
Example 1:
ls | sort

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3

4

5

Shell’s Descriptor Table

User enters command:
ls | sort

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Shell’s Descriptor Table

User enters command:
ls | sort

Shell creates a pipe(), which occupies the
next two positions in the table. Pipe
must be created before forking so that
both children inherit the pipe.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

(Parent) Shell’s Descriptor Table

User enters command:
ls | sort

Shell forks two child process. One to
become ls, another to become sort.
Both get copies of the parent’s
descriptor table.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 1 (to become ls)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 2 (to become sort)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

(Parent) Shell’s Descriptor Table

User enters command:
ls | sort

At this point, the children have
everything they need, so the parent shell
can close both ends of the pipe.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 1 (to become ls)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 2 (to become sort)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

(Parent) Shell’s Descriptor Table

User enters command:
ls | sort

The child on the left of the pipe should
close the read end of the pipe, as it will
only be writing.

The child on the right of the pipe should
close the write end, as it will only be
reading.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 1 (to become ls)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 2 (to become sort)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

(Parent) Shell’s Descriptor Table

User enters command:
ls | sort

The child on the left of the pipe should
close the read end of the pipe, as it will
only be writing.

The child on the right of the pipe should
close the write end, as it will only be
reading.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 1 (to become ls)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 2 (to become sort)

Note: ALL PROCESSES must close the write end of the pipe for the pipe to
eventually generate an “end of file” (EOF). Otherwise, the second child
will wait forever for more data that might be coming through the pipe.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

(Parent) Shell’s Descriptor Table

User enters command:
ls | sort

The child on the left uses dup2() to copy
the write end of the pipe into position 1
of the table.

The child on the right uses dup2() to
copy the read end of the pipe into
position 0 of the table.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out Pipe write end

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 1 (to become ls)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in Pipe read end

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 2 (to become sort)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

(Parent) Shell’s Descriptor Table

User enters command:
ls | sort

Everything is now set up correctly, and
the child processes are ready to exec().
The ls process will write into the pipe
without even realizing it, and the sort
process will read from it.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out Pipe write end

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 1 (to become ls)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in Pipe read end

1 Standard out (terminal output)

2 Standard error (terminal output)

3 Pipe read end

4 Pipe write end

5

Child 2 (to become sort)

Example 1:
./standard_out_error 1> out.txt 2> err.txt

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3

4

5

Shell’s Descriptor Table

User enters command:
./standard_out_error 1> out.txt 2> err.txt

No need for the parent shell to
manipulate any FDs if there’s no pipe.
The child process can open files and call
dup2() without any need to inherit any
changes.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3

4

5

Shell’s Descriptor Table

User enters command:
./standard_out_error 1> out.txt 2> err.txt

Shell forks a child process, which will
eventually execute the
standard_out_error program.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3

4

5

Child (to become standard_out_error)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3

4

5

Shell’s Descriptor Table

User enters command:
./standard_out_error 1> out.txt 2> err.txt

Child opens files for the I/O redirects.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3 File out.txt (open for writing)

4 File err.txt (open for writing)

5

Child (to become standard_out_error)

Both of these files need to open for writing:
open([filename], O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);

If you were opening for reading (to replace stdin), it would look like:
open([filename], O_RDONLY);

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3

4

5

Shell’s Descriptor Table

User enters command:
./standard_out_error 1> out.txt 2> err.txt

Child uses dup2() to move the file
designated by 1> into position 1 of the
table (replacing standard out).

Child uses dup2() to move the file
designated by 2> into position 2 of the
table (replacing standard error).

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out File out.txt (open for writing)

2 Standard error File err.txt (open for writing)

3 File out.txt (open for writing)

4 File err.txt (open for writing)

5

Child (to become standard_out_error)

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out (terminal output)

2 Standard error (terminal output)

3

4

5

Shell’s Descriptor Table

User enters command:
./standard_out_error 1> out.txt 2> err.txt

Everything is now set up correctly, and
the child is ready to exec():

The child process will send its output
into the file(s) without needing to
change the program at all.

File Descriptor Number Associated stream/file/socket/pipe

0 Standard in (terminal input)

1 Standard out File out.txt (open for writing)

2 Standard error File err.txt (open for writing)

3 File out.txt (open for writing)

4 File err.txt (open for writing)

5

Child (to become standard_out_error)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

