
Input / Output
Kevin Webb

Swarthmore College

April 11, 2024

Fortunately, the charging one has been solved now that we've all standardized on mini-USB. Or is it micro-USB?

xkcd #927

https://xkcd.com/927/

Today’s Goals

• Characterize devices the landscape of I/O devices.

• Mechanisms for data transfer, interacting with devices, and initiating I/O

• Device drivers and their place in OS structure.

• I/O interfaces for userspace applications.

Device Diversity

• Thus far: lots of focus on one specific I/O type: files & disk.

• Devices we’ve seen so far are the big / important ones:
• CPU: Differences in ISA, but overall behavior similar: execute instructions.

• Memory: Stores data when powered.

• Disks: have some interesting variations (spinning vs. SSD)

• General I/O takes this to another level!

Devices for Machines

• Some I/O helps machine to talk to other machine devices:

• Most devices are for PEOPLE!

Devices for People

I/O Device Data Rates

Device Transfer Rate

Keyboard ~ 10 Bytes / sec

Mouse ~ 100 Bytes / sec

… …

Spinning Hard Disk ~ 100 Megabytes / sec

… …

Fast Network Card (10 GBE) ~ 1.2 Gigabytes / sec

Graphics Card / GPU Up to 16 Gigabytes / sec

System Hardware and Connections

CPU

Memory Bus

Memory Slots

CPUs

System Hardware and Connections

CPU

I/O Controller
(Southbridge)

Memory Bus

Memory Slots
High-speed device slots(e.g., PCI-e x16)

CPUs

System Hardware and Connections

CPU

I/O Controller
(Southbridge)

Memory Bus

Memory Slots
High-speed device slots(e.g., PCI-e x16)

I/O Bus (e.g., PCI)

Device slots (e.g., PCI, PCI-e x1)

USB
Controller

IDE
Controller

SATA
Controller …

CPUs

Goal for I/O: Move data between
devices and memory.

Three Big I/O Questions

1. Which device should move data?

2. How does the OS communicate with a device (e.g., send it a request)?

3. How does the OS learn when a device has data available?

Which component should be responsible for
moving data between the memory and device(s)?
Why?

A. The CPU.

B. The memory.

C. The device that has data to move.

D. Some other component.

Programmed I/O vs. Direct Memory Access

• Programmed I/O (PIO)
• CPU transfers data between device and memory.

• Direct Memory Access (DMA)
• Device communicates directly with memory.

• We commonly use both of these methods!

PIO vs. DMA

I/O Device

CPU

Memory

Want to move data
from device to memory.

PIO vs. DMA

I/O Device

CPU

Memory

Want to move data
from device to memory.

PIO vs. DMA

I/O Device

CPU

Memory

Want to move data
from device to memory.

Request

PIO vs. DMA

I/O Device

CPU

Memory

Want to move data
from device to memory.

Data

PIO vs. DMA

I/O Device

CPU

Memory

Want to move data
from device to memory.

Data

PIO vs. DMA

I/O Device

CPU

Memory

Want to move data
from device to memory.

PIO vs. DMA

I/O Device

CPU

Memory

Want to move data
from device to memory.

Request

PIO vs. DMA

I/O Device

CPU

Memory

Want to move data
from device to memory.

Data

PIO vs. DMA

I/O Device

CPU

Memory

Want to move data
from device to memory.

I did it!

What types of devices would you expect to
use PIO? DMA? Why?

Initiating I/O

• PIO and DMA help us move data.

• How do we tell the device what to do?

I/O Device

CPU

Request

How do we tell a device what to do?

• Example: suppose you have an IBM model M keyboard and you want
to light up the caps lock light…

How do we tell a device what to do?

• The device has a controller, with some registers. One of the registers
controls the status lights.

How can the OS issue a command to a device?

• Suppose you’re writing the kernel code. What does it look like?

• How might we make reading/writing those registers available to
kernel code?

Interacting with Devices

• Port-mapped I/O
• Assign each device to a numbered I/O port.

• Access device’s registers through port-based CPU instructions.

• Memory-mapped I/O
• Logically place device’s registers into kernel’s address space.

• Access registers by issuing standard memory load / store instructions.

• Memory-mapped I/O is (almost?) exclusively used today.

Memory-Mapped I/O

• OS kernel’s virtual address space is typically much larger than physical
memory. (e.g., 48-bit VAS -> address 256 TB)

PCB Data

Page tables

Disk caches
…

0

256 TB

Lots of unused addresses…

Memory-Mapped I/O

• OS kernel’s virtual address space is typically much larger than physical
memory. (e.g., 48-bit VAS -> address 256 TB)

PCB Data

Page tables

Disk caches
…

Device control registers

0

256 TB

Writing to this region of VAS does
NOT touch system memory. It

changes the device state!

Detecting Available Input

• PIO and DMA help us move data.

• MMIO gives us a mechanism for talking to device.

• How can we determine that a device
has data for us?

I/O Device

CPU

I have something
for you!

How should the OS learn that a device has input
available? Why? Under what conditions?

A. Ask the device if it has data.

B. Let the device signal the OS if it has data.

C. Learn about data via some other mechanism.

Polling vs. Interrupts

• Polling: periodically ask device “hey, do you have anything for me?”

• Interrupts: device signals CPU to stop what it’s doing, context switch
to OS so that it can initiate data transfer.

• Most devices use interrupts to avoid wasted polling time.

• In some cases, it might make sense to switch to polling:
• “Eliminating Receive Livelock in an Interrupt-driven Kernel” (1997)

Interrupt Handlers

• If a device uses interrupts, the OS needs a ‘handler’ for it.
• Disk: wake up the process that blocked requesting disk access

• Network: copy newly-received data from device to kernel buffer

• When interrupt signal sent to CPU, determine which device sent it,
and which handler to invoke.

• Analogous to system calls, OS keeps a table with unique numbers for
each device. Maps device to handler code.

The story so far…

• Lots of decisions to be made in accessing a device:
• PIO vs. DMA, ports vs. MMIO, polling vs. interrupts

• Available options depend on hardware support, of course.

• In OS, control for each device implemented in device driver.

• Drivers often loaded as OS kernel modules.

OS Kernel (core services):
Signal handling, I/O system, swapping, scheduling,

page replacement, virtual memory

file
system:

ext4

file
system:

fat32

device
driver:

USB disk

Device Drivers

• Executes in OS kernel address space. (except for microkernels)

• Defines how to interact with device…
• Where the device’s registers are mapped in memory

• What type of device it is (how users interact with it)

• Device types: character, block, network
• Block: disk-like device, typically can do random access, transfers large chunks

• Character: transfers a stream of characters, data typically consumed when read

• Network: transfers small data chunks (packets)

Device Drivers

• Executes in OS kernel address space.
• Hold on… we’re extending the trusted kernel code?

• Who writes these…where do they come from?
• Linux: almost all drivers provided by kernel devs, open source code.

• Windows: some drivers provided by Microsoft, many by device maker.

• OS X: somewhere in between. Most from Apple, occasionally device maker.

• Do we trust these drivers? What happens if something goes wrong?

Windows BSOD
When drivers go bad…

Driver support was a major
contributing factor to the
Windows Vista “disaster”,
particularly at launch.

I/O Software Structure: Layered

Device
driver

Device-Independent I/O

User I/O (stdio library)

Device
driver

Device
controller

Device
driver

Device Dev Dev

Device
controller

Device
controller

Device
controller

Device Dev Dev

U
se

rs
p

ac
e

Ke
rn

el
H

ar
d

w
ar

e

User Process

Where would you expect to find an interrupt handler?
A caching implementation? Why?

Device
driver

Device-Independent I/O

Device
driver

Device
driver

Ke
rn

el

Answer Choice Interrupt Handler Caching

A Device driver Device driver

B Device-independent Device driver

C Device driver Device-independent

D Device-independent Device-independent

I/O Software Structure: Layered

Device
driver

Device-Independent I/O

User I/O (stdio library)

Device
driver

Device
controller

Device
driver

Device Dev Dev

Device
controller

Device
controller

Device
controller

Device Dev Dev

U
se

rs
p

ac
e

Ke
rn

el
H

ar
d

w
ar

e
User Process

Perform I/O operation

Wakeup driver when I/O
completed

Control via device registers,
handle interrupts

Naming, protection, blocking,
buffering, caching

Make I/O request, get I/O response

Buffering, formatting

I/O Software Structure: Layered

Device
driver

Device-Independent I/O

User I/O (stdio library)

Device
driver

Device
controller

Device
driver

Device Dev Dev

Device
controller

Device
controller

Device
controller

Device Dev Dev

U
se

rs
p

ac
e

Ke
rn

el
H

ar
d

w
ar

e
User Process

Perform I/O operation

Wakeup driver when I/O
completed

Control via device registers,
handle interrupts

Naming, protection, blocking,
buffering, caching

Make I/O request, get I/O response

Buffering, formatting

Recall: OS Buffering

P1 P2

kernel kernel
Network

“series of tubes”

send(to, data) recv(from, data)

TCP/IP Socket Buffer TCP/IP Socket Buffer

Kernel’s buffers have finite storage space!

If the buffer is empty, OS will mark the receiver
process as blocked – can’t read data before it arrives!

If sender fills buffer, OS will mark the process as
blocked – can’t be scheduled until space is free.

(From IPC Slides)

General Device Buffering

P1 P2

kernel

write(to, data) read(from, data)

Device A: Output buffer

Input buffer

Device B: Output buffer

Input buffer

Why should the OS buffer data to/from
devices?

Why OS Buffering?

• Speed mismatch between device and user process.
• analogous to producer/consumer problem

• store produced items (data) in buffer, smooth out bursty requests

• Data transfer size mismatch between device and user process.
• e.g., receive large chunk of data from network, user only wants a few bytes

• DMA requires large, aligned, contiguous chunks of reserved memory.
• better not to rely on the user to set that up…

I/O Software Structure: Layered

Device
driver

Device-Independent I/O

User I/O (stdio library)

Device
driver

Device
controller

Device
driver

Device Dev Dev

Device
controller

Device
controller

Device
controller

Device Dev Dev

U
se

rs
p

ac
e

Ke
rn

el
H

ar
d

w
ar

e
User Process

Perform I/O operation

Wakeup driver when I/O
completed

Control via device registers,
handle interrupts

Naming, protection, blocking,
buffering, caching

Make I/O request, get I/O response

Buffering, formatting

Unix: I/O System Calls

• For most devices, uniform access via file system interface:
• fd = open(“/dev/devname”, …);

• bytes_read = read(fd, buf, count);

• bytes_written = write(fd, buf, count);

• ioctl(fd, request, …);

• close(fd);

• Notable exceptions:
• Devices that userspace can’t access directly (e.g., timers used for scheduling).

• Network adapters – FS interface awkward due to addressing.

What is ioctl()?

• ioctl is a “catch-all” for all I/O commands that are not
open/close/read/write.

• It takes a “request” parameter that the I/O device then translates into
the actual command it executes.
• e.g., asking a USB device its transfer rate (USB 1 vs. USB 2)
• e.g., instructing CD-ROM device to eject the disc.

#include <sys/ioctl.h>

 int ioctl(int fd, unsigned long request, ...);

Common I/O Interface

• Processes can mix and match descriptors (e.g., shell redirection).

• OS can cache / buffer / protect data in device-independent way.

• Easier for humans to remember!

“Synchronous” I/O

• For most devices, uniform access via file system interface:
• fd = open(“/dev/devname”, …);

• bytes_read = read(fd, buf, count);

• bytes_written = write(fd, buf, count);

• ioctl(fd, request, …);

• close(fd);

• The functions above are synchronous: when the user calls them, they
need them to happen now. Can’t make progress until they’re done.

This is the most common form of I/O, and it’s what we’ve been assuming all along:
You perform I/O, which is slow, so you have to block while you wait!

Alternative: Asynchronous I/O

Alternative: Asynchronous I/O

Issue a read or write request in the background, but don’t
block waiting for it. In the mean time, process can continue
working on other things.

Notification options when request completes:
1. Do nothing, my process will check later.
2. Send my process a signal.
3. Start a new thread in my process with the specified function.

Alternative: Asynchronous I/O

Summary

• Huge diversity in I/O devices, with many different characteristics.

• Many choices in interacting with devices:
• Programmed I/O (PIO) vs. Direct Memory Access (DMA)
• Port-mapped I/O vs. Memory-mapped I/O
• Polling vs. Interrupts

• Devices controlled by OS driver code.

• I/O interface usually synchronous, alternatives for asynch exist.

	Slide 1: Input / Output
	Slide 2: Today’s Goals
	Slide 3: Device Diversity
	Slide 4: Devices for Machines
	Slide 5: Devices for People
	Slide 6: I/O Device Data Rates
	Slide 7: System Hardware and Connections
	Slide 8: System Hardware and Connections
	Slide 9: System Hardware and Connections
	Slide 10: Three Big I/O Questions
	Slide 11: Which component should be responsible for moving data between the memory and device(s)? Why?
	Slide 12: Programmed I/O vs. Direct Memory Access
	Slide 13: PIO vs. DMA
	Slide 14: PIO vs. DMA
	Slide 15: PIO vs. DMA
	Slide 16: PIO vs. DMA
	Slide 17: PIO vs. DMA
	Slide 18: PIO vs. DMA
	Slide 19: PIO vs. DMA
	Slide 20: PIO vs. DMA
	Slide 21: PIO vs. DMA
	Slide 22: What types of devices would you expect to use PIO? DMA? Why?
	Slide 23: Initiating I/O
	Slide 24: How do we tell a device what to do?
	Slide 25: How do we tell a device what to do?
	Slide 26: How can the OS issue a command to a device?
	Slide 27: Interacting with Devices
	Slide 28: Memory-Mapped I/O
	Slide 29: Memory-Mapped I/O
	Slide 30: Detecting Available Input
	Slide 31: How should the OS learn that a device has input available? Why? Under what conditions?
	Slide 32: Polling vs. Interrupts
	Slide 33: Interrupt Handlers
	Slide 34: The story so far…
	Slide 35: Device Drivers
	Slide 36: Device Drivers
	Slide 37: Windows BSOD
	Slide 38: I/O Software Structure: Layered
	Slide 39: Where would you expect to find an interrupt handler? A caching implementation? Why?
	Slide 40: I/O Software Structure: Layered
	Slide 41: I/O Software Structure: Layered
	Slide 42: Recall: OS Buffering
	Slide 43: General Device Buffering
	Slide 44: Why should the OS buffer data to/from devices?
	Slide 45: Why OS Buffering?
	Slide 46: I/O Software Structure: Layered
	Slide 47: Unix: I/O System Calls
	Slide 48: What is ioctl()?
	Slide 49: Common I/O Interface
	Slide 50: “Synchronous” I/O
	Slide 51: Alternative: Asynchronous I/O
	Slide 52: Alternative: Asynchronous I/O
	Slide 53: Alternative: Asynchronous I/O
	Slide 54: Summary

