
Memory Management
Kevin Webb

Swarthmore College

February 22, 2024

Today’s Goals

• Shifting topics: different process resource – memory

• Motivate virtual memory, including what it might look like without it

• How different views of memory affect stakeholders (user,
programmer, OS, compiler, hardware)

• Big picture: the components and how they fit together.
Later: implementation details.

Memory

• Reality: there’s only so much memory to go
around, and no two processes should use
the same (physical) memory addresses.

• Abstraction goal: make every process think
it has the same memory layout.

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Drab and ugly

Colorful and happy

Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Physical Memory: The contents of
the hardware (RAM) memory.
Managed by OS. Only ONE of these
for the entire machine!

Virtual (logical) Memory: The
abstract view of memory given to
processes. Each process gets an
independent view of the memory.

Address Space:
Range of addresses for
a region of memory.

The set of available
storage locations.

0x0

0x…
(Determined by HW and amount of installed RAM.)

0x0

0xFFFFFFFFVirtual address space
(VAS): fixed size (CPU).

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

VAS vs. PAS Sizes

• Example 1: 32-bit x86: VAS < PAS

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

32-bit virtual
addresses.

=> 4GB VAS

36-bit physical addresses
(with PAE turned on).

=> 64 GB PAS

VAS vs. PAS Sizes

• Example 2: 64-bit x86: VAS >> PAS

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

48-bit virtual
addresses.

=> 256 TB VAS

36-bit physical addresses.

=> 64 GB PAS

(These values come from our lab machines. The
architecture itself allows for 64-bits, but most
hardware doesn’t go nearly that far => 16,777,216 TB)

Implication: the user can ask for more
memory (and assume it’s available)

than the system can physically support.

Uh-oh?

Address Translation

• Virtual addresses must be translated to physical addresses.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

This is a lot of work! For now, assume “black box” mechanism does it.
Today, the why: arguing that the mechanism is worth it / necessary
and what we want it to provide for us.

Address Translation: Wish List

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

• Map virtual addresses to physical addresses.

Who benefits most from having a logical
memory abstraction? Why?
A. The user

B. The programmer

C. The compiler

D. The OS / OS designer

E. The hardware / hardware designer

User Perspective

• Average user doesn’t care about “address spaces” or memory sizes

• User might say:
• I want all my programs to be able to run at the same time.

• I don’t want to worry about running out of memory.

• If OS does nothing / has no virtual memory:
• Best we can do is give them all of the physical memory.

• Is that enough? Recall that VAS size can be larger than PAS…

Let’s explore what the OS might be able to do to help.

Multiprogramming, Revisited

• Recall multiprogramming: have multiple programs available to the
machine, even if you only have one CPU core that can execute them.
• For CPU resource: context switch quickly between processes

Multiprogramming, Revisited

• Recall multiprogramming: have multiple programs available to the
machine, even if you only have one CPU core that can execute them.
• For CPU resource: context switch quickly between processes

• Can we perform something analogous to a context switch for process
memory?

A. Yes (how? Where will process memory be stored?)

B. No (why not?)

C. It depends (on what?)

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~50 - 100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
 than local
 disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Recall: The Memory Hierarchy

Multiprogramming, Revisited

• Recall multiprogramming: have multiple programs available to the
machine, even if you only have one CPU core that can execute them.
• For CPU resource: context switch quickly between processes

• Can we perform something analogous to a context switch for process
memory?
• Suppose disk transfer rate is 100 MB/s

• “switching” a 1 MB process would take 10 ms (+ disk seek time)

• CPU context switch: approx. 10 – 50 µs

• Moving that 1 MB would make context switch take 200 – 1000 times longer!

Conclusion: We can’t swap entirety of process memory on a context switch. It needs to already be in memory.

Using Disk

• We still have a large amount of disk space though!

• If the total size of desired memory is larger than PAS, overflow to disk.
• Disk: can store a lot, but relatively painful to access
• Memory: much faster than disk, but can only store a subset

• This should sound familiar to a big CS 31 topic…

• Recall locality: we tend to repeatedly access recently accessed items,
or those that are nearby.

Caching

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~50 - 100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
 than local
 disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Recall: The Memory Hierarchy

Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in
memory / move to disk.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Protection

• Another thing users want/expect, even if they don't realize it…

• Reality: Multiple processes will be in memory at the same time.

• Processes should not be able to read/write each other’s memory
(unless we approve them to, with shared memory)

Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in
memory / move to disk.

• Allow multiple processes to be in memory at
once, but isolate them from each other.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Programmer Perspective

• Mix of user and complier needs.
• High-level language: probably care more about memory availability

• Low-level language: probably care a lot about memory addresses

• One major concern: library code
• I want to #include lots of functionality for free!

If multiple processes want to use the same
library, how should we support that? Why?
A. Add a copy of the library code to the executable file at compile

time.

B. Load a copy of the library code into memory when the process
begins executing.

C. Map a shared copy of the library code in each process’s virtual
address space.

Linking

• Static Linking: bundle up one giant executable, with copies of all
library code.
• Advantage: fully self-contained, not dependent on system libraries (portable)

• Disadvantage: makes executable take up lots of space (on disk and in memory)

• Dynamic Linking: executable refers to external library code, which
must be installed on system (or runtime error)
• Advantage: memory efficiency, only one copy of library code needed

• Disadvantage: must have library installed on system to use it

Dynamic Libraries

• On Linux: .so (shared object) file

• On Window: .dll (dynamically linked library) file

• Example: C standard library (libc)
• Every process can use the same libc code (printf, malloc, strlen, etc.)

Dynamic Library in Memory

Process 1

Process 3

OS

Process 2

Process 1
Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

libc code

libc code is shared (read only) by
all processes that need it.

Only one copy need be in memory!

Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in
memory / move to disk.

• Allow multiple processes to be in memory at
once, but isolate them from each other.

• Allow the same physical memory to be
mapped in multiple process VASes.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

libc code

Compiler Perspective

• Compiler’s goal: generate assembly code that will run… later.

• It generates the instructions for code and puts them somewhere in
the resulting executable.

Changing the Program Counter

• Recall: PC register contains address of next instruction

• The compiler must change the PC when program control flow needs it
• if / else: skip over some section of code (jump over instructions)

• loops: keep repeating the same code (jump back to same instructions)

• function call: execute code at some other location, come back later

• All of these cases: compiler must be setting the PC to some value

Placing and Finding Code *This is simplified a lot.

Option A: Choose addresses

f1: 0x1000 add %eax, %ecx

…

0x100C call f2 (jump to 0x104C)

…

f2: 0x104C movl (%edx), %eax

…

ret

Option B: Use relative addresses

Suppose we’re generating code for two functions: f1() and f2(), and f1 calls f2.

f1: BASE add %eax, %ecx

…

BASE + 0x0C call f2 (jump forward 0x40)

…

f2: BASE + 0x4C movl (%edx), %eax

…

ret

Placing and Finding Code *This is simplified a lot.

Option A: Choose addresses

f1: 0x1000 add %eax, %ecx

…

0x100C call lib_f (jump to 0x0xF460)

…

lib_f: 0xF460 movl (%edx), %eax

…

ret

Option B: Use relative addresses

Now suppose we’re generating a function that makes a library call.

f1: BASE add %eax, %ecx

…

BASE + 0x0C movl (load LIB_BASE)

BASE + 0x10 call f2 (jump to loaded LIB_BASE)

…

lib_f: LIB_BASE movl (%edx), %eax

…

ret

Elsewhere in memory…

Elsewhere in memory…

Which would you use?
Why? How does it relate to OS / virtual memory?

Option A: Choose addresses

f1: 0x1000 add %eax, %ecx

…

0x100C call lib_f (jump to 0x0xF460)

…

lib_f: 0xF460 movl (%edx), %eax

…

ret

Option B: Use relative addresses

f1: BASE add %eax, %ecx

…

BASE + 0x0C movl (load LIB_BASE)

BASE + 0x10 call f2 (jump to loaded LIB_BASE)

…

lib_f: LIB_BASE movl (%edx), %eax

…

ret

Elsewhere in memory…

Elsewhere in memory…

Without Help (Virtual Memory or Hardware)

• Without help from the OS/hardware, can’t do B.

• Option A works…sometimes.
Process 1

OS

Process 2

Process 3

0x1000

0x9000

f1: 0x1000 add %eax, %ecx

…

0x100C call f2 (jump to 0x1050)

…

f2: 0x104C movl (%edx), %eax

…

ret

Process 1

OS

Process 2

Process 3

0x1000

0x9000

PAS PAS

Challenge: Dynamic Environment

• Compiler can’t realistically know:
• When will the code run?

• Which machine(s) will the code run on?

• How much memory will be available at the time?

• Where in the address space will that memory be available?

Conclusion: the compiler’s job is much easier if it can rely on the OS/Hardware to help with placement.

With Virtual Memory (OS and Hardware)

• Both options A and B work easily:
• Compiler gets an abstract view of memory to use however it wants

¯_(ツ)_/¯

Text

Data

Stack

OS

Heap

VAS

*Don’t worry, the compiler still
has a lot to worry about. Code
generation is not easy…

Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in
memory / move to disk.

• Allow multiple processes to be in memory at
once, but isolate them from each other.

• Allow the same physical memory to be
mapped in multiple process VASes.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

libc code

OS Perspective

• Primary challenge: Which physical memory do we give to processes?

• Other important considerations:

• Protection: OS is resource gatekeeper, must isolate itself (and processes)

• Performance: OS should map memory for best performance, as long as it
doesn’t violate protection

Without Virtual Memory Abstraction…

• Physical memory starts as one big empty space.

• When starting new processes, allocate memory.
• At first, placement is easy: lots of large chunks free

OS

Without Virtual Memory Abstraction…

• Physical memory starts as one big empty space.

• When starting new processes, allocate memory.
• At first, placement is easy: lots of large chunks free

• Over time, processes will terminate, leaving gaps.

• Now we have to decide, for new processes, where
should they go?

OS

?

Where should process P be placed?

• Why place it there?

OS

Process P

C

B

A

(External) Fragmentation

• No matter where it ends up, the remaining gaps get smaller.

• Large gaps are probably still usable, small ones likely aren’t.

• Fragmentation: over time, we end up with these small
gaps that become more difficult to use (eventually, wasted).

• “External” because the gaps are between allocated pieces

OS

C

B

A

(External) Fragmentation

• Suppose we put it here, and later, P asks for more memory?

• What if there isn’t enough space…
• Move P?

• Move everybody to compact the address space?

• This seems bad. Lots of tough problems (placement,
fragmentation) with no clear solutions.

OS

P

With Virtual Memory

• Divide PAS into fixed size pieces

• Use memory translation to assign virtual addresses
to physical locations

• Every physical location is an equally good choice!

OS

OS

Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in
memory / move to disk.

• Allow multiple processes to be in memory at
once, but isolate them from each other.

• Allow the same physical memory to be
mapped in multiple process VASes.

• Make it easier to perform placement in a way
that reduces fragmentation.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

libc code

OS Perspective

• Primary challenge: Which physical memory do we give to processes?

• Other important considerations:

• Protection: OS is resource gatekeeper, must isolate itself (and processes)

• Performance: OS should map memory for best performance, as long as it
doesn’t violate protection

Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in
memory / move to disk.

• Allow multiple processes to be in memory
at once, but isolate them from each other.

• Allow the same physical memory to be
mapped in multiple process VASes.

• Make it easier to perform placement in a way
that reduces fragmentation.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

libc code

Protection: OS is resource gatekeeper, must isolate itself (and processes)

Performance: OS should map memory for best performance, as long as it
doesn’t violate protection

Recall: Context Switching Performance

• Even though it’s fast, context switching is expensive:
1. time spent is 100% overhead

2. must invalidate other processes’ resources (caches, memory mappings)

3. kernel must execute – it must be accessible in memory

• Solution to #3:
• keep kernel mapped in every process VAS

• protect it to be inaccessible

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Hardware

• Hardware and OS are symbiotic, often influence each other.
• We’ve seen one example already: atomic instructions

• Memory management is another important area of collaboration

• Hardware goals:
• Make translation fast

• Give OS storage for and control over mappings

Address Translation: Wish List

• Map virtual addresses to physical addresses.

• Determine which subset of data to keep in
memory / move to disk.

• Allow multiple processes to be in memory at
once, but isolate them from each other.

• Allow the same physical memory to be
mapped in multiple process VASes.

• Make it easier to perform placement in a way
that reduces fragmentation.

• Map addresses quickly with a little HW help.

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

libc code

Combination of hardware
and OS, working together.

In hardware, MMU:
Memory Management Unit

Summary

• Users, programmers, compiler, OS all face difficult memory challenges.

• Virtual memory abstraction, despite being complex, is worth it to help
solve these challenges.

• We’ve decided what virtual memory needs to do. (wish list)

• Up next… making it happen.

	Slide 1: Memory Management
	Slide 2: Today’s Goals
	Slide 3: Memory
	Slide 4: Memory Terminology
	Slide 5: VAS vs. PAS Sizes
	Slide 6: VAS vs. PAS Sizes
	Slide 7: Address Translation
	Slide 8: Address Translation: Wish List
	Slide 9: Who benefits most from having a logical memory abstraction? Why?
	Slide 10: User Perspective
	Slide 11: Multiprogramming, Revisited
	Slide 12: Multiprogramming, Revisited
	Slide 13: Recall: The Memory Hierarchy
	Slide 14: Multiprogramming, Revisited
	Slide 15: Using Disk
	Slide 16: Recall: The Memory Hierarchy
	Slide 17: Address Translation: Wish List
	Slide 18: Protection
	Slide 19: Address Translation: Wish List
	Slide 20: Programmer Perspective
	Slide 21: If multiple processes want to use the same library, how should we support that? Why?
	Slide 22: Linking
	Slide 23: Dynamic Libraries
	Slide 24: Dynamic Library in Memory
	Slide 25: Address Translation: Wish List
	Slide 26: Compiler Perspective
	Slide 27: Changing the Program Counter
	Slide 28: Placing and Finding Code *This is simplified a lot.
	Slide 29: Placing and Finding Code *This is simplified a lot.
	Slide 30: Which would you use? Why? How does it relate to OS / virtual memory?
	Slide 31: Without Help (Virtual Memory or Hardware)
	Slide 32: Challenge: Dynamic Environment
	Slide 33: With Virtual Memory (OS and Hardware)
	Slide 34: Address Translation: Wish List
	Slide 35: OS Perspective
	Slide 36: Without Virtual Memory Abstraction…
	Slide 37: Without Virtual Memory Abstraction…
	Slide 38: Where should process P be placed?
	Slide 39: (External) Fragmentation
	Slide 40: (External) Fragmentation
	Slide 41: With Virtual Memory
	Slide 42: Address Translation: Wish List
	Slide 43: OS Perspective
	Slide 44: Address Translation: Wish List
	Slide 45: Recall: Context Switching Performance
	Slide 46: Hardware
	Slide 47: Address Translation: Wish List
	Slide 48: Summary

