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Today’s Goals

• Shifting topics: different process resource – memory

• Motivate virtual memory, including what it might look like without it

• How different views of memory affect stakeholders (user, 
programmer, OS, compiler, hardware)

• Big picture: the components and how they fit together.
Later: implementation details.



Memory

• Reality: there’s only so much memory to go 
around, and no two processes should use 
the same (physical) memory addresses.

• Abstraction goal: make every process think 
it has the same memory layout.
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Memory Terminology
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Physical Memory: The contents of 
the hardware (RAM) memory.
Managed by OS.  Only ONE of these 
for the entire machine!

Virtual (logical) Memory: The 
abstract view of memory given to 
processes.  Each process gets an 
independent view of the memory.

Address Space:
Range of addresses for 
a region of memory.

The set of available 
storage locations.
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VAS vs. PAS Sizes

• Example 1: 32-bit x86: VAS < PAS
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32-bit virtual 
addresses.

=> 4GB VAS

36-bit physical addresses 
(with PAE turned on).

=> 64 GB PAS



VAS vs. PAS Sizes

• Example 2: 64-bit x86: VAS >> PAS
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48-bit virtual 
addresses.

=> 256 TB VAS

36-bit physical addresses.

=> 64 GB PAS

(These values come from our lab machines.  The 
architecture itself allows for 64-bits, but most 
hardware doesn’t go nearly that far => 16,777,216 TB)

Implication: the user can ask for more 
memory (and assume it’s available) 

than the system can physically support.

Uh-oh?



Address Translation

• Virtual addresses must be translated to physical addresses.
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This is a lot of work!  For now, assume “black box” mechanism does it.
Today, the why: arguing that the mechanism is worth it / necessary 
and what we want it to provide for us.



Address Translation: Wish List
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• Map virtual addresses to physical addresses.



Who benefits most from having a logical 
memory abstraction?  Why?
A. The user

B. The programmer

C. The compiler

D. The OS / OS designer

E. The hardware / hardware designer



User Perspective

• Average user doesn’t care about “address spaces” or memory sizes

• User might say:
• I want all my programs to be able to run at the same time.

• I don’t want to worry about running out of memory.

• If OS does nothing / has no virtual memory:
• Best we can do is give them all of the physical memory.

• Is that enough?  Recall that VAS size can be larger than PAS…

Let’s explore what the OS might be able to do to help.



Multiprogramming, Revisited

• Recall multiprogramming: have multiple programs available to the 
machine, even if you only have one CPU core that can execute them.
• For CPU resource: context switch quickly between processes



Multiprogramming, Revisited

• Recall multiprogramming: have multiple programs available to the 
machine, even if you only have one CPU core that can execute them.
• For CPU resource: context switch quickly between processes

• Can we perform something analogous to a context switch for process 
memory?

A. Yes (how? Where will process memory be stored?)

B. No (why not?)

C. It depends (on what?)
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Multiprogramming, Revisited

• Recall multiprogramming: have multiple programs available to the 
machine, even if you only have one CPU core that can execute them.
• For CPU resource: context switch quickly between processes

• Can we perform something analogous to a context switch for process 
memory?
• Suppose disk transfer rate is 100 MB/s

• “switching” a 1 MB process would take 10 ms (+ disk seek time)

• CPU context switch: approx. 10 – 50 µs

• Moving that 1 MB would make context switch take 200 – 1000 times longer!

Conclusion: We can’t swap entirety of process memory on a context switch.  It needs to already be in memory.



Using Disk

• We still have a large amount of disk space though!

• If the total size of desired memory is larger than PAS, overflow to disk.
• Disk: can store a lot, but relatively painful to access
• Memory: much faster than disk, but can only store a subset

• This should sound familiar to a big CS 31 topic…

• Recall locality: we tend to repeatedly access recently accessed items, 
or those that are nearby.

Caching
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Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in 
memory / move to disk.
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Protection

• Another thing users want/expect, even if they don't realize it…

• Reality: Multiple processes will be in memory at the same time.

• Processes should not be able to read/write each other’s memory 
(unless we approve them to, with shared memory)



Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in 
memory / move to disk.

• Allow multiple processes to be in memory at 
once, but isolate them from each other.
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Programmer Perspective

• Mix of user and complier needs.
• High-level language: probably care more about memory availability

• Low-level language: probably care a lot about memory addresses

• One major concern: library code
• I want to #include lots of functionality for free!



If multiple processes want to use the same 
library, how should we support that?  Why?
A. Add a copy of the library code to the executable file at compile 

time.

B. Load a copy of the library code into memory when the process 
begins executing.

C. Map a shared copy of the library code in each process’s virtual 
address space.



Linking

• Static Linking: bundle up one giant executable, with copies of all 
library code.
• Advantage: fully self-contained, not dependent on system libraries (portable)

• Disadvantage: makes executable take up lots of space (on disk and in memory)

• Dynamic Linking: executable refers to external library code, which 
must be installed on system (or runtime error)
• Advantage: memory efficiency, only one copy of library code needed

• Disadvantage: must have library installed on system to use it



Dynamic Libraries

• On Linux: .so (shared object) file

• On Window: .dll (dynamically linked library) file

• Example: C standard library (libc)
• Every process can use the same libc code (printf, malloc, strlen, etc.)



Dynamic Library in Memory
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libc code is shared (read only) by 
all processes that need it.

Only one copy need be in memory!



Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in 
memory / move to disk.

• Allow multiple processes to be in memory at 
once, but isolate them from each other.

• Allow the same physical memory to be 
mapped in multiple process VASes.
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Compiler Perspective

• Compiler’s goal: generate assembly code that will run… later.

• It generates the instructions for code and puts them somewhere in 
the resulting executable.



Changing the Program Counter

• Recall: PC register contains address of next instruction

• The compiler must change the PC when program control flow needs it
• if / else: skip over some section of code (jump over instructions)

• loops: keep repeating the same code (jump back to same instructions)

• function call: execute code at some other location, come back later

• All of these cases: compiler must be setting the PC to some value



Placing and Finding Code  *This is simplified a lot.

Option A: Choose addresses

f1: 0x1000 add %eax, %ecx

…

0x100C call f2 (jump to 0x104C)

…

f2: 0x104C movl (%edx), %eax

…

ret

Option B: Use relative addresses 

Suppose we’re generating code for two functions: f1() and f2(), and f1 calls f2.

f1: BASE add %eax, %ecx

…

BASE + 0x0C call f2 (jump forward 0x40)

…

f2: BASE + 0x4C movl (%edx), %eax

…

ret



Placing and Finding Code  *This is simplified a lot.

Option A: Choose addresses

f1: 0x1000 add %eax, %ecx

…

0x100C call lib_f (jump to 0x0xF460)

…

lib_f: 0xF460 movl (%edx), %eax

…

ret

Option B: Use relative addresses 

Now suppose we’re generating a function that makes a library call.

f1: BASE add %eax, %ecx

…

BASE + 0x0C movl (load LIB_BASE)

BASE + 0x10 call f2 (jump to loaded LIB_BASE)

…

lib_f: LIB_BASE movl (%edx), %eax

…

ret

Elsewhere in memory…

Elsewhere in memory…



Which would you use?
Why?  How does it relate to OS / virtual memory?

Option A: Choose addresses

f1: 0x1000 add %eax, %ecx

…

0x100C call lib_f (jump to 0x0xF460)

…

lib_f: 0xF460 movl (%edx), %eax

…

ret

Option B: Use relative addresses 

f1: BASE add %eax, %ecx

…

BASE + 0x0C movl (load LIB_BASE)

BASE + 0x10 call f2 (jump to loaded LIB_BASE)

…

lib_f: LIB_BASE movl (%edx), %eax

…

ret

Elsewhere in memory…

Elsewhere in memory…



Without Help (Virtual Memory or Hardware)

• Without help from the OS/hardware, can’t do B.

• Option A works…sometimes.
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0x1000

0x9000

f1: 0x1000 add %eax, %ecx

…

0x100C call f2 (jump to 0x1050)

…

f2: 0x104C movl (%edx), %eax

…

ret
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Process 3

0x1000

0x9000

PAS PAS



Challenge: Dynamic Environment

• Compiler can’t realistically know:
• When will the code run?

• Which machine(s) will the code run on?

• How much memory will be available at the time?

• Where in the address space will that memory be available?

Conclusion: the compiler’s job is much easier if it can rely on the OS/Hardware to help with placement.



With Virtual Memory (OS and Hardware)

• Both options A and B work easily:
• Compiler gets an abstract view of memory to use however it wants

¯\_(ツ)_/¯
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*Don’t worry, the compiler still 
has a lot to worry about.  Code 
generation is not easy…



Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in 
memory / move to disk.

• Allow multiple processes to be in memory at 
once, but isolate them from each other.

• Allow the same physical memory to be 
mapped in multiple process VASes.
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OS Perspective

• Primary challenge: Which physical memory do we give to processes?

• Other important considerations:

• Protection: OS is resource gatekeeper, must isolate itself (and processes)

• Performance: OS should map memory for best performance, as long as it 
doesn’t violate protection



Without Virtual Memory Abstraction…

• Physical memory starts as one big empty space.

• When starting new processes, allocate memory.
• At first, placement is easy: lots of large chunks free

OS



Without Virtual Memory Abstraction…

• Physical memory starts as one big empty space.

• When starting new processes, allocate memory.
• At first, placement is easy: lots of large chunks free

• Over time, processes will terminate, leaving gaps.

• Now we have to decide, for new processes, where
should they go?

OS

?



Where should process P be placed?

• Why place it there?

OS

Process P

C

B

A



(External) Fragmentation

• No matter where it ends up, the remaining gaps get smaller.

• Large gaps are probably still usable, small ones likely aren’t.

• Fragmentation: over time, we end up with these small
gaps that become more difficult to use (eventually, wasted).

• “External” because the gaps are between allocated pieces

OS
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(External) Fragmentation

• Suppose we put it here, and later, P asks for more memory?

• What if there isn’t enough space…
• Move P?

• Move everybody to compact the address space?

• This seems bad.  Lots of tough problems (placement,
fragmentation) with no clear solutions.

OS

P



With Virtual Memory

• Divide PAS into fixed size pieces

• Use memory translation to assign virtual addresses
to physical locations

• Every physical location is an equally good choice!

OS

OS



Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in 
memory / move to disk.

• Allow multiple processes to be in memory at 
once, but isolate them from each other.

• Allow the same physical memory to be 
mapped in multiple process VASes.

• Make it easier to perform placement in a way 
that reduces fragmentation.
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OS Perspective

• Primary challenge: Which physical memory do we give to processes?

• Other important considerations:

• Protection: OS is resource gatekeeper, must isolate itself (and processes)

• Performance: OS should map memory for best performance, as long as it 
doesn’t violate protection



Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in 
memory / move to disk.

• Allow multiple processes to be in memory 
at once, but isolate them from each other.

• Allow the same physical memory to be 
mapped in multiple process VASes.

• Make it easier to perform placement in a way 
that reduces fragmentation.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

libc code

Protection: OS is resource gatekeeper, must isolate itself (and processes)

Performance: OS should map memory for best performance, as long as it 
doesn’t violate protection



Recall: Context Switching Performance

• Even though it’s fast, context switching is expensive:
1. time spent is 100% overhead

2. must invalidate other processes’ resources (caches, memory mappings)

3. kernel must execute – it must be accessible in memory

• Solution to #3:
• keep kernel mapped in every process VAS

• protect it to be inaccessible

0x0

0xFFFFFFFF

Operating system
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Hardware

• Hardware and OS are symbiotic, often influence each other.
• We’ve seen one example already: atomic instructions

• Memory management is another important area of collaboration

• Hardware goals:
• Make translation fast

• Give OS storage for and control over mappings



Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in 
memory / move to disk.

• Allow multiple processes to be in memory at 
once, but isolate them from each other.

• Allow the same physical memory to be 
mapped in multiple process VASes.

• Make it easier to perform placement in a way 
that reduces fragmentation.

• Map addresses quickly with a little HW help.
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Combination of hardware 
and OS, working together.

In hardware, MMU:
Memory Management Unit



Summary

• Users, programmers, compiler, OS all face difficult memory challenges.

• Virtual memory abstraction, despite being complex, is worth it to help 
solve these challenges.

• We’ve decided what virtual memory needs to do.  (wish list)

• Up next… making it happen.
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