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ABSTRACT

To be effective instructors and CS education researchers, we must
identify and understand student difficulties surrounding core com-
puting topics. This study examines student difficulties with the
basic data structures commonly found in CS2 courses. Initial ex-
ploration of student thinking began with think-aloud interviews
with students. These interviews centered on open-ended questions
that were iteratively improved upon based on analysis of interview
transcripts. The revised open-ended questions were then posed to
249 students during an end-of-term final exam study session. Using
the explanations and justifications included by students, responses
to the questions were coded and summarized. This work charac-
terizes the difficulties revealed by student responses, and provides
details of their prevalence among the examined student population.
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1 INTRODUCTION

It is important for instructors to be aware of common student diffi-
culties and errors related to the content domain being learned [20].
For example, a recent study of middle school physical science teach-
ers and students found that teacher familiarity with student wrong
answers was positively correlated with student learning gains [18].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICER 18, August 13-15, 2018, Espoo, Finland

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5628-2/18/08...$15.00
https://doi.org/10.1145/3230977.3231005

Prior research has discussed both student misconceptions and
student difficulties [4, 16]. A student conception describes a belief,
theory or explanation previously developed to explain some behav-
ior observed in the world [1]. When these beliefs are in conflict with
accepted scientific theories, they become misconceptions [1]. A
difficulty refers to an observable error committed by students [4].
The present paper focuses on student difficulties, which through
additional study and corroboration may illuminate upstream mis-
conceptions.

There are many studies that examine student difficulties and
misconceptions in CS1 [17, 22]. In contrast, the relevant literature
for data structures is in its infancy; for example, linked lists have
received very little attention [10].

This work aims to further our understanding of student difficul-
ties regarding Basic Data Structures, including ArrayLists, singly-
and doubly-linked lists, and binary search trees. We began by re-
cruiting students to participate in think-aloud interviews about
Basic Data Structures problems. The interview results informed our
authoring of a series of questions aimed to elicit student difficulties.
To gather a larger data set, we then presented the questions to 249
students during a final exam study session. The students responded
with an answer and a justification for that answer, which we coded
to identify common difficulties. We explore these difficulties here.

2 BACKGROUND

There is a vast literature around student difficulties in introduc-
tory programming (CS1). That work has led to the discovery of
surprising student misconceptions and has informed concept in-
ventory development [5]. For example, researchers have found that
students infer unwarranted relationships between variables, and
believe that memory is reserved for uninstantiated objects [5]. Even
fundamental concepts typically taught at the start of CS1, such as
primitive/object variables, value/reference assignment, and param-
eter passing, are associated with considerable variation in student
understanding [7, 8, 21]. Several comprehensive literature reviews
demonstrate the extent to which researchers over the years have
studied CS1 misconceptions and difficulties [17, 22]. In fact, one
such literature review calls for the community to move away from
identifying additional misconceptions for CS1 and to instead begin
working to foster changes in CS1 in response to those that have
already been identified [15].

Recent work highlights two core components of typical CS2
courses: Recursion and Basic Data Structures [14]. A large number
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of difficulties and misconceptions associated with recursion have
been documented [4, 9]. By comparison, there are fewer reports of
difficulties for introductory data structures topics. Tenenberg and
Murphy tested students on data structures as part of a project on
student self-assessment, and found that students performed best on
questions about stack, queue and tree interfaces, and worst on ques-
tions concerning the runtime efficiency of different searches [24].
Some have studied student misconceptions of heaps, including the
ways that heaps can be represented or constructed [13, 19]. Par-
ticularly relevant to the present study is work by Karpierz and
Wolfman [6], who used interviews and exam/project analysis to
identify student misconceptions of binary search trees (BSTs) and
hash tables. The discovered BST misconceptions are: (1) a separate
search through the tree is required to ensure that the element is
not already in the tree before inserting it, (2) all keys in the tree
must be inspected before inserting a new key, and (3) a BST is
balanced by default. Interestingly, some have found that students
conflate binary search trees and heaps [2, 13], while others have
not replicated this [6].

For several reasons, we argue for the continued study of stu-
dent difficulties with introductory data structures. First, echoing
arguments from other researchers [25], student difficulties serve
as sources of pedagogical content knowledge (PCK), helping in-
structors anticipate likely struggles and how to guide student un-
derstanding in the context of those struggles. Second, introductory
data structures are a core component of many CS2 courses, and
CS2 itself often serves as the entrypoint to a CS major [14]. Finally,
difficulties with some data structures (e.g., linked lists, trees) are
studied in only a small number of papers [10, 11]. That is, while the
community has been urged to stop itemizing CS1 difficulties [15],
there is much that we do not know about post-CS1 difficulties.

3 METHODOLOGY

We began by developing open-ended questions designed to cover
a set of learning goals and topics found to be important to the
teaching of Basic Data Structures [14]. In order to ensure that these
questions highlight a range of student understanding, we conducted
interviews in which students were asked to think aloud while solv-
ing these problems. Through the course of these interviews, we
frequently modified and adapted the questions to better reflect and
surface student difficulties.

A total of 65 interviews were conducted at three different North
American schools: one private and two public research-intensive
universities. Students were recruited for participation from each
institution at the end of the course that taught Basic Data Structures.
Participation was approved by the Human Subjects Board for each
institution, and students were compensated for their time with gift
cards.

After completing and analyzing our student interviews, we pre-
sented the open-ended questions to students at a public, research-
intensive university as part of a final exam study session for a
Java-based CS2 course. We describe the test as “open-ended”, even
though some questions included multiple choice options, because
every question asked students to provide written justifications for
their answers. The justifications often provided insight into diffi-
culties, sometimes even when students selected correct answers.

The Node and LinkedList class defined above implement a
singly-linked list with head and tail references. Head refers
to the first node of the list, and tail refers to the last node
of the list.

Given below is a method in the LinkedList class to add an
element to the end of the list.

DEFINE addEnd (n)
IF tail == nil THEN
head = tail = new ListNode (n)
ELSE
//MISSING CODE
END IF
ENDDEF

Supply the missing code:

Two hundred forty-nine students gave consent for their re-
sponses to be used in this research project. We coded the responses
for each question using an open coding technique in which cate-
gories were developed from common patterns in student answers.
Each question was coded by one member of the research team.

4 STUDENT DIFFICULTIES

In this section, we present our questions, characterize the students’
answers, and highlight common difficulties. To avoid distractions
that may stem from the low-level details of any particular program-
ming language, we developed our questions using pseudocode. Our
pseudocode is modeled after that of [12], with a few small additions
to better support data structures (e.g., a nil value).

4.1 Adding to the Tail of a Linked List

We designed Question 1 to test students’ ability to implement linked
list methods. A correct answer to this question is the following:

tail.next = new ListNode (n)
tail = tail.next

In our open-ended test, 67% of students answered this question
correctly. We identify three common errors, with each coded sep-
arately (as such, percentages may add to greater than 100%): 16%
of students failed to update the tail pointer, 12% failed to correctly
attach the new node, and 10% unnecessarily looped through the
list to find the tail.

4.1.1  Failure to Update the Tail Pointer. A representative ex-
ample of a student response that included this mistake appears
below. In this response, the student correctly creates a new node
and connects that new node to the end of the list, but then fails to
set the tail to point to the new end of the list.

ListNode end = new ListNode (n)
tail.next = end



For this error and the next, it is difficult to discern whether the
mistake reflects a misconception (e.g., students do not believe they
are responsible for maintaining the invariant that the tail points
to the last element in this list), or whether they simply forgot to
update the pointer.

4.1.2  Failure to Attach the New Node. For this error, students
fail to add the new element to the end of the list. An example of a
student response expressing this mistake appears below:

tail = new ListNode (n,nil)

In this response, the student assumes that there exists a construc-
tor that takes both the element and the next node as parameters.
While this is not consistent with the provided sample code, we did
not mark this as incorrect. However, they fail to correctly set the
old tail to point to the new tail.

We note that this error was slightly more common in conjunc-
tion with the “unnecessary loop” mistake that we discuss next.
Similar to the prior mistake, we are unclear as to whether the stu-
dents fundamentally misunderstood the need to correctly point
the second-to-last element to the last element or instead that they
made a careless mistake.

4.1.3 Unnecessary Loop to Find the Tail. A representative exam-
ple of a student response demonstrating this inefficiency appears
below:

ListNode newNode = new ListNode (n)
ListNode curr = head
WHILE curr.next != tail DO
curr = curr.next
ENDWHILE
curr.next = newNode
tail = newNode

This difficulty is of interest as it embodies both using and not
using the tail pointer. Students do understand that the tail pointer is
present, and that it points to the last node: in 23 of the 25 cases where
the student uses a loop, they also use the tail pointer somewhere
in their code. In the sample response above, the student uses the
tail pointer to find the node just before the end of the list in the
while-loop, and updates the tail pointer to point at the new last
node (unfortunately discarding the old last node). Other student
responses correctly loop to the last node and then properly update
the tail. None of these students, however, makes the leap to use the
tail pointer to avoid the costly iteration through the loop. They may
have simply memorized that looping through the list is always how
the last node in a singly-linked list is accessed. This indicates that
instructors may want to encourage students to thoroughly consider
the impact of modifications to a data structure.

4.2 Fast Access to an Index

Question 2 was designed to test students’ ability to choose an
appropriate data structure when implementing a program. The
correct answer to this problem is d, an ArrayList, since an ArrayList
allows O(1) access time to a specific position in the list, while either

Suppose that your program is initialized with a set of num-
bers that is each added to a list. The user is then permitted
to query for the number at a given position (index) in the
list, and can make as many queries as they wish.

Which List data structure implementation would provide
the best performance for the initialization and the user
queries? You may assume that the number of user queries
is many times more than the number of elements in the
list.

a. a singly-linked list

b. a sorted doubly-linked list

c. an unsorted doubly-linked list

d. an ArrayList

Briefly explain your reasoning:

a singly- or doubly-linked list will take time O(N) to access an
element based on its position in the list.

Seventy-five percent of students correctly chose option d, and
165 of the 188 students who answered correctly discussed fast access
by index in their justification.

4.2.1 Binary Search on the Sorted Doubly-Linked List. Ten per-
cent of students incorrectly chose b, the sorted doubly-linked list.
Of the 26 students who chose this answer, five specifically discussed
using binary search on a doubly-linked list, despite the impossibil-
ity of accessing the list by index. It may be that these students have
some fundamental misconceptions about either the requirements
of binary search or how elements are accessed in a linked list.

4.2.2  Binary Search on an ArrayList. Five percent of students
correctly selected the ArrayList, but then justified it by saying
that an ArrayList is searchable in O(logN) time with binary search.
These students are likely missing that search is not necessary to
solve this problem, perhaps due to typical comparisons of data
structures that focus on search time.

4.2.3  Searching from Both Ends of a Doubly-Linked List. Four
percent of students claimed that a doubly-linked list would be faster
to search because one could search from either end, depending on
where the index was closest. For example, “The doubly link[sic] list
will allow you to determine the start of the search. If the index is
on the right half of the list, then you would want to start at the tail
& move backwards” This justification was used for selecting both
the sorted and unsorted doubly-linked list.

Regardless of whether the list is sorted or unsorted, searching
from both ends will not give any sort of performance optimization.
Students using this justification with a doubly-linked list appear to
believe they can somehow search from both directions in parallel,
or can instantly figure out from which end to start the search.



Suppose that we wanted to insert the numbers 1 to 15 into
a binary search tree. In what order should we insert the
elements so that the tree is as balanced as possible?

4.3 Inserting into a BST

Question 3 probes students’ ability to reason about the shape of
a binary search tree (BST). In particular, students are expected
to choose an insertion order for a range of numbers such that it
ultimately produces a desirable BST structure: a fully balanced tree.
Overall, 44% of students provided at least one correct insertion
order. An additional 10% described a correct procedure to generate
the order without specifying a sequence of integers, and another
5% drew a fully balanced tree containing all the values without
indicating how such a tree might be constructed.

4.3.1 Starting in the Middle, Alternating Outwards. A common
and interesting difficulty surfaced in which 6% of the students ap-
plied the correct logic to identify the root node, but then abandoned
that logic for subsequent nodes under the root. That is, they iden-
tified that 8 should be the root of the tree, which produced two
equally-sized trees below the root, but then generated a long chain
of nodes for each of the root’s subtrees. After inserting 8, these
students provided sequences that alternated inserting values that
were one larger or smaller than what was inserted previously. For
example,

8,7,9,6,10,5,11,4,12,3,13, 2, 14, 1, 15.

Our interpretation of this result is that some students believe
that only the root needs to contain an equal number of children
on the left and right for the tree to be considered balanced. They
do not consider applying the same criterion recursively, despite
properties of BSTs often being defined recursively.

4.3.2 Starting at the Wrong Root (7). Another 6% of the student
responses make the mistake of starting with 7 to be the root rather
than 8. This error indicates that some students have difficulty choos-
ing the root of the tree, particularly when the maximum element
(15) is not evenly divisible by 2. We saw similar misunderstandings
during our think-aloud interview phase. In those interviews, when
students made the initial choice of 7 as the root, they repeatedly
struggled to balance the tree rather than reevaluate their choice of
root.

4.3.3 Randomness. Four percent of the responses asserted that,
to be balanced, the values must be inserted in random order. This
response suggests that some students may equate “random order”
with “good order”, despite a random order not being guaranteed to
produce a balanced tree.

4.3.4 Min- or Max-Heap. Prior to collecting our student re-
sponses, we expected that some students might respond to Ques-
tion 3 with answers that conflate binary search trees with heaps, as
shown by Danielsiek et al [2]. Like Karpierz and Wolfman [6], we
found that very few student responses—only 1%—seemed to exhibit
this confusion.

Consider a binary search tree containing N values whose
root is presently the median value in the tree. Suppose
that N more values are added to the collection using the
standard tree insertion algorithm, with all N larger than
the largest value currently stored. Which of the following
is true? (There may be more than one correct answer.)

a. The root still has a median value in the tree.

b. There are more values in the right subtree of the updated
tree than in the left subtree.

c. Adding the Nth new value to the collection can take time
proportional to log N.

d. Adding the Nth new value to the collection can take
time proportional to N.

e. Adding the Nth new value to the collection can take time
proportional to N2.

Briefly explain your reasoning:

4.4 BST Changes After Insertions

Question 4 was designed to test students’ ability to predict the
behavior of an algorithm that operates on a data structure.

The correct answer to this problem is b, ¢, and d. Option a is no
longer true, since the root will stay the same but the median value
of the tree will change as all the added values are larger than the
largest value currently in the tree. Option b is true, since all of the
new values will be added to the right subtree. Option c will be true
if the new values have been added in an order that makes the right
subtree a balanced tree. Option d will be true if the new values have
been added in an order that makes the right subtree unbalanced.
Option e cannot be true, since there are fewer than N 2 values in
the tree. Only 12% of students answered this question correctly.

4.4.1 Adding Cannot Take O(N) Time. Forty-five percent of
students did not select d, indicating they did not think the time
to insert could be O(N). This may be an example of the “default
balanced” misconception identified by Karpierz and Wolfman [6], in
which students assume that BSTs will automatically have a balanced
shape. The large number of students who failed to select this answer
indicates that instructors should emphasize the worst-case results
of insertion into a BST.

4.4.2 Adding Cannot Take O(logN) Time. Twenty-nine percent
of students did not select c, indicating they did not think the time
to insert could be O(logN), with the majority of these students
indicating they had interpreted the question to mean that every
inserted value was larger than every previously inserted value,
rather than just being larger than the original values in the tree.
(The question has since been clarified.)



Consider the design of a new data structure we will call a
generalized array. A generalized array is like a list, except
that its subscript values may be any collection of integers
and not just a contiguous range of integers. For example,
one might set up a generalized array named vals to have
three subscripts—say, -5, 42, and -7001—and then to assign
to or access vals[-5], vals[42], and vals[-7001]. An attempt
to access the generalized array using any other subscript
values would be illegal.

An implementation of a generalized array should allow
fast access to its elements for large subscript sets. You
have control over how you create the data structure (e.g.,
which data structure, insertion order of elements, etc.)
Which of the following data structures best satisfy this
requirement? (There may be more than one correct
answer.) Assume that the set of subscript values is defined
before the program is executed and does not change during
the program run.

a. an ArrayList of subscript/value pairs, ordered by sub-
script

b. an ArrayList of subscript/value pairs, ordered by value
c. alinked list of subscript/value pairs, ordered by subscript
d. a linked list of subscript/value pairs, ordered by value

e. a binary search tree of subscript/value pairs, ordered by
subscript

f. a binary search tree of subscript/value pairs, ordered by
value

Briefly explain your reasoning:

4.4.3 The Root Remains the Median. Twenty-one percent of
students chose a, indicating that they thought the root would stay
the median. Of the 53 students that selected g, 32 of these students
explicitly offered the fact that the root would stay the same as a
justification for their answer. (Of the remaining 21 students, only
two offered an alternate justification for their answer, with the
rest not explaining their answer in any way.) This indicates that
students have internalized the idea that once in a BST, a node will
stay in the same position unless nodes are removed; however, they
have memorized this idea to the extent that it did not occur to them
that while the root value will not change, the median value will.

4.5 Generalized Array

We designed Question 5 to assess students’ ability to choose an
appropriate implementation of a data structure. The correct answer
is both a and e, since the design should optimize for quick access by

subscript, and does not need to optimize for insertion or deletion
time. Both a sorted ArrayList and a BST ordered by subscript will
enable finding a subscript in time O(logN), since binary search
can be used on the sorted ArrayList and elements can be inserted
appropriately into the BST to make it balanced. Only 22% of students
answered this question correctly.

4.5.1 Binary Search Tree is Always Fastest. The most popular
answer to this question, chosen by 24% of students, was e, a bi-
nary search tree ordered by subscript. Student answers specifically
mentioned the quick time to find an element in a BST; e.g.,, “A
BST allows for the fastest search time complexity of the three, at
O(logN)” However, these answers overlook the fact that an Ar-
rayList can also be searched in O(logN) time using binary search.
This error may be caused by instructors focusing on the ability to
quickly find an element in a BST, while not emphasizing the same
ability for sorted ArrayLists.

4.5.2  Accessing by Negative Index. Twelve percent answered
only option a. Of the 30 students who answered this way, 19 of
them justified their answer by saying that an ArrayList would offer
direct or fast access to an index. This suggests that they believe that
accessing an ArrayList with a negative index would be possible.
This may partially have been prompted by our using array style
references in the problem description; we have since rewritten
this problem to avoid that array-like syntax. However, even with
this problem phrasing, these students believing that vals[-5] is a
valid way to access an ArrayList is troubling, and may point to a
misconception about valid ArrayList indices.

4.5.3 Ignoring Performance. Twelve percent of students’ an-
swers included either of the linked list responses (c or d), with the
most popular of these answers being q, ¢, and e (answered by 4%
of students). The justifications for these answers generally did not
mention performance, and focused on the fact that an implemen-
tation could be built using any of the data structures. (A sample
student answer is “All three data structures should work as long as
they arrange the elements by subscript meaning that if the subscript
can’t be found in all three of the structures, it wouldn’t exist in gen-
eral and you can’t access its value unless you know the subscript.”)
As we discuss in Section 4.6.1, this indicates that instructors may
wish to enhance their coverage of performance tradeoffs.

4.6 Implementing Undo

We designed Question 6 to test students’ ability to correctly use
existing data structures when implementing program functionality.
The correct answer to this problem is d, to add and remove from
the head, as this will maintain a LIFO ordering and both of these
operations can be performed in constant time.

Seventy-two percent of the students correctly chose d for this
problem, and of these, 60% mentioned the LIFO property in their
explanation of their answer. Seven percent chose a or b, choices
that do not provide a LIFO property.

4.6.1 Ignoring Performance. Thirteen percent of students chose
both ¢ and d, and an additional 4% chose only c. (Four percent
did not answer the question.) The relatively large percentage of



Imagine you are implementing “undo” functionality in a
program: you want to save the user’s actions with the abil-
ity to undo them in reverse order. For example, if a user per-
forms operations a, b, and then c, activating your undo func-
tion would undo first c, then b, then a. With the goal of
providing the best performance for your undo oper-
ation, which of the following data structures would
you use to store the user’s actions? Check all that ap-

ply.
For each of the following choices, assume the Singly-linked
List implementation has a reference only to its head (but

not its tail).

a. A singly-linked List that adds to tail and removes from
head.

b. A singly-linked List that adds to head and removes from
tail.

c. A singly-linked List that adds to tail and removes from
tail.

d. A singly-linked List that adds to head and removes from
head.

Briefly explain your reasoning:

students who chose ¢, either in addition to d or instead of it, in-
dicates that students may not well understand the performance
differences between the two, or may have not explicitly considered
performance in their answers. Of the 180 correct answers, 138 of
them mentioned time complexity as a justification for their answer.
Only one student who selected ¢ as an answer mentioned time
complexity, and they appeared to erroneously believe that ¢ and d
would take the same amount of time.

Instructors may want to spend more time discussing perfor-
mance and time complexity when covering how to choose an ex-
isting data structure for use in a larger program. That is, while
multiple data structures may each be “correct”, implementation
choices should also depend on performance considerations given
the methods that will be frequently called.

4.7 Shape of a BST

Question 7 was adapted from Karpierz and Wolfman [6] to test
students’ ability to predict how inserting into a binary search tree
would change its shape. In the Karpierz and Wolfman question,
there was an additional distractor answer:

This shape with either 1 or 7 at the root and other keys arranged
appropriately:

*

* k k%

What shape is a binary search tree that contains the keys
1,2,3, 4,5, 6,and 7? (Keys were not necessarily inserted
in that order.)

a. Exactly this shape:

b. Exactly this shape:

2 6
1 357

c. Exactly this shape:

d. There is not enough information to tell.

Briefly explain your reasoning:

We eliminated this distractor as it did not occur in our open-ended
interviews for the question. In the pilot of the Karpierz and Wolfman
concept inventory, students perform poorly on this question, with
42.3% answering correctly. In contrast, our students performed very
well on this question, with 87% correctly choosing d.

4.7.1 Default Balanced. Karpierz and Wolfman [6] identify a
“default balanced” misconception, where students assume that bi-
nary search trees will automatically be balanced. Thirty-six percent
of their students demonstrate this misconception by selecting either
b or their other balanced distractor answer. Only 6% (15) of our
students chose b. Twelve of these students mentioned the tree being
balanced in their answer, suggesting that the default balanced mis-
conception is present in our students, but to a lesser extent. It may
be that this misconception is population-dependent, or depends
in some way on sequencing or coverage of related course content.
Another possible explanation is that there is a priming effect of
Question 3, as that question asks in what order elements should be
inserted to form a balanced BST.



At the end of a course on Basic Data Structures, students
should be able to:

(1) Analyze runtime efficiency of algorithms related to
data structure design.

(2) Select appropriate abstract data types for use in a
given application.

(3) Compare data structure tradeoffs to select the ap-
propriate implementation for an abstract data type.

(4) Design and modify data structures capable of inser-
tion, deletion, search, and related operations.

(5) Trace through and predict the behavior of algo-
rithms (including code) designed to implement data
structure operations.

(6) Identify and remedy flaws in a data structure im-
plementation that may cause its behavior to differ
from the intended design.

Figure 1: Course-Level Learning Goals for Basic Data Struc-
tures [14]

4.7.2  Root Decides Shape. Among students who correctly chose
d for the answer, 7 students (2% of total answers) provided expla-
nations specifying that one would have to know the value of the
root node, rather than the insertion order. This implies that some
students believe the final shape of the tree is entirely dependent on
the root, and that the insertion order of the other elements does
not matter. Instructors may want to specify that all nodes, not just
the root, affect the shape of the final tree.

5 DISCUSSION

In this section we discuss the implications and limitations of our
work.

5.1 Question Relevance to Learning Goals

Recent work by Porter et al. [14] identified six course-level learning
goals for Basic Data Structures. These goals were reached through
a lengthy consensus process involving multiple experts at a variety
of institution types, and can be found in Figure 1. We mapped our
questions to those learning goals, and found that our questions
address four of the six goals. As our questions are aligned to well-
accepted goals for a core component of CS2, we hope that the
questions will be of use to instructors seeking to provide formative
feedback to their students.

A summary of our questions, student difficulties, and applicable
learning goals appears in Table 1. Although our questions address
the majority of the learning goals for Basic Data Structures, we
believe based on ongoing interviews that we have uncovered only
a small subset of relevant student difficulties. Further work, using
a variety of additional questions and students, is warranted.

5.2 Overmemorization

Many of the difficulties that we identified could be interpreted as
students trying to memorize facts about data structures, rather than

engaging core data structure concepts. For example, students may
memorize that they should use a loop to find the last node in a
singly-linked list, and so they do this even when there is a pointer
to the tail node. They may have memorized that the root of a BST
will never change, and so they claim the root will stay the median
value, even though the median changes. They may have memorized
that BSTs are used to quickly find an element, and so they overlook
that the same performance can be achieved using binary search on
an ArrayList.

Overall, this points to the need to augment how data structures
are taught. It seems that some students can excel in data structures
simply by memorizing a set of facts about each data structure
covered. Rather than focusing on recall, instructors should focus
on how students can use the facts about a given data structure to
predict data structure behavior and evaluate tradeoffs between data
structures.

5.3 Incorporating Student Difficulties

Awareness of common student difficulties is an important compo-
nent of pedagogical content knowledge. We hope that the collection
of difficulties identified during our interviews can both confirm
and supplement such knowledge that faculty who teach CS2 may
have acquired over time through their student interactions. This
knowledge has immediate application to the classrooms of all CS2
instructors, because it suggests the need for targeted interventions,
of whatever sort are customary for that instructor and class, to
address these areas of potential gaps in student mastery. For exam-
ple, an instructor who uses Peer Instruction in lectures could add a
clicker question to target each difficulty. An instructor who uses an
online platform for small coding exercises could similarly select or
write more-targeted exercises. Durable and broadly-used curricular
materials, such as textbooks and video-based online courses, could
also be updated to better target these difficulties.

5.4 Threats to Validity

Interview and test subjects were drawn from classes at highly se-
lective, research-focused schools. Although all students enrolled in
CS2 at those schools were encouraged to participate, this student
population may differ from CS2 students in other programs and
types of institutions. Additionally, students who self-select to par-
ticipate in interviews about CS2 or consent to have their work used
in research projects may not reflect the general CS2 population.

To account for this, at-scale validation of future drafts will in-
clude a broader range of institutions. This will likely not contribute
to further discovery of difficulties, a purpose served by the inter-
views and open-ended test, but will allow calibration on question
difficulty and validation that the identified difficulties are shared
by the new student populations.

Because this work was the first time these questions were ad-
ministered to a large group, there are instances where ambiguous
wording in the question led to confusion for students. We discussed
these issues earlier in the text where they are relevant. Though we
saw no evidence of language-related confusion, our choice to use a
pseudocode language could cause students to incorrectly answer a
question that they might otherwise have answered correctly had it
been presented in their preferred programming language.



Table 1: Summary of Questions, Difficulties, and Applicable Learning Goals

Question Goal Data structure Question Description

Difficulties

1 4 LL Add to tail

2 3 Many Fast index access

3 5 BST

4 5 BST Impact of BST insertions
5 3 Many Generalized array

6 2 LL Data Structure for undo
7 5 BST Shape of a BST

Failing to update tail

Failing to attach new node
Unnecessarily looping to find tail
Binary-searching doubly-linked list
Searching instead of indexing
Searching from both ends of a DLL

Insertion order to balance BST  Starting in the middle, alternating outward

Starting at the wrong root
Inserting in random order

Adding cannot take O(N) time
Adding cannot take O(log N) time
Root remaining the median
Binary search trees are always fastest
Indexing by negative indices
Ignoring performance

Ignoring performance

Default balanced [6]

Root determining shape

5.5 Future Work

This work is part of a long-term research project with the goal
to create and validate a programming language-independent con-
cept inventory (CI) for the Basic Data Structures component of
CS2. A Cl is a standardized test instrument designed to determine
whether students correctly grasp core concepts of a topic area [23].
A reliable, valid CI can catalyze research and improvements in
pedagogical practice for a subject by providing a common point
of reference for measurements of student outcomes. Without an
available CI, researchers are forced to cull questions from various
sources and independently verify the effectiveness of the test that
they construct [24].

Two early steps in the CI development process are the identi-
fication of student difficulties and the creation of an open-ended
test [23]. Future work involves the creation of a test containing ques-
tions in multiple-choice format; validating these questions through
additional rounds of interviews; and administering the questions
to several large classes for the purposes of statistical analysis.

6 CONCLUSION

In this work, we explore student difficulties about Basic Data Struc-
tures, adding to the limited but growing work in this area. In partic-
ular, our work explores similar difficulties to those of Karpierz and
Wolfman [6], Danielsiek et al [2], and Paul and Vahrenhold [13].
We offer a look at related, and in some cases the same, material, but
with a different student population, and discover both similar and
different student difficulties.

We hope that these difficulties provide instructors new insight
into problems students may have when learning data structures.
However, we caution against assuming that these are the only
difficulties that students may have. Student difficulties may vary
based on student population and the way course content is covered,
both in Basic Data Structures and in courses they have previously

taken, as the contrast between some of our results and the results of
previous work with different student populations shows [2, 6, 13].
Our future work includes extending our measurement of these
difficulties to a much broader student population across a variety
of institutions and instructors.

This work represents a first step towards quantifying student
difficulties about Basic Data Structures. Some instructors may feel
that some of these difficulties are obvious (or perhaps outlandish,
depending on what they have observed of their own students) and
dispute the need for formal work in this area. However, rigorous
steps towards eliciting and measuring student difficulties allow in-
structors to focus their limited time and resources to where students
are most likely to struggle. It is known that instructors often fail
to anticipate student difficulties or understand the misconceptions
that lead students to generate incorrect and “confusing” interpre-
tations of concepts [3]. We urge further exploration of Basic Data
Structures difficulties so as to facilitate more productive discussion
and learning of this critical material among our students.
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