
Virtual Memory
Kevin Webb

Swarthmore College

February 29(!), 2024

Today’s Goals

• Describe the mechanisms behind address translation.

• Analyze the performance of address translation options.

• Explore page replacement policies for disk swapping.

Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Allow multiple processes to be in memory at
once, but isolate them from each other.

• Determine which subset of data to keep in
memory / move to disk.

• Allow the same physical memory to be
mapped in multiple process VASes.

• Make it easier to perform placement in a way
that reduces fragmentation.

• Map addresses quickly with a little HW help.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

libc code

Combination of hardware
and OS, working together.

In hardware, MMU:
Memory Management Unit

Simple (Unrealistic) Translation Example

P3

P1

P2

P2

0

P2max

0

Phymax

Base +

• Process P2’s virtual addresses don’t align with
physical memory’s addresses.

• Determine offset from physical address 0
to start of P2, store in base.

Generalizing

P2

0

P2max

0

Phymax

Base? +

P2

P2

P2

…

…

Base? +

Base? +

?

• Problem: process may not fit in one contiguous region

Generalizing

• Problem: process may not fit in one contiguous region

• Solution: keep a table (one for each process)
• Keep details for each region in a row

• Store additional metadata (ex. permissions)

• Interesting questions:
• How many regions should there be (and what size)?

• How to determine which row we should use?

P2

0

P2max

0

Phymax

P2

P2

P2

…

…
?

Perm Base

R, X

R

R, W

Defining Regions - Two Approaches

• Segmentation:
• Partition address space and memory into segments

• Segments have varying sizes

• Paging:
• Partition address space and memory into pages

• Pages are a constant, fixed size

Fragmentation
Internal

• Process asks for memory,
doesn’t use it all.

• Possible reasons:
• Process was wrong about needs

• OS gave it more than it asked for

• internal: within an allocation

External

• Over time, we end up
with these small
gaps that become more
difficult to use
(eventually, wasted).

• external: unused memory
between allocations

OS

Used

Memory allocated to process

Unused

Which scheme is better for reducing internal
and external fragmentation. Why?
A. Segmentation is better than paging for both forms of

fragmentation.

B. Segmentation is better for internal fragmentation, and paging is
better for external fragmentation.

C. Paging is better for internal fragmentation, and segmentation is
better for external fragmentation.

D. Paging is better than segmentation for both forms of fragmentation.

Segmentation vs. Paging

• A segment is good logical unit of information
• Can be sized to fit any contents

• Easy to share large regions (e.g., code, data)

• Protection requirements correspond to logical data segment

• A page is good physical unit of information
• Simple physical memory placement

• No external fragmentation

• Constant sizes make it easier for hardware to help

Generalizing

• Problem: process may not fit in one contiguous region

• Solution: keep a table (one for each process)
• Keep details for each region in a row

• Store additional metadata (ex. permissions)

• Interesting questions:
• How many regions should there be (and what size)?

• How to determine which row we should use?

P2

0

P2max

0

Phymax

P2

P2

P2

…

…
?

Perm Base

R, X

R

R, W

For both segmentation and paging…

• Each process gets a table to track memory address translations.

• When a process attempts to read/write to memory:
• It attempts to access a virtual address from its virtual address space

Address Translation

• Userspace process accesses memory by supplying an address:
• movq (%rax), %rcx

• Send the bits held in register %rax to memory to retrieve contents.

Virtual Address

Address bits

Address Translation

• Insight: we can use the address itself to make translation easier
• Break the address into two (or more) regions

• Interpret one (or more) regions as an index into the table

Virtual Address

Upper bits Lower bits

Address Translation
Virtual Address

Upper bits Lower bits

Physical Address

Phy LocMeta Perm …

Physical Memory

Table

Performance Implications
Virtual Address

Upper bits Lower bits

Physical Address

Phy LocMeta Perm …

Physical Memory

Table

Without VM:

Go directly to
address in memory.

With VM:

Do a lookup in
memory to
determine which
address to use.

Concept: level of indirection

Defining Regions - Two Approaches

• Segmentation:
• Partition address space and memory into segments

• Segments have varying sizes

• Paging:
• Partition address space and memory into pages

• Pages are a constant, fixed size

Segment Table

• One table per process

• Where is the table located in memory?
• Segment table base register (STBR)

• Segment table size register (STSR)

• Table entry elements
• V: valid bit (does it contain a mapping?)

• Base: segment location in physical memory

• Bound: segment size in physical memory

• Permissions

BoundBaseV Perm …STBR

STSR

Address Translation

• Physical address
= base of s + i

• First, do a series
of checks…

Virtual Address

Segment s

BoundBaseV Perm …

Offset i

Physical Address

Check if Segment s is within Range
Virtual Address

Segment s

BoundBaseV Perm …

STBR

STSR

s < STSR

Offset i

Physical Address

Check if Segment Entry s is Valid
Virtual Address

Segment s

BoundBaseV Perm …

STBR

STSR

V == 1

Offset i

Physical Address

Check if Offset i is within Bounds
Virtual Address

Segment s

BoundBaseV Perm …

STBR

STSR

i < Bound

Offset i

Physical Address

Check if Operation is Permitted
Virtual Address

Segment s

BoundBaseV Perm …

STBR

STSR

Perm (op)

Offset i

Physical Address

Translate Address
Virtual Address

Segment s

BoundBaseV Perm …

STBR

STSR

Offset i

+

Physical Address

Sizing the Segment Table

Virtual Address

Segment s

BoundBaseV Perm …

Offset i

Number of bits n
specifies max size
of table, where
number of entries
= 2n

Number of bits
needed to address
physical memory

Number of bits
needed to specify
max segment size

Number of bits n
specifies max size
of segment

Helpful reminder:

210 => Kilobyte
220 => Megabyte
230 => Gigabyte

Example of Sizing the Segment Table

• Given 32-bit virtual address space, 1 GB physical memory (max)
• 5 bit segment number, 27 bit offset

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

…

5 bit segment address, 32 bit logical address, 1 GB
Physical memory.
How many entries (rows) will we have in our
segment table?

A. 32: The logical address size is 32 bits

B. 32: The segment address is five bits

C. 30: We need to address 1 GB of physical memory

D. 27: We need to address up to the maximum offset

Example of Sizing the Segment Table

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

5 bits to address 25 =
32 entries

…

• Given 32-bit virtual address space, 1 GB physical memory (max)
• 5 bit segment number, 27 bit offset

How many bits do we need for the base?

A. 30 bits, to address 1 GB of physical memory.

B. 5 bits, because we have 32 rows in the segment table.

C. 27 bits, to address any potential offset value.

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

5 bits to address 25
= 32 entries

?
…

How many bits do we need for the base?

A. 30 bits, to address 1 GB of physical memory.

B. 5 bits, because we have 32 rows in the segment table.

C. 27 bits, to address any potential offset value.

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

5 bits to address 25
= 32 entries

?
…

1 GB

Example of Sizing the Segment Table

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

5 bits to address 25 =
32 entries

30 bits needed to
address 1 GB …

• Given 32-bit virtual address space, 1 GB physical memory (max)
• 5 bit segment number, 27 bit offset

How many bits do we need for the bound?

A. 5 bits: the size of the segment portion of the virtual address.

B. 27 bits: the size of the offset portion of the virtual address.

C. 32 bits: the size of the virtual address.

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

5 bits to address 25
= 32 entries

30 bits needed
to address 1 GB

?
…

How many bits do we need for the bound?

A. 5 bits: the size of the segment portion of the virtual address.

B. 27 bits: the size of the offset portion of the virtual address.

C. 32 bits: the size of the virtual address.

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

5 bits to address 25
= 32 entries

30 bits needed
to address 1 GB

?
…

128 MB
(max)

Example of Sizing the Segment Table

• Given 32 bit logical, 1 GB physical memory (max)
• 5 bit segment number, 27 bit offset

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

5 bits to address 25 =
32 entries

30 bits needed to
address 1 GB

27 bits needed to
size up to 128 MB…

?

Example of Sizing the Segment Table

• Given 32 bit logical, 1 GB physical memory (max)
• 5 bit segment number, 27 bit offset

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

5 bits to address 25 =
32 entries

30 bits needed to
address 1 GB

27 bits needed to
size up to 128 MB…

8 bytes needed to contain
61 (1+30+27+3+…) bits

Total table size?

Example of Sizing the Segment Table

• Given 32 bit logical, 1 GB physical memory (max)
• 5 bit segment number, 27 bit offset

Segment s: 5 bits

BoundBaseV Perm …

Offset i: 27 bits

5 bits to address 25 =
32 entries

30 bits needed to
address 1 GB

27 bits needed to
size up to 128 MB…

8 bytes needed to contain
61 (1+30+27+3+…) bits

Table size =
32 x 8 = 256 bytes

Pros and Cons of Segmentation

• Pro: Each segment can be
• located independently
• separately protected
• grown/shrunk independently

• Pro: Small segment table size

• Con: Variable-size allocation
• Difficult to find large enough gaps (or “best” gap) in physical memory
• External fragmentation

Defining Regions - Two Approaches

• Segmentation:
• Partition address space and memory into segments

• Segments have varying sizes

• Paging:
• Partition address space and memory into pages

• Pages are a constant, fixed size

Paging Vocabulary

• For each process, the virtual address space is divided into fixed-size
pages.

• For the system, the physical memory is divided into fixed-size frames.

• The size of a page is equal to that of a frame.
• Often 4 KB in practice.

• Some CPUs allow for small and large pages at the same time.

Page Table

• One table per process

• Table parameters in memory
• Page table base register

• Page table size register

• Table entry elements
• V: valid bit

• R: referenced bit

• D: dirty bit

• Frame: location in phy mem

• Perm: access permissions

FrameV Perm …PTBR

PTSR

R D

Address Translation

• Physical address =
frame of p + offset i

• First, do a series of
checks…

Virtual Address

Page p Offset i

Physical Address

FrameV Perm …R D

Check if Page p is Within Range
Virtual Address

Page p

PTBR

PTSR

p < PTSR

Offset i

Physical Address

FrameV Perm …R D

Check if Page Table Entry p is Valid
Virtual Address

Page p

PTBR

PTSR

V == 1

Offset i

Physical Address

FrameV Perm …R D

Check if Operation is Permitted
Virtual Address

Page p

PTBR

PTSR

Perm (op)

Offset i

Physical Address

FrameV Perm …R D

Translate Address
Virtual Address

Page p

PTBR

PTSR

Offset i

Physical Address

FrameV Perm …R D

concat

Physical Address by Concatenation
Virtual Address

Page p

PTBR

PTSR

Offset i

FrameV Perm …R D

Physical Address

Frame f Offset i

concat

Frames are all the same size. Only need to store the frame number in the table, not exact address!

Sizing the Page Table
Virtual Address

Page p Offset i

Number of bits n
specifies max size
of table, where
number of entries
= 2n

Number of bits needed to address
physical memory in units of frames

Number of bits
specifies page size

FrameV Perm …R D

Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
• Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

…

FrameV Perm …R D

Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
• Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

?

…

FrameV Perm …R D

How many entries (rows) will there be in this
page table?

A. 212, because that’s how many the offset field can address

B. 220, because that’s how many the page field can address

C. 230, because that’s how many we need to address 1 GB

D. 232, because that’s the size of the entire address space

• Given: 32 bit virtual addresses, 1 GB physical memory
• Address partition: 20 bit page number, 12 bit offset

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

…

FrameV Perm …R D

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

How big is a
frame?

…

FrameV Perm …R D

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

What will be the frame size, in bytes?

A. 212, because that’s how many bytes the offset field can address

B. 220, because that’s how many bytes the page field can address

C. 230, because that’s how many bytes we need to address 1 GB

D. 232, because that’s the size of the entire address space

• Given: 32 bit virtual addresses, 1 GB physical memory
• Address partition: 20 bit page number, 12 bit offset

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

Page size =
frame size =
212 = 4096 bytes

…

FrameV Perm …R D

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

How many bits do we need to store the
frame number?

• Given: 32 bit virtual addresses, 1 GB physical memory
• Address partition: 20 bit page number, 12 bit offset

• A: 12 B: 18 C: 20 D: 30 E: 32

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

?

Page size =
frame size =
212 = 4096 bytes

…

FrameV Perm …R D

Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
• Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits to address
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

Size of an entry?

FrameV Perm …R D

Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
• Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits to address
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

4 bytes needed to contain
24 (1+1+1+18+3+…) bits

FrameV Perm …R D

Total table size?

Example of Sizing the Page Table

• 4 MB of bookkeeping for every process?
• 200 processes -> 800 MB just to store page tables…

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits to address
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

4 bytes needed to contain
24 (1+1+1+18+3+…) bits

Table size =
1 M x 4 = 4 MB

FrameV Perm …R D

Pros and Cons of Paging

• Pro: Fixed-size pages and frames
• No external fragmentation

• No difficult placement decisions

• Con: large table size

• Con: maybe internal fragmentation

Which would you use? Why? Pros/Cons?

A. Segmentation:
• Partition address space and memory into segments

• Segments have varying sizes

B. Paging:
• Partition address space and memory into pages

• Pages are a constant, fixed size

C. Something else (what?)

x86: Hybrid Approach

• Design:
• Multiple lookups: first in segment table, which

points to a page table.

• Extra level of indirection.

• Reality:
• All segments are max physical memory size

• Segments effectively unused, available for
“legacy” reasons.

• (Mostly) disappeared in x86-64

VM PM
Page

Tables
Segment

Table

Outstanding Problems

• Mostly considering paging from here on.

1. Page tables are way too big. Most processes don’t need that many
pages, can’t justify a huge table.

2. Adding indirection hurts performance.

Outstanding Problems

• Mostly considering paging from here on.

1. Page tables are way too big. Most processes don’t need that many
pages, can’t justify a huge table.

2. Adding indirection hurts performance.

Solution:
MORE indirection!

Multi-Level Page Tables

Virtual Address

1st-level Page d Offset i

FrameV …R M

2nd-level Page p

FrameV …R MPoints to (base) frame
containing 2nd-level
page table

concat

Physical Address

How can using two (or
more) page table levels like
this reduce the table size?

Multi-Level Page Tables

Virtual Address

1st-level Page d Offset i

FrameV …R M

2nd-level Page p

FrameV …R MPoints to (base) frame
containing 2nd-level
page table

concat

Physical Address

Text

Data

Stack

OS

Heap

Multi-Level Page Tables

Virtual Address

1st-level Page d Offset i

FrameV …R M

2nd-level Page p

FrameV …R MPoints to (base) frame
containing 2nd-level
page table

concat

Physical Address

Insight: VAS is typically
sparsely populated.

Idea: every process gets a
page directory (1st-level table)

Only allocate 2nd-level tables
when the process is using
that VAS region!

Multi-Level Page Tables

• With only a single level, the page table must be large enough for the
largest processes.

• Multi-level table => extra level of indirection:
• WORSE performance – more memory accesses
• Much better memory efficiency – process’s page table is proportional to how

much of the VAS it’s using.

• Small process -> low page table storage

• Large process -> high page table storage, needed it anyway

Outstanding Problems

• Mostly considering paging from here on.

1. Page tables are way too big. Most processes don’t need that many
pages, can’t justify a huge table.

2. Adding indirection hurts performance.

How might these table registers help with
performance?

BoundBaseV Perm …STBR

STSR

FrameV Perm …PTBR

PTSR

R D

Memory Management Unit

• When a process tries to use memory,
send the address to MMU.

• MMU will do as much work as it can.
If it knows the answer, great!

• If it doesn’t, trigger exception (OS
gets control), consult software table.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

libc code

Combination of hardware
and OS, working together.

In hardware, MMU:
Memory Management Unit

Memory Management Unit (MMU)

• By knowing where the page table is for the running process:

1. The MMU can (sometimes) translate addresses on its own, without help
from the OS! (more on this next time)

2. The MMU can cache translation info for frequently used pages

Translation Cost

• Each application memory access now requires multiple accesses!

• Suppose memory takes 100 ns to access.
• one-level paging: 200 ns

• two-level paging: 300 ns

• Solution: Add hardware, take advantage of locality…
• Most references are to a small number of pages

• Keep translations of these in high-speed memory

Translation Look-aside Buffer (TLB)

• Fast memory mapping cache inside MMU keeps most recent translations
• If key matches, get frame number quickly

• otherwise, wait for normal translation (in parallel)

“key”

Page p or or [page d, page p] or [segment s, page p] Offset i

Match
key

frame

Frame f Offset i

Recall: Context Switching Performance

• Even though it’s fast, context switching is expensive:
1. time spent is 100% overhead

2. must invalidate other processes’ resources (caches, memory mappings)

3. kernel must execute – it must be accessible in memory

• Also recall: Advantage of threads
• Threads all share one process VAS

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Translation Cost with TLB

• Cost is determined by
• Speed of memory: ~ 100 nsec

• Speed of TLB: ~ 10 nsec

• Hit ratio: fraction of memory references satisfied by TLB, ~95%

• Speed to access memory with no address translation: 100 nsec

• Speed to access memory with address translation (2-level paging):
• TLB miss: 300 nsec (200% slowdown)

• TLB hit: 110 nsec (10% slowdown)

• Average: 110 x 0.95 + 300 x 0.05 = 119.5 nsec

TLB Design Issues

• The larger the TLB…
• the higher the hit rate

• the slower the response

• the greater the expense

• the larger the space (in MMU, on chip)

• TLB has a major effect on performance!
• Must be flushed on context switches

• Alternative: tagging entries with PIDs

Summary

• Many options for translation mechanism: segmentation, paging,
hybrid, multi-level paging. All of them: level(s) of indirection.

• Simplicity of paging makes it most common today.

• Multi-level page tables improve memory efficiency – page table
bookkeeping scales with process VAS usage.

• TLB in hardware MMU exploits locality to improve performance

	Slide 1: Virtual Memory
	Slide 2: Today’s Goals
	Slide 3: Address Translation: Wish List
	Slide 4: Simple (Unrealistic) Translation Example
	Slide 5: Generalizing
	Slide 6: Generalizing
	Slide 7: Defining Regions - Two Approaches
	Slide 8: Fragmentation
	Slide 9: Which scheme is better for reducing internal and external fragmentation. Why?
	Slide 10: Segmentation vs. Paging
	Slide 11: Generalizing
	Slide 12: For both segmentation and paging…
	Slide 13: Address Translation
	Slide 14: Address Translation
	Slide 15: Address Translation
	Slide 16: Performance Implications
	Slide 17: Defining Regions - Two Approaches
	Slide 18: Segment Table
	Slide 19: Address Translation
	Slide 20: Check if Segment s is within Range
	Slide 21: Check if Segment Entry s is Valid
	Slide 22: Check if Offset i is within Bounds
	Slide 23: Check if Operation is Permitted
	Slide 24: Translate Address
	Slide 25: Sizing the Segment Table
	Slide 26: Example of Sizing the Segment Table
	Slide 27: 5 bit segment address, 32 bit logical address, 1 GB Physical memory. How many entries (rows) will we have in our segment table?
	Slide 28: Example of Sizing the Segment Table
	Slide 29: How many bits do we need for the base?
	Slide 30: How many bits do we need for the base?
	Slide 31: Example of Sizing the Segment Table
	Slide 32: How many bits do we need for the bound?
	Slide 33: How many bits do we need for the bound?
	Slide 34: Example of Sizing the Segment Table
	Slide 35: Example of Sizing the Segment Table
	Slide 36: Example of Sizing the Segment Table
	Slide 37: Pros and Cons of Segmentation
	Slide 38: Defining Regions - Two Approaches
	Slide 39: Paging Vocabulary
	Slide 40: Page Table
	Slide 41: Address Translation
	Slide 42: Check if Page p is Within Range
	Slide 43: Check if Page Table Entry p is Valid
	Slide 44: Check if Operation is Permitted
	Slide 45: Translate Address
	Slide 46: Physical Address by Concatenation
	Slide 47: Sizing the Page Table
	Slide 48: Example of Sizing the Page Table
	Slide 49: Example of Sizing the Page Table
	Slide 50: How many entries (rows) will there be in this page table?
	Slide 51: Example of Sizing the Page Table
	Slide 52: Example of Sizing the Page Table
	Slide 53: What will be the frame size, in bytes?
	Slide 54: Example of Sizing the Page Table
	Slide 55: How many bits do we need to store the frame number?
	Slide 56: Example of Sizing the Page Table
	Slide 57: Example of Sizing the Page Table
	Slide 58: Example of Sizing the Page Table
	Slide 59: Pros and Cons of Paging
	Slide 60: Which would you use? Why? Pros/Cons?
	Slide 61: x86: Hybrid Approach
	Slide 62: Outstanding Problems
	Slide 63: Outstanding Problems
	Slide 64: Multi-Level Page Tables
	Slide 65: Multi-Level Page Tables
	Slide 66: Multi-Level Page Tables
	Slide 67: Multi-Level Page Tables
	Slide 68: Outstanding Problems
	Slide 69: How might these table registers help with performance?
	Slide 70: Memory Management Unit
	Slide 71: Memory Management Unit (MMU)
	Slide 72: Translation Cost
	Slide 73: Translation Look-aside Buffer (TLB)
	Slide 74: Recall: Context Switching Performance
	Slide 75: Translation Cost with TLB
	Slide 76: TLB Design Issues
	Slide 77: Summary

