
Electrical and Electronic Technology. TENCON 2001 (Cat.
No.01CH37239), volume 1, Aug 2001.

[13] Max Grossman, Maha Aziz, Heng Chi, Anant Tibrewal,
Shams Imam, and Vivek Sarkar. Pedagogy and tools for
teaching parallel computing at the sophomore undergraduate
level. J. Parallel Distrib. Comput., 105(C), July 2017.

[14] Julian Gutierrez, David Kaeli, and Fritz Previlon. Optimiza-
tion of an image processing algorithm: Histogram equaliza-
tion. In Proc. Workshop on Education for High-Performance
Computing, 2018.

[15] M. T. Heath and J. A. Etheridge. Visualizing the performance
of parallel programs. IEEE Software, 8(5), 1991.

[16] David J. John and Stan J. Thomas. Parallel and distributed
computing across the computer science curriculum. In
Parallel and Distributed Processing Symposium Workshops
IPDPSW, 2014 IEEE International, May 2014.

[17] M. A. Kuhail, S. Cook, J. W. Neustrom, and P. Rao. Teaching
parallel programming with active learning. In 2018 IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), May 2018.

[18] Allen D. Malony, Daniel A. Reed, and David C. Rudolph.
Integrating performance data collection, analysis, and visual-
ization. In Rebecca Koskela and Margaret Simmons, editors,
Parallel Computer Systems. ACM, 1990.

[19] A. Marowka. Think parallel: Teaching parallel programming
today. IEEE Distributed Systems Online, 9(8), Aug 2008.

[20] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille,
Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic,
Krishna Kunchithapadam, and Tia Newhall. The paradyn
parallel performance measurement tool. Computer, 28(11),
November 1995.

[21] Thomas L. Naps and Eric E. Chan. Using visualization
to teach parallel algorithms. In The Proceedings of the
Thirtieth SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’99, 1999.

[22] T. Newhall and A. Danner. Fire simulator and fractals: using
a visualization library to introduce CUDA. In Proc. Workshop
on Parallel and Distributed Computing Education, 2018.

[23] Tia Newhall, Andrew Danner, and Kevin C. Webb. Pervasive
parallel and distributed computing in a liberal arts college
curriculum. Journal of Parallel and Distributed Computing,
105, 2017.

[24] Santiago Ontañón, Jichen Zhu, Brian K. Smith, Bruce
Char, Evan Freed, Anushay Furqan, Michael Howard, Anna
Nguyen, Justin Patterson, and Josep Valls-Vargas. Design-
ing visual metaphors for an educational game for parallel
programming. In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems,
CHI EA ’17. ACM, 2017.

[25] Donald P. Pazel and Beth R. Tibbitts. Intentional MPI pro-
gramming in a visual development environment. In Proceed-
ings of the 2006 ACM Symposium on Software Visualization,
SoftVis ’06. ACM, 2006.

[26] Mitchel Resnick, John Maloney, André Monroy-Hernández,
Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Mill-
ner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yas-
min Kafai. Scratch: Programming for All. Communications
of the ACM, 52(11):60–67, November 2009.

[27] Angela B. Shiflet. Spreading of Fire. http://nifty.stanford.edu/
2007/shiflet-fire/, 2007.

[28] The NSF/IEEE-TCPP Curriculum Working Group.
NSF/IEEE-TCPP curriculum initiative on parallel and
distributed computing - core topics for undergraduates.
http://www.cs.gsu.edu/∼tcpp/curriculum/, 2012.

333

