
Processes, Context
Switching, and Scheduling

Kevin Webb

Swarthmore College

January 30, 2024

Today’s Goals

• What is a process to the OS?

• What are a process’s resources and how does it get them?

• In particular: focus on CPU execution
• Mechanism: context switching and how it works

• Policy: CPU scheduling and the types of policies that make sense

Before Processes (or even OSes)

• Feed in program

• Wait for output

• Feed in next one…

Goal: Multiprogramming

• Multiprogramming: have multiple processes available to the machine,
even if you only have one CPU core that can execute them.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Goal: Multiprogramming

• Multiprogramming: have multiple processes available to the machine,
even if you only have one a few CPU cores that can execute them.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Goal: Multiprogramming

• For now, let’s run with this simpler model of one CPU…

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Goal: Multiprogramming

• For now, let’s run with this simpler model of one CPU…

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

WARNING: Common Misconception

Despite having "multi" in the name, multiprogramming DOES NOT require
multiple CPUs or multiple cores. "Multi" refers to multiple processes, and
the term predates most parallel processing mechanisms.

Goal: Multiprogramming

• Multiprogramming: have multiple processes available to the
machine, even if you only have one CPU core that can execute them.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Why is multiprogramming beneficial if we can
still only execute instruction stream at a time?
A. Usability – It’s a pain to have only one program.

B. Efficiency – Switching between running programs improves the
performance of each program.

C. Efficiency – Switching between running programs improves the
performance of the overall system.

D. Cost – Need to buy less hardware if one machine can run everything.

E. Some other reason(s).

Goal: Multiprogramming

• Multiprogramming: have multiple processes available to the machine, even
if you only have one CPU that can execute them

• When I/O issued by process, CPU not needed!
• Allow another program to run
• Requires yielding the CPU and dividing memory

• Challenges: what if one running program…
• Monopolizes CPU, memory?
• Reads/writes another’s memory?
• Uses I/O device being used by another?

The machine’s hardware is
NOT exclusive to one
running program anymore…

Solution: Processes

• To the OS, a process is state to be kept track of and protected!
• For now, let’s assume processes have a single thread of execution.

• Need to store (at least):
• execution eligibility state (can it be scheduled right now?)

• process id – PID

• parent and child processes

• resources (CPU state, memory, I/O)

• …

Process “State”

• “What can this process do right now?”

• Running: process is executing on the CPU

• Ready: process can execute, but we have to give it the CPU

• Waiting / blocked: process is waiting for something to happen before
it can continue. Does NO GOOD to schedule it.

Examples:
Waiting for I/O to complete.
Process needs to wait for exclusive resource (e.g., mutex).
Process asks to be put to sleep for a while…

It doesn’t make sense for a process to go
from___. Why not?
A. running to waiting/blocked

B. ready to waiting/blocked

C. ready to running

D. running to ready

State Transitions (& I/O implications)

I/O is important to the scheduler: can’t schedule an I/O blocked process.
I/O is important to processes: can’t run if they perform I/O!

Process Resources: Memory

• Abstraction: Virtual Address Space (VAS)

• Give every process the illusion of having
all of the system’s memory. (for convenience!)

• At process startup (fork+exec):
• Code loaded from disk to text
• Static / global variables initialized in data
• Stack created in stack

• Heap allocated on demand (malloc -> syscall)

0x0

0xFFFFFFFF

Reserved/ Operating system

Stack

Text

Data

Heap

Process Resources: I/O

• Abstraction: File

• Old Unix adage: “Everything is a file”, including:
• files (duh)

• sockets (abstraction used for network communication)

• pipes (send the output of one process to the input of another)

• most I/O devices (e.g., mouse, printer, graphics card)*

*Not the only way to access these devices.

Why treat all of these I/O things as files?

A. It’s less error-prone.

B. It provides higher performance.

C. It’s simpler to access all of them in the same way.

D. More than one of these. (Which?)

E. Some other reason(s).

I/O Resource Accounting

• For each process, OS maintains a file descriptor table.
• Give integer file descriptor to process, store details in OS

• By default, processes all get stdin, stdout, stderr

• For anything else,
explicitly ask the
OS (e.g., open())

0

1

2

7

8

stdin stdout stderr

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

/home/file

printf is a write()
to FD 1 (stdout).

Lab Note: Shell I/O Redirection Feature

• Shells allow you to redirect one stream to another (or to a file).

• For example:
• prog 1> output.txt Store the output (stdout) to a file named output.txt

• prog 2>&1 Write stderr to the stdout stream. (Not required for lab)

• prog < input.txt Read stdin from input file rather than console.

0

1

2

7

8

stdin stdout stderr

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

/home/file

Process Resource: CPU

• For each process, store the process’s CPU context:
• general purpose registers (x86_64: rax, rcx, etc.)

• floating point registers

• program counter register (PC)

• stack pointer register (SP)

• memory segmentation registers (x86: CS, DS, SS, ES, FS, GS)

• any other storage the CPU exposes via ISA…

• Example (Linux x86 thread_struct):
• https://elixir.bootlin.com/linux/v5.15.137/source/arch/x86/include/asm/processor.h#L469

https://elixir.bootlin.com/linux/v5.15.137/source/arch/x86/include/asm/processor.h#L469

Process Control Block (PCB)

• Lots of things to keep track of for each process.
• Big ones: CPU context, VAS, I/O descriptor table
• Lots of other bookkeeping information

• Process control block: per-process structure to centralize everything the OS
knows about a process.

• It has many names: PCB, task control block, process table entry, task struct

• Example (Linux task_struct)
• https://elixir.bootlin.com/linux/v5.15.137/source/include/linux/sched.h#L721

https://elixir.bootlin.com/linux/v5.15.137/source/include/linux/sched.h#L721

Great, each process has a PCB, with all the
process’s info. We need to choose one of
them to execute on the CPU. How?

A. Run one to completion, then choose another one after that.

B. Prioritize according to user’s (or system designer’s) preference.

C. Give each process the same amount of CPU time.

D. Prioritize by some dynamic performance metric.

E. Some other policy.

CPU Scheduling: There is no “best” policy…

• Depends on the goals of the system.

• Different for…
• Super computer

• Nuclear power plant or medical device

• Your personal computer

• Often have multiple (conflicting) goals or primary metrics

Scheduling Metrics

• CPU Utilization – percentage of time CPU is not idle

• Turnaround time – time between process startup and completion
• Typically concerned with average

• Throughput – how much work gets completed

• Fairness – how well is the CPU distributed among processes

Which metrics are most important in each
scenario? What might a reasonable scheduling
policy look like for each? (No clickers, think briefly solo then discuss.)

1. Super computer: large, long running jobs submitted by many users

2. Medical device: sensors for monitoring patient and actuators for
doing something to them (e.g., administering medication)

3. General-purpose desktop/laptop: variety of tasks happening for one
user (browser, email, music, messaging, etc.)

Metrics: CPU utilization, turnaround time, throughput, fairness, others?

Observations

• Super computer probably has lots of CPU hungry tasks, not much I/O.

• Task priority probably critical to medical device.

• Humans like interactivity on desktop/laptop, even at the expense of
overall runtime.

“CPU Bound”: needs mainly CPU
to make progress. Will use as
much CPU as you give it!

“I/O Bound”: frequently waiting on I/O to make
progress. Usually doesn’t need much CPU
time, but benefits from getting CPU often.

Idealized Policies

• First come, first served (FCFS) / FIFO: Run jobs to completion in the
order they arrive.
• metric: simplicity(?), low overhead

• Shortest job first (SJF): Chose the job that needs least CPU time to
finish, run it first. Analogy: “ten items or less” checkout line.
• metric: turnaround time

• Round robin (RR): Each process gets the same amount of CPU time,
taking turns fairly.
• metric: fairness

Idealized Policies

• First come, first served (FCFS) / FIFO: Run jobs to completion in the
order they arrive.
• metric: simplicity(?), low overhead Problem: no interactivity

• Shortest job first (SJF): Chose the job that needs least CPU time to
finish, run it first. Analogy: “ten items or less” checkout line.
• metric: turnaround time Problem: starvation

• Round robin (RR): Each process gets the same amount of CPU time,
taking turns fairly.
• metric: fairness Problem: “fair” in light of I/O?

More Realistic General-Purpose Policy

• Special class gets special treatment (varies – requires configuration)

• Everything else: roughly equal time quantum
• “Round robin”
• Give priority boost to processes that frequently perform I/O
• Why?

• “I/O bound” processes frequently block.
• If we want them to get equal CPU time, we need to give them the CPU more

often.

Multi-Level Feedback Queue (BSDs, Linux 2.4)

• Multiple ready queues 0, 1, …, n

• Always select process in lowest-numbered queue

• Run selected process for 2i quanta (for queue i)

• If process doesn’t block, place in next higher
queue (except last), else back to same queue (or 0)

…

0

1

2

n

Linux’s “Completely Fair Scheduler”
(default since 2.6.23, Oct 2007, until just recently)

• “real time” process classes – always run first (rare)

• Other processes:
• Red-black BST of process, organized by CPU time

they’ve received.

• Pick the ready process that has run for the shortest
(normalized) time thus far.

• Run it, update it’s CPU usage time, add to tree.

• Interactive processes: Usually blocked, low total
run time, high priority.

Image source: https://www.ibm.com/developerworks/library/l-
completely-fair-scheduler/

https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/
https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/

Windows

• “Each thread has a dynamic priority. This is the priority the scheduler uses
to determine which thread to execute. Initially, a thread's dynamic priority
is the same as its base priority. The system can boost and lower the
dynamic priority, to ensure that it is responsive and that no threads are
starved for processor time.”

• Priority is boosted when:
• Process’s window is brought to foreground.
• Process’s window receives input.
• Process was waiting for I/O, which has now completed.

• Source: https://msdn.microsoft.com/en-us/library/windows/desktop/ms684828(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684828(v=vs.85).aspx

Scheduling: Policy

• Large variation between OSes and their goals

• NEVER make assumptions about what the scheduler will do!

Mechanism: Context Switching

• Regardless of policy, we need to control which process gets CPU!

• Executive summary:
• First, save CPU context of currently running process to PCB

• Next, load CPU context of next process to run from PCB

Context Switching: Performance

• Even though it’s fast, context switching is expensive:
1. time spent is 100% overhead

2. must invalidate other processes’ resources (caches, memory mappings)

3. kernel must execute – it must be accessible in memory

• Solution to #3:
• keep kernel mapped in every process VAS

• protect it to be inaccessible

• Aside: 2018 “meltdown” hardware bug

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Kernel Execution

• Recall: kernel executes on…
• process system call

• process exception

• hardware interrupt

• Problem: the kernel calls functions too, it needs
space to work with.
• Dynamic memory (Linux: kmalloc / kfree)

• Stack: set aside memory for kernel stack in each process

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Every process has another stack for use when kernel is executing on its behalf.

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
?

Userspace Process P

Scenario: Process P causes itself to
be context switched by calling a
yield() system call.

yield() – just give up the CPU /
voluntary context switch.

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
?

Userspace Process P

Process P starts up and is given the
CPU.

PC: next instruction to execute
SP: top of stack

PC

SP

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Process P executes the first
instruction.

PC

SP

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Process P makes a system call: yield.

Transition to kernel mode:
 - change CPU “ring” setting
 - find system call entry point
 - set up kernel stack

PC

SP

OS

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Process P makes a system call: yield.

Transition to kernel mode:
 - change CPU “ring” setting
 - find system call entry point
 - set up kernel stack

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

This is a caricature
of a system call for
learning purposes!

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Process P makes a system call: yield.

Transition to kernel mode:
 - change CPU “ring” setting
 - find system call entry point
 - set up kernel stack

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

--------yield--------

old: new:

:saved SP

:saved PC

P’s kernel stack

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Process P makes a system call: yield.

Jump to yield().

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

--------yield--------

old: new:

:saved SP

:saved PC

P’s kernel stack

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Process P makes a system call: yield.

We’ll skip over setting old and new.
 old: current process
 new: process to switch to

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Call context_switch().
 - initialize in_progress to 0

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

0

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Save current process P’s context to
P’s PCB.

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

0

PCB (P): SP, PC

At the time of the save, PC is
pointing to the end of
save_context(), a return instruction!

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Check in_progress, it’s 0.

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

0

PCB (P): SP, PC

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Set in_progress to 1!

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

1

PCB (P): SP, PC

Key insight: we just changed
a variable on the stack
AFTER saving the context!

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Restore another process’s context.

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

1

PCB (P): SP, PC

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Run other processes for a while…

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

1

PCB (P): SP, PC

Process X

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Eventually, we context switch back
to process P when some other
process does a restore_context().

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

1

PCB (P): SP, PC

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Resume Process P by loading
context from PCB.

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

1

PCB (P): SP, PC

Recall: PC was pointing at return
from save_context, so return
back to context_switch().

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Check in_progress. It’s 1 now!

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

1

PCB (P): SP, PC

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Return back to yield().
Don’t need PCB context anymore, so
I’m hiding it (declutter).

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
10

Userspace Process P

Now yield returns back to user
process.
Reset CPU ring to userspace.

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
20

Userspace Process P

Set i to 20.

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
20

Userspace Process P

Yield again, repeat process.

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack
20

Userspace Process P

Eventually, we’ll get here again:

PC

SP

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

----context switch----

in_progress:

(yield’s SP and PC)

--------yield--------

old: P new: X
:saved SP

:saved PC

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

1

PCB (P): SP, PC

Key insight: we just changed
a variable on the stack
AFTER saving the context!

Context switching questions?

main() {

 int i = 10;

 yield();

 i = 20;

 yield();

}

i:

Text

Stack

Userspace Process P

For each call to yield:
How many times does save_context() return?
How many times does restore_context() return?

OS

yield() {

 pid_t old, new;

 old = current_pid();

 new = schedule();

 context_switch(old, new);

}

P’s kernel stack

context_switch(old, new) {

 int in_progress = 0;

 save_context(old);

 if (in_progress == 1)

 return;

 else

 in_progress = 1;

 restore_context(new);

}

Answer Function Returns Function Returns

A save_context 0 restore_context 2

B save_context 1 restore_context 1

C save_context 2 restore_context 0

Kernel Execution

• Recall: kernel executes on…
• process system call

• process exception

• hardware interrupt

• Problem: hardware not associated with any process

• Solution: set aside memory for kernel stack for each CPU

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

So far…

• Context switching mechanism controls how we save one process’s
state, switch to another process.

• Scheduling policy controls which process we switch to.

• So, how/when should we invoke the scheduler to make a new choice?

When should we perform a context switch?
Why?

A. When a process makes an I/O system call.

B. When the scheduler decides it’s time (how?).

C. Any time the kernel executes (system call, exception, interrupt).

D. Some other time(s).

Context Switching: When

• Any time OS executes, check which process to schedule before giving
control back to userspace.

• Before giving CPU to a process, set a timer: process’s “quantum”.

• After quantum expires, timer generates hardware
interrupt, giving control back to kernel.
• Quantum length is controlled by sched policy.

Summary

• OS stores lots of information about process and resources in PCB.

• OS decides which process to run according to scheduling policy.

• Scheduling is enforced by context switching mechanism.

• Context switch occurs when kernel gets control.
• Process asked for syscall or caused exception.

• Hardware interrupt – often the timer device as set by scheduler!

	Slide 1: Processes, Context Switching, and Scheduling
	Slide 2: Today’s Goals
	Slide 3: Before Processes (or even OSes)
	Slide 4: Goal: Multiprogramming
	Slide 5: Goal: Multiprogramming
	Slide 6: Goal: Multiprogramming
	Slide 7: Goal: Multiprogramming
	Slide 8: Goal: Multiprogramming
	Slide 9: Why is multiprogramming beneficial if we can still only execute instruction stream at a time?
	Slide 10: Goal: Multiprogramming
	Slide 11: Solution: Processes
	Slide 12: Process “State”
	Slide 13: It doesn’t make sense for a process to go from___. Why not?
	Slide 14: State Transitions (& I/O implications)
	Slide 15: Process Resources: Memory
	Slide 16: Process Resources: I/O
	Slide 17: Why treat all of these I/O things as files?
	Slide 18: I/O Resource Accounting
	Slide 19: Lab Note: Shell I/O Redirection Feature
	Slide 20: Process Resource: CPU
	Slide 21: Process Control Block (PCB)
	Slide 22: Great, each process has a PCB, with all the process’s info. We need to choose one of them to execute on the CPU. How?
	Slide 23: CPU Scheduling: There is no “best” policy…
	Slide 24: Scheduling Metrics
	Slide 25: Which metrics are most important in each scenario? What might a reasonable scheduling policy look like for each? (No clickers, think briefly solo then discuss.)
	Slide 26: Observations
	Slide 27: Idealized Policies
	Slide 28: Idealized Policies
	Slide 29: More Realistic General-Purpose Policy
	Slide 30: Multi-Level Feedback Queue (BSDs, Linux 2.4)
	Slide 31: Linux’s “Completely Fair Scheduler” (default since 2.6.23, Oct 2007, until just recently)
	Slide 32: Windows
	Slide 33: Scheduling: Policy
	Slide 34: Mechanism: Context Switching
	Slide 35: Context Switching: Performance
	Slide 36: Kernel Execution
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Context switching questions?
	Slide 60
	Slide 61: Kernel Execution
	Slide 62: So far…
	Slide 63: When should we perform a context switch? Why?
	Slide 64: Context Switching: When
	Slide 65: Summary

