
Developing Course-Level Learning Goals for
Basic Data Structures in CS2

Leo Porter
University of California, San Diego

leporter@eng.ucsd.edu

Daniel Zingaro
University of Toronto Mississauga

daniel.zingaro@utoronto.ca

Cynthia Lee
Stanford University
cbl@stanford.edu

Cynthia Taylor
University of Illinois at Chicago

cynthiat@uic.edu

Kevin C. Webb
Swarthmore College

kwebb@cs.swarthmore.edu

Michael Clancy
University of California, Berkeley

clancy@eecs.berkeley.edu

ABSTRACT
Establishing learning goals for a course allows instructors to design
course content to address those goals, helps students to focus their
learning appropriately, and enables researchers to assess learning
of those goals. In this work, we propose six learning goals for a
topic prevalent in CS2 courses: Basic Data Structures. These learn-
ing goals arise from reviewing several CS2 courses at a variety of
institutions, surveying faculty experts who commonly teach CS2,
and meeting and working closely with these experts. We outline
our process for creating learning goals, identify important topics
underlying these goals, and provide examples of how the goals
developed on the path to consensus. We also document that the
term “CS2” does not have a unified interpretation within the CS
education community and describe how this hurdle influenced our
decision to focus on Basic Data Structures.

CCS CONCEPTS
• Social and professional topics → Computing Education;

KEYWORDS
CS2, data structures, learning goals
ACM Reference Format:
Leo Porter, Daniel Zingaro, Cynthia Lee, Cynthia Taylor, Kevin C. Webb,
andMichael Clancy. 2018. Developing Course-Level LearningGoals for Basic
Data Structures in CS2. In SIGCSE ’18: The 49th ACM Technical Symposium
on Computing Science Education, February 21–24, 2018, Baltimore , MD, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3159450.3159457

1 INTRODUCTION
Course-level learning goals capture what instructors expect stu-
dents to know at the end of a course. They offer a number of
benefits for instructors, students, and researchers. For instructors,
these learning goals facilitate discussions of course outcomes, help
convey to new instructors the core content in a course, and serve as
a defensible basis for evaluating student learning [15]. For students,
such goals can help identify what must be learned in the course

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159457

and enhance learning [15]. Finally, researchers and curriculum de-
signers can use these goals for programmatic assessment [13] and
the design of concept inventories [2]. Unfortunately, learning goals
are not frequently reported in the CS education literature.

Given the value of learning goals for instructors and students,
this work seeks to codify a set of common learning goals in CS2
courses across a variety of institutions. We focus on CS2, rather
than CS1, as there is comparably less known about CS2 goals and
important topics [11].

Our team consisted of faculty at six different institutions working
with CS2 experts (i.e., instructors and researchers of CS2) at an
additional eight institutions. Through discussions with the experts,
it became clear that the meaning of “CS2” depends on the particular
institution. However, a common thread among CS2 variants is the
teaching of Basic Data Structures.

To establish learning goals, we examined syllabi and final exams
at our experts’ institutions to determine common topics, surveyed
these faculty experts about CS2 and Basic Data Structures topics,
and organizedmultiple largemeetings to discuss and refine learning
goals for Basic Data Structures. We detail the methods and results
found at each step of the process in this work.

The primary contributions of this work are:

• Discussion of the topics covered in variants of CS2.
• Analysis of the perceived importance of CS2 topics by instructors.
• Presentation of course-level learning goals for Basic Data Struc-
tures.

2 BACKGROUND
2.1 Learning Goals
Students often struggle to learn the content presented in class,
but the culprit may not be the difficulty of the content itself. For
example, students may lack requisite context or scaffolding, mak-
ing it more difficult for them to organize new knowledge into the
framework of what they already know [15]. Learning goals have
been proposed as tools to enhance student-instructor communica-
tion and make explicit the instructor’s aims for studying particular
content.

Learning goals can target different levels of specificity, from
topic-level to school-level [13]. The most specific are topic-level
learning goals; for example, “at the end of this lecture, students will
be able to briefly describe the parts of a web search engine” [15].
Such goals are valued by students: the goals explicitly communicate
expectations to students and help them to prepare for upcoming

Paper Session: Data Structures SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

858

https://doi.org/10.1145/3159450.3159457
https://doi.org/10.1145/3159450.3159457

exams. Furthermore, the existence of topic-level learning goals en-
hances collaboration between instructors and improves the quality
of assessments [15].

Course-level learning goals state the outcomes expected of a
student at the end of the course. While a topic-level goal may
inform course-level goals, course-level goals are often more broad
than topic-level goals and are not as closely tied to specific course
topics.

Course-level goals have been shown to be important for effec-
tive intervention on struggling students [7] and are at the core of
successful, evidence-based course transformation [4]. Course-level
learning goals are also critical to the generation of concept invento-
ries (CIs). A CI is a conceptual test of the level to which students
demonstrate expert-level thinking [2]. Whereas the important top-
ics drive the content of the CI, the goals determine what students
are asked about the topics [5]. Key to the selection of learning goals
and topics for a CI is often an expert panel; regular meetings, ex-
tended discussions, and an iterative workflow preclude reliance on
more lightweight approaches such as community-based surveys. In
a representative study in physics education, for example, a panel of
13 experts was used [5].

We draw a crucial distinction between course topics themselves
and corresponding learning goals. Topics determine the material
of importance; e.g., for CS1, important topics could include loops
and conditionals [16]. Learning goals, on the other hand, specify
what students are expected to be able to do with course material.
To summarize, topic-level learning goals focus on what students
can do with a particular topic whereas course-level learning goals
focus on what students can do at the end of the course.

2.2 Important Concepts in Data Structures
The CS education literature contains many studies of important
topics. Most concern CS1 [9, 14, 16]. One paper offers an analysis
of important CS2 topics using survey data from CS2 instructors,
but does not discuss learning goals [11]. (See Herman and Loui [10]
for an innovative use of topics to argue a conceptual framework
for digital logic.)

There is precedent for the importance of studying student con-
ceptions of data structures. For example, Karpierz andWolfman [12]
identify prevalentmisconceptions related to searching binary search
trees (BSTs) and assumptions that BSTs are always balanced. Oth-
ers note student difficulties with distinguishing between BSTs and
heaps [6] and checking invariants of BSTs [8].

2.3 Curricular Guidelines for Data Structures
Curriculum documents typically state both topics and “learning
outcomes” (similar to learning goals); indeed, we often referred to
the CS 2013 Curriculum [1] throughout the development of our
work. However, such curriculum documents are necessarily compre-
hensive and cover knowledge units that span multiple courses, or
include topics that are not covered consistently in the same course
at representative institutions [1]. Additionally, some institutions
have developed learning goals for their local courses [3]. In this pa-
per, we focus on topics and learning goals that underlie a common
core of CS2-level expertise suitable for use across institutions.

3 RESEARCH QUESTIONS AND CONTEXT
In this work, we examine three principal research questions:

• RQ1: Which topics are commonly taught in CS2?
• RQ2:Which of these common topics are valued the most by
CS2 instructors?

• RQ3: What are the course-level learning goals for these
central CS2 topics?

In beginning to answer these questions, it became apparent that
a step-by-step process was required (i.e., progress on RQ1 was
needed before progress could be made on RQ2). As such, this paper
provides both the research methods and results for each step in
the sequence. Throughout this work, as we seek to characterize
the topics and learning goals underlying many CS2 courses, we
strive for programming language-independence. That is, similar
to research on CS1 learning goals [16], we focus on what students
should be able to do independent of the specifics of any particular
programming language.

3.1 Expert Panel
We formed an expert panel of CS2 instructors from a broad set of in-
stitutions and consulted with our panelists throughout the research
process. The members of our expert panel have extensive experi-
ence teaching CS2, with one instructor having taught it for 31 years.
In addition, they are active in the CS education research community.
Further characteristics of the panelists and their institutions are
provided in Table 1.

As the six organizers and authors of this study, we interpreted
results from the expert panel and conducted follow-on discussions
with expert panel members. As such, the diversity of our back-
grounds both contributes to and informs the analysis of results.
Four of us are currently at large, public research-intensive universi-
ties. Three of us are either presently at, or previously held professor
positions at, small liberal arts colleges. Our current institutions
range from highly selective private schools, to minority-serving
public research universities (where a majority of students are Pell-
grant eligible, first-generation college students). Years of teaching
varies from 5 to 34 years. All are active in the CS education commu-
nity, and four have taught CS2 multiple times in person or online.

4 RQ1: COMMON CS2 TOPICS
In the summer and fall of 2015, we approached members of the
expert panel and requested syllabi and final exammaterials for their
CS2 courses. Eight of the nine members of the panel responded with
the requested materials. We then reviewed the syllabi, identifying
major topics addressed in each CS2 course. After generating a large
list of topics, we worked together to cluster the topics into larger
components. This clustering was informed by chapter organization
of relevant CS2 textbooks, our expertise as CS2 instructors, and
the Computing Curriculum 2013. Six major components of CS2s
emerged, which we summarize in Table 2. Note that each compo-
nent appears in some, but not necessarily all, of our experts’ CS2
courses, as illustrated in Table 3.

As we reviewed the courses and further discussed with our ex-
perts, it became clear that the definition of CS2 was not homoge-
neous. Rather, there appeared to be two largely disjoint courses
that are referred to in the CS education community as CS2. The

Paper Session: Data Structures SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

859

Table 1: Instructor, Course, Institution Characteristics.

Identifier A B C D E F G H I
Institutiona CC RIU PUI LAI LAI RIU RIU CC RIU
Class Sizesb Small Large Small Small Small Large Large Small Large
Public / Private Public Public Public Private Private Public Private Public Public
Language Java C/C++ Java Java Java C/C++ Java Java Java
a Institutions categorized as Community College (CC), Liberal Arts Institution (LAI), Primarily Undergraduate
Institution (PUI), and Research-Intensive University (RIU).

b Class sizes of typically less than 30 students considered small. Class sizes greater than 100 considered large.

Table 2: Broad Topics

Component Description
Object-Oriented
Programming

Class Design, Inheritance,
Polymorphism

Basic Data Structures List, Stack, Queue, Array,
Linked-List, Binary Tree, Binary
Search Tree

Recursion Recursive strategies, methods,
and/or their efficiency

Sorting Sorting algorithms - O(n2) and/or
O(n ∗ loд(n)) approaches

Algorithm Analysis Runtime analysis and/or space com-
plexity

Advanced Data
Structures

Balanced Trees, Hash Tables, Heaps,
Priority Queues, Graphs, Union-
Find, Minimum Spanning Trees

first heavily emphasizes object-oriented programming and its re-
lated concepts. The second heavily focuses on sorting, algorithm
analysis, and data structures. This is perhaps most evident at one
of our panelist institutions that in fact offered two different “CS2”
courses. At that institution, we began with the first course (course
B per Table 3), but noted the absence of some topics commonly
seen in other CS2 courses. When we checked with that instruc-
tor, we were pointed to a follow-on course at the same institution,
course F, which addressed other CS2 topics. We retained both of
that institution’s experts in our panel to accurately represent both
perspectives. In general, combining all of the topics covered in our
experts’ CS2 courses, we see that there is too much for a single CS2
course.

That said, Basic Data Structures and, to a lesser degree, Recursion
are common to both the object-oriented programming and the
algorithm analysis/data structures variants of CS2. Commonality
alone, however, does not necessarily warrant creation of course-
level learning goals unless the topics are also important.

5 RQ2: IMPORTANCE OF CS2 TOPICS
Results from the prior section identify Basic Data Structures and
Recursion as topics common to the variants of CS2 that we en-
countered. But those results say nothing about the importance to
these topics ascribed by the experts. Thus, we surveyed the expert
panel about the importance of each component for their courses.

Table 3: Broad Topics by Course

Component A B C D E F H I
Object-Oriented
Programming X X X Xa

Basic Data
Structures X Xb X X X X X X

Recursion X X X X X X
Sorting X X X X X
Algorithm Analysis X X X X X
Advanced Data
Structures X X X X

a Object-Oriented Programming is taught previously in a
different language so there is a brief discussion of how
Object-Oriented Programming works in Java at the start
of this course.

b This course has an extensive treatment of Object-
Oriented Programming, with comparably less time dedi-
cated to Basic Data Structures.

We asked participants the following questions for each component
from Table 2:

• How critical is the following topic for student success in
YOUR CS2 class?

• What is the importance that students know the content of
the following topic as prerequisite for courses that follow
YOUR CS2 class?

Participants responded on a 7-point Likert scale where 1 was
“not at all critical” and “not at all important” and 7 was “absolutely
essential” and “very important”. All nine experts participated in the
survey. The average ranking for each topic by question appears in
Table 4.

Results from Table 4 confirm that Basic Data Structures is indeed
an important topic both for student success in CS2 and in follow-
on courses. One might be surprised at the high scores for object-
oriented (OO) programming for success in CS2, particularly as some
of our experts’ curricula cover some OO concepts in CS1. Based on
feedback provided by our experts at the end of the survey, it was
clear that the high level of importance for OO concepts was viewed
by some participants as knowledge prerequisite to CS2.

Paper Session: Data Structures SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

860

Table 4: Average Importance of each component for student
success in CS2 and as a prerequisite for later courses.

Component CS2 Success As Prereq.
Object Oriented Prog. 6.4 5.9
Basic Data Structures 6.4 5.7
Recursion 6.3 5.9
Sorting 5.3 3.5
Algorithm Analysis 5.1 3.6
Advanced Data Structures 3.9 2.3

6 RQ3: LEARNING GOALS FOR BASIC DATA
STRUCTURES

Having found common CS2 course components and established
their importance, we now report on our methods and results for
generating learning goals for Basic Data Structures.

6.1 Method
We began by constructing an initial set of eleven learning goals to
foster discussion among the expert panel. These initial goals were
based on a review of final exams, the Computing Curriculum 2013,
and project team discussions. The development process proceeded
by conferring with the expert panel through surveys, meetings
at professional conferences, and one-on-one discussions. After re-
ceiving such feedback, the project team iteratively discussed and
refined the goals.

At various points, we consultedwith an outside expert, Stephanie
Chasteen, who has a background in developing learning goals for
physics education. This expert was critical for ensuring that best
practices for goal development were being followed and that our
goals were at the right level of generality.

The most significant steps of our process were:

(1) Development of the initial draft of eleven learning goals.
(2) Survey of the expert panel for feedback.
(3) Meeting at the SIGCSE 2016 conference with the expert panel

to gather additional feedback.
(4) Presentation of the revised six goals as an interactive poster

at the ICER 2016 conference to gather informal feedback
from the community. Attendees could approach the poster
and score each learning goal as either very important to their
course, somewhat important, not at all important, or “not
important now but should be”. Feedback for the six goals
was quite positive: the majority of participants selected very
important for five goals and, for the remaining goal, that it
should be important.

(5) Meeting at the SIGCSE 2017 conferencewith the expert panel,
where our panelists provided universally positive feedback
and suggested only minor revisions.

This method mirrors similar practices in determining common
course-level goals: using a working group with course and ped-
agogy expertise, and frequent opportunities for discussion and
modification of goals [5].

6.2 Examples of Goal Development
It is difficult to summarize conversations across multiple years and
multiple drafts of goals. Learning goal development often followed
a progress of slow change, with many small steps that are not
noteworthy in themselves. Nonetheless, this section aims to provide
intuition to the reader about how our goals evolved from their initial
instantiation to their final form.

Specific Data Structures and Goals. Early versions of the learn-
ing goals mentioned specific interfaces or data structures. For ex-
ample, one learning goal spoke specifically to an ability to write
code to implement operations on a binary search tree. However,
this led to repeating the same goal for a variety of data structures
and pushed the goals to become more topic-level than course-level.
This approach also led to learning goals that were very specific
to particular data structures, limiting their applicability to only
courses that covered precisely the same data structures.

Through work with the expert panel at SIGCSE 2016 and conver-
sations within the project team, we determined that the learning
goals should be generic so as to apply to any reasonable set of
topics within Basic Data Structures. This simplified the discussion
about the learning goals themselves, and also led us to explore the
topics that are commonly taught. Hence, we provide the commonly
taught elements of Basic Data Structures in Section 6.5.

Interface versus Implementation. In the meeting with experts
at SIGCSE 2016, a division quickly emerged among the panel re-
garding the facets of Basic Data Structures that matter the most.
In particular, there were energized discussions on the right level
of abstraction on which to focus. Do we care more about students’
learning to select the appropriate interface (e.g., stack, queue, or
list), selecting the appropriate implementation for a given interface
for best performance (e.g., linked list or array-based list), or learning
how to implement the data structures themselves? Ultimately, we
struck a balance in which we agreed that students should be able
to do all of these, and the resulting learning goals encompassed all
three of these elements.

Consolidating Multiple Goals. Our many conversations with
the expert panel enabled us to consolidate the initial goals (which
admittedly border on topic-level rather than course-level goals) into
broader, more widely applicable goals. An example of this process
started with the following two initial goals:

• “Implement insertion into, location in, and deletion from
linear data structures.”

• “Implement insertion into, location in, and deletion from a
binary search tree.”

They became this final goal: “Design and modify data structures
capable of insertion, deletion, search, and related operations.”

To merge these two goals in this way, we first combined “linear
data structures” and “binary search tree” into simply data structures.
Next, we noted that the expert panel viewed “implement” as too
narrow a goal: they wanted students to be able to design data struc-
ture operations, not just implement a given design. Also, limiting
students to just insertion, deletion, and search was viewed as too
narrow as students are often asked to work with other operations
besides these; the phrase “related operations” was therefore added.

Paper Session: Data Structures SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

861

Developing Course-Level Learning Goals for Basic Data Structures in CS2 SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA

Table 5: Topics in Basic Data Structures by Course

Topic A B C D E F H I
Stacks X X X X X X X
Queue X X X X X X X
List X X X X X X X X
Set X X X
Interface/Abstract Data Type X X X X
Arrays X X X X X X X X
Array-based List X X X X X X
Linked List X X X X X X X
Binary Tree X X X X X X
Binary Search Tree X X X X X X

6.3 Resultant Goals
We now present the learning goals as agreed upon by our experts.

At the end of a course on Basic Data Structures, students should
be able to:

(1) Analyze runtime efficiency of algorithms related to data
structure design.

(2) Select appropriate abstract data types for use in a given
application.

(3) Compare data structure tradeoffs to select the appropriate
implementation for an abstract data type.

(4) Design and modify data structures capable of insertion, dele-
tion, search, and related operations.

(5) Trace through and predict the behavior of algorithms (includ-
ing code) designed to implement data structure operations.

(6) Identify and remedy flaws in a data structure implementa-
tion that may cause its behavior to differ from the intended
design.

6.4 Discussion of Learning Goals
The learning goals presented in the preceding section have gained
agreement within the project group and expert panel and were the
result of a number of rigorous discussions. This section contextual-
izes and shares some insights from those discussions.

As mentioned in Section 6.2, our experts debated the side of the
abstraction layer on which students should focus: deciding on the
correct interface to help solve a problem or, separately, deciding
on the best implementation of that interface. We resolved this
contention by including both Goal 2 and Goal 3, which are similar
but focus on distinct levels of abstraction.

Reflecting its importance in many CS2 courses, programming
is present as part of Goals 4–6. Goal 4 includes implementing data
structures in code; Goal 5 includes tracing and understanding data
structure code; and Goal 6 includes testing and debugging code.

In discussions, Goal 5 and Goal 6 have generally been perceived
as connected with the other goals. The reason for this is that if
one wishes to assess student learning of Goals 1–4 in a manner
involving code, it is hard to see how Goals 5 and/or 6 would not
also be involved. Through discussions with our expert panel and
our outside consultant, we have come to agree that the goals need
not be entirely independent in terms of assessing student learning.

6.5 Common Topics in Basic Data Structures
As previously mentioned, the decision to decouple course-level
learning goals from the course topics greatly improved the quality
and applicability of the learning goals. However, we believe it is
helpful to contextualize these learning goals with the topics to
which they are frequently applied.

Following the same methods as in Section 4, we referred to eight
expert panel syllabi and final exams to determine the topics from
Basic Data Structures that commonly appear in CS2 courses. Table 5
provides topic coverage by course. This table shows that stacks,
queues, lists, arrays, array-based lists, linked lists, binary trees, and
binary search trees are all common data structures taught in CS2.

There was much discussion among the project team, and subse-
quently with the expert panel, about the line between Basic and
Advanced Data Structure topics. We decided that those topics that
rely on earlier data structures (e.g., balanced trees rely on BSTs,
heaps rely on arrays) and those that often appear in later courses
(e.g., graphs, minimum spanning trees) were considered Advanced
topics. Two topics that seemed to straddle the border of Basic and
Advanced Data Structures were the creation of iterators over struc-
tures (found in 3 out of 8 courses) and hash tables (found in 4 out of
8 courses). The lack of majority agreement resulted in these topics
being excluded as not being commonly-taught topics in CS2 Basic
Data Structures.

7 DISCUSSION

CS2 Terminology. As discussed previously, we learned through
the development process that “CS2” has, in fact, two common in-
terpretations. The first is a course focused on object-oriented pro-
gramming; the second is a course focused on data structures and
algorithm analysis. This lack of agreement on a common term
within the CS education community is disappointing but does have
some precedent in the literature [11]. We encourage the commu-
nity to work toward an agreement regarding CS2 terminology. An
interim fix may be simply to say CS2-OOP or CS2-DS to refer to
the two common variants.

Intended Use of Learning Goals. We imagine two primary uses
of the learning goals provided here. The first is for researchers aim-
ing to assess student learning across multiple institutions. For this
group, the learning goals can provide a common basis on which one

Paper Session: Data Structures SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

862

might develop concept inventories or other assessments of student
learning. The second is for CS2 instructors and curricular designers
looking to create their own learning goals or assessments. For this
second group, we recognize that the learning goals provided here
may not be a perfect fit for existing courses or for all CS curricula;
however, we hope that they provide a strong first step in course
and curricular design efforts. Most notably, we recognize that Basic
Data Structures is simply one of many components that constitute
a CS2 course. Future work is required to generate goals for other
components; we hope that our methods and results provided here
are useful in such efforts.
Programming Language-Independence. In order for the learn-
ing goals to support development of assessments of student learning
across multiple institutions, the learning goals needed to be pro-
gramming language-independent. Several different programming
languages are represented among the CS2 courses of our expert
panelists’ institutions. One benefit of focusing on learning goals for
Basic Data Structures is that this topic is amenable to the creation
of learning goals that are not tied to a particular language. Abstract
data types implemented by Basic Data Structures (e.g., stacks and
queues) are by definition language-independent abstractions. In
contrast, we suspect that it is much more difficult to create learn-
ing goals for object-oriented programming, with its emphasis on
class design and inheritance, without resorting to language-specific
considerations.
Future Plans. There are topics that many instructors consider im-
portant but which lie outside the boundary of Basic Data Structures.
We are looking ahead at ways to implement modules of learning
goals (organized as in Table 2) that would allow instructors more
flexibility for matching their courses to available learning goals.
Challenges of Multi-Institutional Efforts. Our project empan-
eled the experts over a multi-year period during which we sought
their attendance at professional conferences, asked them to fill
out many surveys, requested course materials, and engaged them
in discussions as the learning goals developed. We occasionally
but only temporarily “lost” some experts — missing a survey here
or a meeting there — but this feels inevitable in a multinational,
multi-year project such as this one. Overall, our advice to those
conducting similar research is to build an expert panel of those
truly interested in the betterment of a course. We were fortunate
to have such an expert panel helping to guide our work.

8 CONCLUSION
Through conversations with experienced CS2 instructors, we clas-
sified the elements that are central to CS2 courses and establish
learning goals for those elements. We discovered that “CS2” actu-
ally has two general interpretations by members of the computing
community: one is a course focused on object-oriented program-
ming and the other is a course focused on data structures and
algorithm analysis. Fortunately, Basic Data Structures (linked lists,
array-based lists, stacks, queues, etc.) is common to both course
variants, and is viewed as highly valuable for supporting student
outcomes in CS2 and subsequent courses.

Given the importance of Basic Data Structures to the comput-
ing curriculum, we then worked with those same experienced
CS2 instructors to produce a set of course-level learning goals.

These course-level learning goals may be valuable to educational
researchers for development of student assessments; and for practi-
tioners wishing to assess their students, design their own learning
goals, or make curricular changes.

We conclude by observing that there have been few efforts within
computer science education to gain multi-institutional agreement
on course-level learning goals for computing. Given the benefits
from such work, we see this as a research gap deserving further
attention from the CS education research community.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the contributions of the follow-
ing collaborators: Meghan Allen, Owen Astrachan, Darci Burdge,
Stephanie Chasteen, Maureen Doyle, John Glick, Paul Hilfinger,
Kate Sanders, Paramsothy Thananjeyan, and Steve Wolfman. This
work was supported in part by NSF award 1505001.

REFERENCES
[1] ACM/IEEE-CS Joint Task Force on Computing Curricula. Computer science

curricula 2013. Technical report, ACM Press and IEEE Computer Society Press,
December 2013.

[2] W. Adams and C. Wieman. Development and validation of instruments to mea-
sure learning of expert-like thinking. International Journal of Science Education,
33(9):1289–1312, 2011.

[3] Carl Wieman Science Education Initiative at the University of British Columbia.
Computer science learning goals.
www.cwsei.ubc.ca/Files/ComSc_LG/CPSC_Learning_Goals.pdf, 2008.

[4] S. Chasteen, K. Perkins, P. Beale, S. Pollock, and C. Wieman. A thoughtful
approach to instruction: Course transformation for the rest of us. Journal of
College Science Teaching, 40:24–30, 2011.

[5] S. V. Chasteen, R. E. Pepper, M. D. Caballero, S. J. Pollock, and K. K. Perkins.
Colorado upper-division electrostatics diagnostic: A conceptual assessment for
the junior level. Physical Review Special Topics - Physics Education Research, 8(2),
2012.

[6] H. Danielsiek, W. Paul, and J. Vahrenhold. Detecting and understanding students’
misconceptions related to algorithms and data structures. In Proceedings of the
43rd ACM Technical Symposium on Computer Science Education, pages 21–26,
2012.

[7] L. Deslauriers, S. E. Harris, E. Lane, and C. E. Wieman. Transforming the lowest-
performing students: an intervention that worked. Journal of College Science
Teaching, 41:80–88, 2012.

[8] A. Fekete. Using counter-examples in the data structures course. In Proceedings
of the Fifth Australasian Conference on Computing Education - Volume 20, pages
179–186, 2003.

[9] K. Goldman, P. Gross, C. Heeren, G. Herman, L. Kaczmarczyk, M. C. Loui, and
C. Zilles. Identifying important and difficult concepts in introductory computing
courses using a delphi process. SIGCSE Bulletin, 40(1):256–260, 2008.

[10] G. L. Herman and M. C. Loui. Identifying the core conceptual framework of
digital logic. In Proceedings of the 2012 American Society for Engineering Education
Annual Conference and Exposition, pages AC2012–4637, 2012.

[11] M. Hertz. What do “CS1” and “CS2” mean?: Investigating differences in the early
courses. In Proceedings of the 41st ACM Technical Symposium on Computer Science
Education, pages 199–203, 2010.

[12] K. Karpierz and S. A. Wolfman. Misconceptions and concept inventory questions
for binary search trees and hash tables. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, pages 109–114, 2014.

[13] P. Marsh. What is known about student learning outcomes and how does it
relate to the scholarship of teaching and learning? International Journal for the
Scholarship of Teaching and Learning, 1(2), 2007.

[14] C. Schulte and J. Bennedsen. What do teachers teach in introductory program-
ming? In Proceedings of the Second InternationalWorkshop on Computing Education
Research, pages 17–28, 2006.

[15] B. Simon and J. Taylor. What is the value of course-specific learning goals?
Journal of College Science Teaching, 39(2):52–57, 2009.

[16] A. E. Tew and M. Guzdial. Developing a validated assessment of fundamental
CS1 concepts. In Proceedings of the 41st ACM Technical Symposium on Computer
Science Education, pages 97–101, 2010.

Paper Session: Data Structures SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

863

www.cwsei.ubc.ca/Files/ComSc_LG/CPSC_Learning_Goals.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Learning Goals
	2.2 Important Concepts in Data Structures
	2.3 Curricular Guidelines for Data Structures

	3 Research Questions and Context
	3.1 Expert Panel

	4 RQ1: Common CS2 Topics
	5 RQ2: Importance of CS2 Topics
	6 RQ3: Learning Goals for Basic Data Structures
	6.1 Method
	6.2 Examples of Goal Development
	6.3 Resultant Goals
	6.4 Discussion of Learning Goals
	6.5 Common Topics in Basic Data Structures

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

