
File System Structure
Kevin Webb

Swarthmore College

March 28, 2024

Today’s Goals

• Characterizing disks and storage media

• File system: adding order and structure to storage

• FS abstractions (files, directories, paths) and their implementation
with data structures (inodes, block pointers, directory entries)

Motivation for File Systems

• Long-term storage is needed for
• user data: text, graphics, images, audio, video

• user programs

• system programs (including OS kernel) and data

• Persistent: remains “forever”

• Large: “unlimited” size

• Sharing: controlled access

• Security: protecting information

Using Disks for Storage

• Why disks: persistent, random access, cheap

Source: http://www.mkomo.com/cost-per-gigabyte

Source: https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/

Using Disks for Storage

• Why disks: persistent, random access, cheap

• Biggest hurdle to OS: disks are slow

Disk Geometry

• Disk components
• Platters

• Surfaces

• Tracks

• Sectors

• Cylinders

• Arm

• Heads

Spindle

Read/Write Head

Platters

SATA Interface

Arm

Disk Geometry

• Moving parts: spinning platters, disk actuator arm

• seek time: moving the arm to the desired track

• rotational latency: turning the platter so that the desired data is under the head

sector

track cylinder

disk r/w
head(s)

platters

disk arm

Implications of moving parts…

• https://www.youtube.com/watch?v=tDacjrSCeq4

• Disks have a MUCH higher failure rate than most other components

• PSA: back up your data!

https://www.youtube.com/watch?v=tDacjrSCeq4

Should the OS take these disk parameters into
account when using a disk? Why or why not?
• Disk components

• Platters

• Surfaces

• Tracks

• Sectors

• Cylinders

• Arm

• Heads

A. Yes B. No C. It depends (on?)

Disk Interaction

• In the old days: specifying disk requests required a lot of info:
• Cylinder #, head #, sector # (CHS)
• Disks didn’t have controller hardware built-in

• Very early OSes needed to know this info to make requests, but didn’t
attempt to optimize data storage for it.

• ~mid 80’s: “fast file system” emerged, which took disk geometry into
account.
• Paper: “A Fast File System for Unix”
• Example disk in paper is 150 MB

Disk Interaction

• Problem: storage increased rapidly, only 10 bits available for cylinder
• Maximum size disk that could be represented: approx. 500 MB

• “Solution”: put a hardware controller on the disk
• Controller lies to the OS about how many sectors and heads are available

• Controller translates request from OS to actual >10-bit cylinder number

• More problems: disk complexity increases, new types of disk (SSD)

For history, see: http://jdebp.eu/FGA/os2-disc-and-volume-size-limits.html

http://jdebp.eu/FGA/os2-disc-and-volume-size-limits.html

Modern Disk Interaction

• Very simple block number interface:
• disk is divided into N abstract blocks (traditionally 512 B, today often 4 KB)

• read(block #)

• write(block #, data)

• Trust the disk controller.
• Convert block number to the “right” place in disk geometry.

• For some disks (SSDs), this may not even be the same location every time!

• Significant research happening now in new types of storage.

Storage Abstraction for File System

Spinning
Disk

Abstraction: Illusion of an array of blocks.

Block 0

Block 1

Block 2

Block n-1

SSD

Storage Abstraction for File System

Spinning
Disk

Abstraction: Illusion of an array of blocks.

Block 0

Block 1

Block 2

Block n-1

SSD

Can I have block 5?

Here’s block 5! Block 5

File Systems

• Disk “reality” to the OS: here’s a bunch of blocks, go crazy!

• File System: Add order and structure to the blocks.
• Abstractions: files, directories, and others

FS Abstraction: Hierarchical Name Space - “Tree”
“Root”

/

home usr var

soni kwebb fontes

TODO CS45 Paths:
/home/kwebb/TODO
/home/soni

Query path

Retrieve file
info/data

File Systems

• Disk “reality” to the OS: here’s a bunch of blocks, go crazy!

• File System: Add order and structure to the blocks.
• Abstractions: files, directories, and others

• Control how data is stored and retrieved.

• Translate high-level abstractions into low-level block requests.

• There are LOTS of ways to build file systems.
• We’re going to mainly focus on “traditional” structure.

Data vs. Metadata

• Data: the files, directories, and other stuff you’re storing for the user.

• Metadata: information you’re storing about your data.
• Example for entire FS: What type of FS is it? How large is it?
• Example for one file: Where are the file’s blocks located on disk?

• Data: for the user or programs

• Metadata: for the system to make the file system work

• Both data and metadata stored together on disk!

File System Metadata

• Information about the FS as a whole.

• For most file systems, use the first few blocks to store
global metadata.

• Includes:
• Type of file system.

• Block size.

• Of the remaining blocks, which are free/in use. (% full)

FS Metadata

FS Metadata

First block: “superblock”

Possibly replicated,
for redundancy.

File Metadata

• Next region stores information about files.

• NOT the contents of the files!

FS Metadata

File
Metadata

What is a file?

• To the FS, a collection of attributes:
• Type

• Times: creation, accessed, modified

• Sizes: current size, maximum size

• Structure: where is the content stored on disk?

• Access control (permissions)

• Others?

What about the file's name?

FS Abstraction: Hierarchical Name Space - “Tree”
“Root”

/

home usr var

soni kwebb fontes

TODO CS45Kevin-TODO The same file can appear in multiple
locations. (hard linking)
Not used commonly.

What about the file's name?

• File name is metadata, but it's not associated with the
file itself.

• File name comes from the directory it's linked into.

(More on directories later…)

What is a file?

• To the FS, a collection of attributes:
• Type

• Times: creation, accessed, modified

• Sizes: current size, maximum size

• Structure: where is the content stored on disk?

• Access control (permissions)

• Others?

?

Regarding file types…

A. The OS distinguishes between file types.

B. The user distinguishes between file types.

C. Both the OS and users distinguish between file types.

D. Nobody distinguishes between file types, files are all just files.

File Type

• To a human user:
• Is this a music file? text file? video? pdf?

• To distinguish…
• name the file with a suffix

• add special “magic number” in beginning of file (e.g., Java: 0xCAFEBABE)

• OS does NOT care what your files are. You ask for bytes, it delivers them.

• To the OS:
• How should I interpret these bytes?

• regular file? directory? device? FIFO (named pipe)?

File Metadata

• Information about files.
• Everything we know about a file encapsulated in inode structure.
• Each file has an inode.

• Typically about 2-5% of blocks reserved for inodes.

• Every file needs an inode. It includes:
• Type of file (to the OS).
• File size.
• Most recent modification time.
• Number of times file is hard linked.
• Block(s) it’s stored in on disk.
• Many more…

• NOT the name of the file. (it might be linked from multiple directories)

FS Metadata

File
Metadata

File Metadata

• Information about files.
• Everything we know about a file encapsulated in inode structure.
• Each file has an inode.

• Typically about 2-5% of blocks reserved for inodes.
• inodes are a file system resource!

• Includes:Type of file (to the OS).
• File size.
• Most recent modification time.
• Number of times file is hard linked.
• Block(s) it’s stored in on disk.
• Many more…

• NOT the name of the file. (it might be linked from multiple directories)

FS Metadata

File
Metadata

Data Blocks

• Rest of disk: data blocks
• Stores file contents.

• How do we find the data on disk?
• In file metadata (inode): Block(s) file is stored in on disk.

• Once we’ve found the metadata for a file, it will tell us which
blocks the data is in.

FS Metadata

File
Metadata

Data Blocks

Data Blocks

• In the inode structure for a file, there is a collection
of “block pointers”.

FS Metadata

File
Metadata

Data Blocks

inode

Type: reg file
Size: X bytes
Last modified: data/time
…
Block pointers:

…

“Block map”

Data Blocks

• In the inode structure for a file, there is a collection
of “block pointers”.

FS Metadata

File
Metadata

Data Blocks

inode

Type: reg file
Size: X bytes
Last modified: data/time
…
Block pointers:

6

…

Data Blocks

• In the inode structure for a file, there is a collection
of “block pointers”.

FS Metadata

File
Metadata

Data Blocks

inode

Type: reg file
Size: X bytes
Last modified: data/time
…
Block pointers:

14

6

8

11
…

Suppose a block is 1 KB (210 bytes). How many
block pointers does an inode need to support a
maximum file size of 16 GB (234 bytes)?

A: 210 pointers B: 216 pointers

C: 224 pointers D: 234 pointers

E: Some other number of pointers Block size: 1 KB

…

?

How many block pointers do we need?

• Suppose one block stores 4 KB (212 bytes) of data.

• Suppose we want an FS to support files up to 64 GB (236 bytes).

• How many block pointers does an inode need?
• 236 / 212 = 224 block pointers

• If each pointer is 64 bits (8 bytes)…

• 224 pointers -> 128 MB of block pointers for every file.

Hold up…

• Every inode needs 128 MB of pointers?!?

• What if I want to store a small 1 KB file…

• I have to store 128 MB of metadata?

• Problem: FS doesn’t know in advance how big a file is going
to be, so we need a lot of block pointers in case it’s big.

• Having lots of pointers makes our inodes large (e.g., 128 MB).

• Result: If we want to store a small file (e.g., 1 KB) it ends up
using a lot of disk space.

• What can we do about this?

Recall: Multi-Level Page Tables

Virtual Address

1st-level Page d Offset i

FrameV …R M

2nd-level Page p

FrameV …R MPoints to (base) frame
containing 2nd-level
page table

concat

Physical Address

Insight: VAS is typically
sparsely populated.

Idea: every process gets a
page directory (1st-level table)

Only allocate 2nd-level tables
when the process is using
that VAS region!

Level of Indirection

Block Map (Traditional FS Design)

• inode contains total 13 pointers (104 bytes per inode!)
• 10 direct: references 10 data blocks

• 1 singly-indirect: references n data blocks

• 1 doubly-indirect: references n2 data blocks

• 1 triply-indirect: references n3 data blocks

• For a data block of 4096 bytes
• Assuming pointer requires 8 bytes, n = 512

• Max file size: (10 + 512 + 5122 + 5123) * 4096 ≈ 512 GB

MUCH larger max file size.

inode is now WAY smaller:
104 byte block map vs. 128 MB

Storage space for file metadata
(inode’s block map) now scales
with file size.

This all sounds great!
Is it free?

Block Pointers

Direct: 10 x 4 KB = 40 KB
Single Indirect: 512 x 4 KB = 2 MB

Double Indirect: 512 x 512 x 4 KB = 1 GB
Triple Indirect: 512 x 512 x 512 x 4 KB = 512 GB

…

Block
Map

Data
Blocks

Single
Indirect

Block

Ptrs to
Data

blocks

Double
Indirect

BlockTriple
Indirect

Block

Ptrs to
Single

Indirect
Blocks

Ptrs to
Double
Indirect
Blocks

…

…

Direct
pointers

Suppose we want to store a 100 KB file. How many
bytes of metadata will we need for our block map?

…

Block
Map

Data
Blocks

Single
Indirect

Block

Ptrs to
Data

blocks

Double
Indirect

BlockTriple
Indirect

Block

Ptrs to
Single

Indirect
Blocks

Ptrs to
Double
Indirect
Blocks

…

…

Direct
pointers

Block size: 4 KB (212)
Pointer size: 4 bytes

File Metadata (inode) Summary

• Information about files.
• Everything we know about a file encapsulated in inode structure.
• Each file has an inode.

• Typically about 2-5% of blocks reserved for inodes.

• Every file needs an inode. It includes:
• Type of file (to the OS).
• File size.
• Most recent modification time.
• Number of times file is hard linked.
• Block(s) it’s stored in on disk. (block map)
• Many more…

• NOT the name of the file. (it might be linked from multiple directories)

FS Metadata

File
Metadata

What’s in a name?
“Root”

/

home usr var

soni kwebb fontes

TODO CS45 Paths:
/home/kwebb/TODO
/home/soni

Query path

Retrieve file
info/data

So far, missing:

file path (name) -> inode

Directories

• A directory is a file.
• That is, just like a regular file, it has an inode, with attributes and a block map.

• What’s different/special about a directory?

• The OS interprets the data of a directory differently.
• Rather than ignoring the data and just handing to users (regular files)…

• Directory contains a collection of mappings: name -> inode number

Directory

…

Block
Map

Data
Blocks

Single
Indirect

Block

Ptrs to
Data

blocks

Double
Indirect

BlockTriple
Indirect

Block

Ptrs to
Single

Indirect
Blocks

Ptrs to
Double
Indirect
Blocks

…

…

Direct
pointers

Name inode number (inumber)

soni 7245

kwebb 10355

fontes 16873

… …

Data Blocks

• Rest of disk: data blocks

• Stores user file and directory content.
• Once we’ve found the metadata for a file, it will tell us which

blocks the data is in.

• If the data is a directory, it will refer to other file metadata.

FS Metadata

File
Metadata

Data Blocks

Directory Lookup Example

• Given pathname: /home/kwebb/TODO
1. Inode 0 block map points to data block(s) of root directory
2. Look up “home” in root directory to get inode 22
3. Inode 22 block map points to data block(s) of home directory
4. Look up “kwebb” in home directory to get inode 15
 …

inode 0 (root) inode 22 inode 15 inode 88

bin 37

boot 12

local 25

home 22

usr 67

meeden 62

newhall 44

adanner 21

kwebb 15

TODO 88

CS31 92

CS45 46

TODO
file data

File metadata

Data

The Big Picture
File

System
Metadata

File
Metadata

…

inodes

0

1

2

3

4

Block
Map

2

7

32

4

16

.

..

cat

dog

fish

contents
of “dog”

Data
Blocks

Directory

Regular file

Summary

• Modern disk interface let’s OS read/write numbered blocks.

• File system’s goal is to add nice user abstractions on top of blocks.

• We focused on two main file types (to the OS):
• Regular file: user data, OS doesn’t care what it contains

• Directory: maps names to inodes in the file system

	Slide 1: File System Structure
	Slide 2: Today’s Goals
	Slide 3: Motivation for File Systems
	Slide 4: Using Disks for Storage
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Using Disks for Storage
	Slide 9: Disk Geometry
	Slide 10
	Slide 11: Disk Geometry
	Slide 12: Implications of moving parts…
	Slide 13: Should the OS take these disk parameters into account when using a disk? Why or why not?
	Slide 14: Disk Interaction
	Slide 15: Disk Interaction
	Slide 16: Modern Disk Interaction
	Slide 17: Storage Abstraction for File System
	Slide 18: Storage Abstraction for File System
	Slide 19: File Systems
	Slide 20: FS Abstraction: Hierarchical Name Space - “Tree”
	Slide 21: File Systems
	Slide 22: Data vs. Metadata
	Slide 23: File System Metadata
	Slide 24: File Metadata
	Slide 25: What is a file?
	Slide 27: What about the file's name?
	Slide 28: FS Abstraction: Hierarchical Name Space - “Tree”
	Slide 29: What about the file's name?
	Slide 30: What is a file?
	Slide 31: Regarding file types…
	Slide 32: File Type
	Slide 33: File Metadata
	Slide 34: File Metadata
	Slide 35: Data Blocks
	Slide 36: Data Blocks
	Slide 37: Data Blocks
	Slide 38: Data Blocks
	Slide 39: Suppose a block is 1 KB (210 bytes). How many block pointers does an inode need to support a maximum file size of 16 GB (234 bytes)?
	Slide 40: How many block pointers do we need?
	Slide 41: Hold up…
	Slide 44
	Slide 46: Recall: Multi-Level Page Tables
	Slide 47: Block Map (Traditional FS Design)
	Slide 48: Block Pointers
	Slide 49: Suppose we want to store a 100 KB file. How many bytes of metadata will we need for our block map?
	Slide 50: File Metadata (inode) Summary
	Slide 51: What’s in a name?
	Slide 52: Directories
	Slide 53: Directory
	Slide 54: Data Blocks
	Slide 55: Directory Lookup Example
	Slide 56: The Big Picture
	Slide 57: Summary

