
Parallel Simulated Annealing with MRAnneal
Benjamin Marks, Riley Collins, and Kevin C. Webb

Department of Computer Science, Swarthmore College, Swarthmore, PA
{bmarks1,rcollin4,kwebb}@cs.swarthmore.edu

Abstract—Simulated annealing algorithms, which re-
peatedly make small changes to candidate solutions to
find approximately optimal ones, are a common method
for approximating solutions to computationally expensive
optimization problems. While using multiple machines to
perform such computations in parallel is attractive as a
means to reduce the running time, execution in a cluster
environment requires substantial software infrastructure
to cope with the challenges of a distributed system.

In this paper, we introduce MRAnneal, a framework
that simplifies the implementation of parallel simulated
annealing algorithms. MRAnneal allows users to explicitly
trade-off running time and the quality of approximate
solutions by supplying only a small number of automati-
cally tuned parameters. Our experimental results demon-
strate that implementing applications using MRAnneal is
straightforward and that such implementations yield ap-
proximate solutions quickly, even for applications without
intuitive serial approximation heuristics.

I. INTRODUCTION

Optimization problems manifest in many practical
scenarios, such as determining the cheapest route for a
salesman, determining the smallest number of people,
each with certain skills, needed to perform a task re-
quiring some larger set of skills, or scheduling exams
for undergraduates. One characteristic of these problems
that makes them so difficult is a large solution space
— for each task there may be an exponential number
of possible solutions, and iteratively checking each one
would take years for even modest input sizes. Generally,
increases in computing power have not made finding
optimal solutions to many classes of problems (e.g., NP-
complete) any more tractable. At its core, an O(2n)
algorithm remains exponential, even with a factor of 100
speedup.

With no known method for solving such optimiza-
tion problems in polynomial time, much effort has
been focused on developing approximation algorithms or
randomized algorithms to find acceptable approximate
solutions. Simulated annealing [1], repeatedly making
small changes to candidate solutions in order to find
approximately optimal ones, is one such approxima-

tion method. Many simulated annealing algorithms are
known to benefit from parallelization [2]. However, given
the notorious difficulty of parallel programming [3],
it remains challenging for users who are not parallel
computing experts to easily utilize parallel simulated an-
nealing to solve computationally intensive optimization
problems.

This work presents MRAnneal1, a framework that sim-
plifies the construction of parallel simulated annealing
algorithms. MRAnneal enables users without extensive
distributed programming experience to quickly author
high-performance parallel simulated annealing software
as easily as a serial routine. Any problem for which
solutions can be randomly approximated by iteratively
making small changes to an existing solution can be
easily expressed and automatically parallelized using
the MRAnneal framework. Users indicate their desired
solution quality (at the cost of run time) using a small set
of parameters, and MRAnneal will dynamically adjust its
behavior accordingly.

MRAnneal utilizes the MapReduce [4] programming
model, making it easily deployable on clusters of com-
modity hardware via popular, freely-available software
(e.g., Hadoop [5]). An execution of MRAnneal consists
of multiple rounds in which mappers and reducers it-
eratively work towards higher quality solutions. Map-
pers load-balance candidate solutions across multiple
reducers, each of which performs simulated annealing to
randomly search the solution space in parallel. Reducers
yield a subset of the annealed solutions, which are passed
to the next round of execution.

II. MRANNEAL DESIGN

MRAnneal represents a layer of abstraction between
users and the underlying MapReduce runtime system.
Before executing, users supply two inputs: a small set
of functions that implement their optimization problem’s
logic and a simple set of parameters. Across several
stages, MRAnneal combines these inputs with statistical
regression to automatically tune its runtime behavior.

1Code available at: http://www.cs.swarthmore.edu/mranneal



1: Generate 
1000 seed 
solutions.

2: Estimate 
remaining 
needed 
seeds.

Make Seed

Make Seed

Make Seed

Make Seed

Anneal

Anneal

Anneal

Anneal

Estimate # 
Additional 
Rounds 
Needed

Phase 1:
Seed Generation

Final 
Output

Distribute
Solutions

Anneal

Anneal

Anneal

Anneal

Distribute
Solutions

Phase 2:
Parallel Annealing

Phase 4:
Parallel Annealing

Phase 3:
Estimate Quality

Fig. 1. An overview of the stages in MRAnneal’s parallel execution strategy.

Figure 1 depicts an overview of MRAnneal and its
parallelization strategy. Given the user’s inputs, MRAn-
neal executes in four phases. It begins by generating
initial seed solutions, automatically gauging the number
of seeds necessary to achieve a diverse spread across
the solution space. Next, MRAnneal performs a small
number of parallel annealing rounds over the seed solu-
tions, which it uses to estimate how many total annealing
rounds will be needed to reach the user’s solution quality
goal. Finally, it finishes the computation by running the
remaining parallel annealing rounds and formatting the
output. This section describes the details of each step
along with MRAnneal’s general architecture, our goals
for the system, and the challenges we faced in designing
it.

A. User-supplied Functions

MRAnneal’s primary design goal is to provide users
with an interface that is both straightforward to non-
experts and widely applicable to a large class of opti-
mization problems. Towards generality, MRAnneal tar-
gets any optimization problem with the following three
common characteristics:

1) Calculating any single correct solution to the prob-
lem is easy (the solution need not be optimal or
even close to it).

2) Any pair of solutions can be quantitatively ranked
against one another.

3) Small or incremental changes can be made to
a solution (and undone) without sacrificing its
correctness.

These three qualities serve to define the user-
supplied functions in MRAnneal. Users implement gen-
erate seed(), which is called to calculate an initial solu-

tion, score solution(), which assigns a numerical score
to a solution, and an anneal() and undo anneal(), which
perturb candidate solutions in search of better scores.
Note that an implementation of these functions does not
require the user to consider solution distribution, parti-
tioning, or any other aspects of parallel programming.

B. Parameters

Having defined the required functions for a problem
of interest, a user can easily influence job execution
characteristics via a small set of parameters. To further
support simplicity for non-expert users, MRAnneal al-
lows users to explicitly choose a position on the spectrum
of running time and solution quality. Enabling users
to express this trade-off succinctly is challenging in a
distributed systems context, where users are often faced
with an overwhelming number of parameters. In early
versions, we required users to precisely specify several
parameters, including the number of seed solutions to
generate, the total number of anneals to perform, and
many others, whose impact on performance and solution
quality were not immediately obvious.

Rather than requiring the user to determine every
aspect of the system, MRAnneal now takes an alternative
approach in which the user is only expected to provide
two basic parameters and a high-level performance goal.
While executing, MRAnneal collects dynamic runtime
data and automatically tunes the remaining internal sys-
tem parameters according to the user’s high-level goal.

Table I summarizes MRAnneal’s requisite parameters.
The first two entries, num machines and num results,
specify to MRAnneal the available hardware resources
and the desired number of final output results, respec-
tively. The final required parameter, target quality, deter-



TABLE I
SUMMARY OF USER-SUPPLIED PARAMETERS. PARAMETERS WITH

A (*) ARE REQUIRED. FOR THOSE NOT REQUIRED, WE SHOW
THEIR DEFAULT VALUES IN PARENTHESES.

Parameter Role in MRAnneal
num machines* Number of machines available.

num results* Number of results the user wishes to
receive in the final output.

target quality* Percentage of the estimated potential
improvement user wishes to pursue.

min/max seeds
(1,000 / 10,000)

Lower and upper bounds on number
of seed solutions to generate.

min/max rounds
(10 / 100)

Lower and upper bounds on number
of annealing rounds to perform.

num anneals
(150)

Number of anneals to perform, per
round, on each solution.

mines the stopping criteria when generating seed solu-
tions and annealing in parallel. Focusing on the latter,
each solution maintains a history of its scores at the
end of each round. MRAnneal uses this data to estimate
the score for that solution after the maximum number
of annealing rounds have been executed. A solution’s
potential improvement range is the difference between
the score when the solution was first generated (s0)
and the estimated score after the maximum number of
rounds (smax). MRAnneal will stop annealing a solution
in round k if:

sk ≥ s0 + target quality ∗ (smax − s0).

In other words, target quality specifies how much of the
potential improvement should be pursued.

C. Phase 1: Generating Seed Solutions

Given an implementation of the user-supplied func-
tions and the required parameters, MRAnneal can begin
the first phase of its execution: seed solution generation.
“Seed solutions” represent unoptimized solutions that
will serve as inputs to future annealing steps. While
seed generation generally accounts for a relatively short
portion of MRAnneal’s overall execution time, the phase
is important, as it ultimately provides the foundational
corpus of all the solutions MRAnneal will examine.

During this phase, MRAnneal must determine how
many seed solutions to generate. Producing too few seeds
limits the diversity of the solution pool and reduces
MRAnneal’s coverage of the global solution space. On
the other hand, too many seed solutions lead to an
inefficient duplication of effort in subsequent phases.

By default, MRAnneal generates between 1,000 and
10,000 seed solutions. As it generates and scores the

first 1,000 solutions, MRAnneal records the range of
the solutions’ scores as each new solution is added
to the set. Having tracked the first 1,000 solutions, it
performs a logarithmic regression to predict how the
score range would change if up to 9,000 additional seed
solutions were generated, choosing how many additional
solutions to generate based on the user’s target quality
percentage. That is, if the user asked for a target quality
of 80%, MRAnneal will estimate what the score range
would be after generating 10,000 solutions, compare
this range to the observed range covered by the first
two generated solutions, estimate the number of seed
solutions needed to be generated to capture 80% of
the increase in coverage, and generate that many seed
solutions.

D. Phase 2: Annealing I

Following seed generation, MRAnneal begins its first
annealing phase, performing a series of map and reduce
rounds. Within a round, mappers assign keys to solu-
tions to ensure that each reducer’s workload remains
balanced. The underlying MapReduce runtime shuffles
the solutions to reducers, which work independently to
evaluate each solution and, if annealing is predicted to
improve solution quality, repeatedly perturb and score
their assigned solutions with the user-supplied anneal()
and score solution() functions.

As each solution is passed between rounds, it includes
with it a list of its scores in prior rounds. Before
assigning a solution to a reducer for the next round
of annealing, the mapper fits a curve to the solution’s
score history. If the curve indicates that additional an-
nealing is unlikely to produce any further improvement,
MRAnneal will declare the solution to be finalized and
discontinue annealing it. MRAnneal discards finalized
solutions whose scores are not high enough to have any
hope of being among the top num results in the final
output set.

As each solution is perturbed, MRAnneal considers,
and potentially saves, lower scoring solutions. This pre-
vents solutions from getting “stuck” at a suboptimal local
maximum. When annealing results in a lower score, the
modified solution will be kept at most 25% of the time2.
Even though a lower-scoring solution may be retained,
MRAnneal records the best solutions seen overall to
avoid “forgetting” a good earlier solution by the time
the computation ends. The best two derivatives of each
solution are candidates to be passed on to the next round.

2P [keep lower score] = 0.25 ∗ new score
old score



Max
RoundsNumber of Rounds

Start

20

40

60

80

Est.
Max

S
co

re
Pe

rc
en

to
fR

an
ge

Observed
Projected

Fig. 2. Illustration of MRAnneal’s round estimation algo-
rithm. A logarithmic regression over phase 2’s solution scores
predicts the improvement for annealing over additional rounds,
up to the maximum. MRAnneal chooses the number of rounds
needed to achieve the user-specified target quality percentage
of this improvement. A higher percentage leads to higher
scores, at a cost of longer running time.

At the end of an annealing round, each reducer yields
its top solutions, passing one solution on to the next
round for each input soluion. Completion of a round
serves as MRAnneal’s communication and synchroniza-
tion point, in which the better solutions are passed
on to the next round’s mappers for load balancing,
and the process repeats. In this first annealing phase,
MRAnneal anneals for ten rounds, recording the growth
in solutions’ scores as the rounds progress. The rate of
growth provides the data with which MRAnneal can
predict how many additional rounds are necessary to
achieve the user’s solution quality goal.

E. Phase 3: Solution Quality Estimation

Across optimization problems, the growth in solution
quality scores follows a general pattern: in early an-
nealing rounds, solution quality typically grows quickly,
but at some point the growth tapers off, with further
annealing yielding diminishing returns. An insight be-
hind MRAnneal is that we can statistically forecast the
solution score growth, with satisfactory accuracy, by
fitting a logarithmic curve to phase two’s recorded score
data. Having such a projection enables MRAnneal to
estimate where on the curve it will be, thus allowing it to
execute only as many additional rounds as is necessary
to reach the user’s solution quality goal.

Like the estimation done for seed solution generation,
MRAnneal performs a logarithmic regression over the
maximum solution scores that it encountered during
phase 2’s first ten annealing rounds. It analyzes the curve
to determine, up to the maximum number of remaining
annealing rounds, how many additional rounds are nec-
essary to reach the user’s target percentage of potential
improvement. The process of score estimation, target

score derivation, and rounds calculation is depicted in
Figure 2.

Having calculated the number of additional rounds
needed, MRAnneal then invokes the final phase, in which
in anneals for that many more rounds.

F. Phase 4: Annealing II

The second annealing stage proceeds similarly to
phase 2. The only notable difference is that the length of
phase 4 varies depending on the observed improvements
to the solutions and the user’s target percentage.

G. Output Processing

The fields and contents of a solution are determined by
the user (via generate seed ) and are opaque to MRAn-
neal. Often, users of MRAnneal will pass solutions be-
tween anneal rounds in formats that are not easily under-
stood by humans. While users could certainly write their
own post-processing scripts to manipulate output into
something more friendly, MRAnneal’s interface exports
an optional format result() function which, if defined, is
called once per final output solution to manipulate the
result into a human-readable form.

III. IMPLEMENTATION

Our MRAnneal implementation takes advantage of
the MRJob [6] MapReduce library for Python, which
simplifies job execution for several MapReduce runtime
environments (e.g., local machine, private Hadoop [5]
cluster, or Amazon’s Elastic MapReduce [7]). This sec-
tion describes MRAnneal’s efforts to improve parallel
performance and demonstrates that it can be utilized to
succinctly model several practical example problems.

A. Performance Considerations

Even in parallel, simulated annealing is time con-
suming and computationally intensive, with most of the
runtime spent annealing and scoring solutions. For some
optimization problems, a large amount of time may also
be devoted to generating seed solutions. MRAnneal aims
to make the execution of any function that is called
repetitively in a loop as fast as possible, since such loops
are where the majority of time will be spent.

Initialization. As an optimization to eliminate costly
(re-)initialization, MRAnneal permits users to define
init seed() and init anneal() functions that get called
exactly once prior to entering tight loops. Such functions
allow, for instance, the seed solution generator to read
an input file once (e.g., problem description) and store
its contents in memory for the duration of its execution.



While the idea of including init functions is not novel,
MRAnneal’s init functions differ from those of other
MapReduce libraries in that they require considerably
less knowledge about the underlying MapReduce im-
plementation. That is, a user of MRAnneal need not
worry about how to manipulate MRAnneal objects or
structures, as may be the case with other systems (e.g.,
Hadoop Context objects or MRJob runner data mem-
bers). MRAnneal’s init functions can be imported from
any context, and the returned result is passed transpar-
ently to subsequent calls to seed generation, annealing,
or scoring functions. This optimization eliminates the
need for re-initialization at every call. In many problems,
init functions provide substantial performance benefits.
For example, in an instance of Max Cut running with
50 machines, we achieved a 4x speedup by eliminating
redundant initializations.

Partitioning. To maximize its usage of the available
computing resources, MRAnneal must evenly distribute
seed solutions across reducers during each annealing
round. With an imbalanced distribution, some reduc-
ers might execute far longer than others, leaving parts
of the cluster idle. Thus, MRAnneal exerts fine-grain
control over the MapReduce partitioning function to
systematically balance the load of solutions across re-
ducers. Specifically, we take advantage Hadoop’s Key-
FieldBasedPartitioner, as it allows us to specify that if
keys are of the form x, y, then all keys with the same
x value are sent to the same reducer. Mappers distribute
results to reducers in a round robin fashion, ensuring
that all keys destined for the same reducer are grouped
by the same y value, resulting in a single invocation of
reduce().

Storage. Finally, MRAnneal must be efficient in how it
stores solutions in memory. At the end of a round, each
reducer outputs the same number of solutions passed
to it at the beginning of the round. We use Hadoop’s
sorting functionality to ensure that each reducer knows
k, the number of solutions it is responsible for annealing
in that round, before it begins annealing them. Further,
we implement functionality similar to that of the Python
heapq’s n largest function, which allows us to efficiently
keep track of our best k solutions that we intend to yield.
Together, these limit the memory overhead of MRAnneal
during annealing.

B. Example Problems

Here, we demonstrate MRAnneal’s flexibility in ex-
pressing solutions to several example optimization prob-

TABLE II
NUMBER OF SOURCE LINES OF CODE USED TO IMPLEMENT

EXAMPLE MRANNEAL SOLUTIONS.

Example Problem Lines of Code
Job Scheduling 40
Traveling Salesman 44
Maximum Cut 63
Exam Scheduling 228

lems. We believe that these examples show how easily
users can harness the power of MRAnneal after defining
only a few, short functions. Table II shows the number
of lines of Python code in our implementation for four
example problems. Our Max-Cut, Job Scheduling, and
TSP solvers were each written in under an hour and solve
abstract versions of their respective problems. Exam
Scheduling is slightly larger, as it accounts for concrete
constraints of scheduling exams at Swarthmore College.

Job Scheduling. Given a set of jobs, each associated
with a completion time, and a set of machines, find an
assignment of jobs to machines that minimizes the total
completion time. Many possible assignments of jobs to
machines are randomly generated; reducers in parallel
swap job assignments and calculate the completion time.

Max Cut. Given a graph whose edges are annotated with
weights, partition the vertices in the graph into two sets
such that the sum of the weights of the edges across
the set is maximized. A MapReduce instance generates
many partitions of vertices in parallel; in subsequent
instances, reducers repeatedly swap the assignment of
a single vertex and calculate the weight across the cut.

Traveling Salesman. Given a set of cities and costs
of traveling between each pair, determine the cheapest
ordering of cities such that every city is visited exactly
once. Multiple reducers in parallel produce an initial
ordering and randomly swap pairs of cities.

Exam Scheduling. Given a set of students and classes,
determine an exam schedule such that no student is
scheduled for two exams at the same time and exams
are scheduled relative to each other to optimize some
criteria (such as average distance between exams). Mul-
tiple reducers generate sets of compatible classes to
be scheduled at the same time; these groups are then
randomly ordered many times in parallel.

Our exam scheduling implementation is longer than
the others because it is capable of scheduling final exams
at Swarthmore College. Much of the additional code
lies in the score solution implementation as a result



25 35 45 55 65 75 85 95

Target Quality (%)

0.85

0.90

0.95

1.00

1.05

1.10

1.15
N

or
m

al
iz

ed
Q

ua
lit

y Job Sched.
Max Cut

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

R
un

ni
ng

Ti
m

e
(s

)

Fig. 3. Performance of MRAnneal, varying the target quality
parameter, for Job Scheduling and Max Cut. The left axis
(solid lines) shows solution quality, normalized against the
ground-truth optimal value (1.0). The right axis (dashed lines)
shows running time, in seconds.

of feedback from our registrar’s office. For example,
Swarthmore allows students with three exams in a row
to reschedule one, which can be logistically difficult
for professors. As a result, the scoring metric calcu-
lates determines many students have three exams in a
row and penalizes accordingly. Other logistical details
raised by the Registrar, such as assigning each exam
an appropriately-sized room or accounting for special
requests by faculty, are handled in our implementation.

IV. EVALUATION

This section explores MRAnneal’s ability to provide
high quality solutions quickly by leveraging parallel
computations. We execute our experiments across a
heterogeneous cluster of high-end, commodity desktop
machines running Hadoop 2.4.1 on Linux in the labs of
Swarthmore College’s computer science department. As
ground truth for solution quality comparisons, we draw
on TSPLIB [8] and the Biq Mac Library [9] for solved
instances of TSP and Max-Cut.

A. Quality vs. Running time

We begin by examining the user’s ability to control
the trade-off between solution quality and running time,
via MRAnneal’s target quality parameter. Recall that
the target quality parameter specifies the user’s solu-
tion improvement goal, out of the estimated potential
improvement from running additional annealing rounds.
It is not a target for the percentage of the globally optimal
solution’s score (which is often not known).

The experiment executes two example problems, each
executing across 50 machines: an instance of Max Cut
from the Biq Mac collection and a randomly generated

0 5 10 15 20 25 30

Number of Rounds

1.00

1.05

1.10

1.15

1.20

1.25

N
or

m
al

iz
ed

Q
ua

lit
y

Projected
Observed

Fig. 4. An example of the solution quality estimation curve
in an instance of a Max Cut problem. Note that the observed
values roughly follow a logarithmic curve. We observe a
similar pattern across the other optimization problem types.

instance of Job Scheduling (assigning 500 jobs over 20
machines). We vary the target quality parameter from
25% to 95% in increments of 10%. All other parameters
use the defaults, as described in Table I.

Figure 3 quantifies the relationship between tar-
get quality, solution quality (solid lines, left axis), and
running time (dashed lines, right axis). Solution scores
are normalized as a proportion of the optimal value.
For the Max Cut instance, the optimal weight is pub-
lished [9], and for Job Scheduling, we quantify optimal
using a lower bound heuristic of the completion time
as if the jobs were perfectly evenly distributed over
all machines. For Max-Cut, higher weights are better,
whereas for Job Scheduling, shorter completion times
are preferred.

The results show the expected trends: MRAnneal
achieves score solution improvements that are linearly
proportional to the chosen target quality, and the run-
ning time grows approximately exponentially, increasing
sharply beyond 70%. Thus, the user controls the running
time by setting target quality around 60-70% for a fast,
good solution, or around 85-95% for better solution at
the cost of additional time. MRAnneal exhibits similar
trends for Exam Scheduling and TSP.

B. Estimating Annealing Rounds

Next, we evaluate MRAnneal’s ability to estimate the
growth in solution quality during the third execution
phase. Accurately projecting the growth allows MRAn-
neal to terminate the computation after the appropriate
number of rounds to reach the user’s target quality.

Figure 4 displays an example that compares the ob-
served score results to the logarithmic curve that was
estimated for an instance of the Max Cut problem. We
find that two general trends observed in this graph match
those of the other optimization problems:



1) We see large gains in the solution quality during
the first few rounds; annealing rapidly improves
upon the initial seed solutions. In subsequent
rounds, the rate of growth slows.

2) Because of the large initial growth, MRAnneal
tends to overestimate the magnitude of solution
quality growth.

MRAnneal’s overestimation leads to conservative be-
havior in selecting the number of additional rounds
to anneal, running a few more rounds than necessary.
That is, reaching the user’s target quality percentage
of the achievable score increase is easier if maximum
achievable score turns out to be lower than we estimate
it to be. We believe it to be preferable to err on the side
of running longer, to ensure that the user’s target is met.

C. Parallel Performance

We now consider the effect of increasing the number
of machines, showing that users of MRAnneal can expect
reasonable speedups as they increase the degree of
parallelism. Figure 5 illustrates the running times for
MRAnneal when applied to TSP and Exam Scheduling
with a fixed target quality of 75%, varying the number
of reducers annealing in parallel. For each problem, the
running times shown on the Y-axis are normalized to the
running time of five reducers.

Adding more mappers and more reducers can substan-
tially decrease the running time, despite any additional
initialization and communication costs across machines.
Note that the benefit is not uniform across problems.
In particular, problems that are more computationally
intensive show a larger benefit from additional machines;
as the amount of work to be done grows, the additional
overhead of adding one more machine decreases in
comparison to the amount of work handled by that
machine. At some point, the benefit of parallelization
is outweighed by the cost of additional communication,
and the running time levels off. We find that as few as 10
machines is sufficient to achieve a considerable reduction
in running time, however, especially for computationally
intensive problems, additional machines could signifi-
cantly speed up the computation. Our Exam Scheduling
problem’s execution time improved from 30,300 seconds
(5 reducers) to 5,729 seconds (70 reducers), and TSP
decreased from 2,442 seconds to 1,024 seconds.

D. Parallel Solution Diversity

In Phase 1, MRAnneal uses logarithmic regression to
try to determine the number of seed solutions needed
to achieve sufficient sampling of the solution space. One

0 10 20 30 40 50 60 70

Number of Parallel Machines

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
Ti

m
e Exam Scheduling

TSP

Fig. 5. Initially, increasing the number of machines results in a
decrease in runtime; eventually, the runtime levels out as the
benefit of increased parallelization is outweighed by higher
communication costs. Computationally expensive problems
show larger benefits from parallelization. Execution times are
expressed as a proportion of the runtime with five machines.

might be concerned that, over the course of many rounds,
this diversity could decrease as a few particularly good
solutions “hog” all available spots in the next round.

To quantify solution diversity, we instrumented
MRAnneal to tag each solution with a unique identifier
during generation. As it was annealed, the identifier was
propagated to all derivatives of that solution. We then ran
each implemented algorithm, varying the target quality
between 25% and 95% in increments of 10, for a total
of 32 runs.

Our results show that diversity did not decrease sub-
stantially, even over many rounds. In each run, we
requested the best five solutions. In 26 of the runs, all
returned solutions were derived from different seeds,
and in remaining runs, the number of returned solutions
derived from the same seed only exceeded two once.

V. RELATED WORK

NP-Complete MapReduce. Since the publication of
MapReduce [4], several projects have attempted to ex-
ploit its parallelism to solve computationally expensive
(e.g., NP-complete) problems. Many seek to provide
exact solutions, whether by brute force [10], or more
commonly, with a divide and conquer approach that
solves sub-problems in parallel. This approach has been
used to test graph isomorphism [11], solve K-Center
and K-Median [12], compute spanning trees [13], and
find the largest clique in a graph [14]. While divide and
conquer techniques are effective, finding exact solutions
still requires exponential time, whereas MRAnneal uses
randomization, allowing users to trade off running time
and solution quality.



Other projects have similarly used MapReduce to find
approximate solutions to specific problems, but we are
not aware of any other general framework similar to
MRAnneal that allows users to easily express optimiza-
tion problems such that they can be automatically bro-
ken into distributed MapReduce sub-problems. Ebrahimi
implements a solver for linear programs to evaluate
approximation algorithms for NP Complete problems
[15]. Chierichetti et al. describe a parallel algorithm to
solve Max K-Cover that performs comparably to the
greedy approach [16].

Parallel Simulated Annealing. Using simulated anneal-
ing to find solutions to complex problems is not novel.
Kirkpatrick et al. proposed using simulated annealing as
a means to solve optimization problems [1]. Like MRAn-
neal, more recent work has aimed to improve the running
time of simulated annealing by executing the search
in parallel. Such work has demonstrated that for spe-
cific problems such as job scheduling [2] and traveling
salesmen [17], executing simulated annealing in parallel
has the potential to greatly improve performance. While
these and others [18] describe general metaheuristic
strategies that for parallelizing simulated annealing, they
implement or evaluate only specific problems on a small
set of local machines using specialized software for com-
munication. MRAnneal takes advantage of commonly-
deployed MapReduce software (i.e., Hadoop [5]) running
on commodity infrastructure, making it easily portable
and adaptable to many problems.

Others have parallelized simulated annealing for com-
mon technologies like MPI [19], [20], OpenMP [21], and
GPU computation [22]. We are aware of only one other
project to employ MapReduce [17]. It targets applying
a genetic algorithm to the traveling salesman problem,
whereas MRAnneal provides a general framework that
benefits from statistics-based performance tuning.

VI. CONCLUSION

MRAnneal provides a straightforward and flexible
framework for performing simulated annealing in par-
allel. By abstracting away the technicalities of MapRe-
duce, application designers are able to focus on the de-
tails of their particular optimization problem rather than
the thorny issues of distributed computation and inter-
machine communication. MRAnneal’s simple interface
allows users to model complex problems in relatively
few lines of additional code in a manner that resembles
a serial implementation. Its regression-based parameter
estimation enables users to easily and explicitly trade off

solution quality and running time. Thus, users can not
only rapidly implement solvers, but also quickly receive
their desired results.

REFERENCES

[1] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi et al., “Optimization
by Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671–
680, 1983.

[2] D. J. Ram, T. Sreenivas, and K. G. Subramaniam, “Parallel
Simulated Annealing Algorithms,” Journal of Parallel and
Distributed Computing, vol. 37, no. 2, pp. 207–212, 1996.

[3] A. Rotem-Gal-Oz, “Fallacies of Distributed Computing
Explained,” http://www.rgoarchitects.com/Files/fallacies.pdf,
2006.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Pro-
cessing on Large Clusters,” in OSDI. USENIX, 2004.

[5] Apache, “Hadoop project,” https://hadoop.apache.org.
[6] “MRJob Project,” https://pythonhosted.org/mrjob.
[7] Amazon, “Elastic MapReduce,” http://aws.amazon.com/

elasticmapreduce.
[8] G. Reinelt, “TSPLIB–A Traveling Salesman Problem Library,”

ORSA Journal on Computing, vol. 3, no. 4, 1991.
[9] A. Wiegele, “Biq Mac Library–A Collection of Max-Cut and

Quadratic 0-1 Programming Instances of Medium Size,” Tech.
Rep., 2007.

[10] D. Visariya, “NP-Hard Problems Using Map-Reduce,” Master’s
thesis, Rochester Institute of Technology, 2013.

[11] W. Lin, X. Xiao, and G. Ghinita, “Large-scale Frequent Sub-
graph Mining in MapReduce,” in ICDE. IEEE, 2014.

[12] A. Ene, S. Im, and B. Moseley, “Fast Clustering using MapRe-
duce,” in KDD. ACM, 2011.

[13] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev, “Parallel
Algorithms for Geometric Graph Problems,” in STOC. ACM,
2014.

[14] J. Xiang, C. Guo, and A. Aboulnaga, “Scalable Maximum
Clique Computation Using MapReduce,” in ICDE. IEEE,
2013.

[15] M. Ebrahimi, G. Weikum, and R. Gemulla, “Solving Linear
Programs in MapReduce,” Master’s thesis, Universitat des Saar-
landes, 2011.

[16] F. Chierichetti, R. Kumar, and A. Tomkins, “Max-cover in Map-
Reduce,” in WWW. ACM, 2010.

[17] A. Radenski, “Distributed Simulated Annealing with Mapre-
duce,” in European Conference on Applications of Evolutionary
Computation. Springer, 2012.

[18] T. G. Crainic and M. Toulouse, “Parallel meta-heuristics,” in
Handbook of Metaheuristics. Springer, 2010.

[19] D.-J. Chen, C.-Y. Lee, C.-H. Park, and P. Mendes, “Parallelizing
Simulated Annealing Algorithms Based on High-Performance
Computer,” Journal of Global Optimization, vol. 39, no. 2,
2007.

[20] G. Kliewer and S. Tschoeke, “A General Parallel Simulated
Annealing Library and its Application in Airline Industry,” in
IPDPS. IEEE, 2000.

[21] A. Debudaj-Grabysz and R. Rabenseifner, “Nesting OpenMP in
MPI to Implement a Hybrid Communication Method of Parallel
Simulated Annealing on a Cluster of SMP Nodes.” in 12th
European PVM/MPI Users Group Meeting. Springer, 2005.

[22] A. Ferreiro, J. Garcı́a, J. López-Salas, and C. Vázquez, “An
Efficient Implementation of Parallel Simulated Annealing Al-
gorithm on GPUs,” Journal of Global Optimization, vol. 57,
no. 3, 2013.


