
OS Structure
Kevin Webb

Swarthmore College

January 25, 2024

Relevant
xkcd #1508:

https://xkcd.com/1508/

Announcements

• I posted a lab checkpoint credit policy on EdSTEM. It’s intended to
match what we talked about on Tuesday, with a bit more detail. If you
have questions about it, please let me know outside of class.

• I said last time to email me if you’re using a late day. I think we’re
going to try a google form instead, to make it easier to manage
between two lab instructors. Will have more info on that soon.

• Generative AI policy

Reminders

• Please let me know ASAP if you need to switch labs (+ reason) via form

• Please register your clicker

• Please contact me if you have an accommodations letter

• Please (BOTH PARTNERS) fill out the lab partnership form for lab 1

• If you briefly look over you CS 31 shell code (~5-10 minutes),
today/tomorrow's lab will be better for everyone!

Today’s Goals

• Broad strokes: processes, resources, and protection

• Terminology (kernel, interrupts, traps, system calls, exceptions, …)

• Operating system structure and design patterns

Kernel vs. Userspace: Terminology

• “OS” & “Kernel” - interchangeable in this course

• Compiled Linux kernel: ~5-10 MB

• Fully installed system - a few GB
• Most of this is user-level programs that get executed as processes

• System utilities, graphical window system, shell, text editor, etc.

Primary Abstraction: The Process

• Abstraction of a running program
• a dynamic “program in execution”

• Program: blueprint

• Process: constructed building

• Program: class

• Process: instance

Basic Process Resources

1. CPU Time – execute a stream of instructions

2. Main memory storage – store variables / scratch space

3. Input/Output (I/O) – interact with the outside world

4. Also: State (metadata) bookkeeping – kernel data structures
• Programmer / user doesn’t see this

• Details next time…

Process Resource: CPU Time

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr

Instruction Register (IR): Instruction contents (bits)

• CPU: Central Processing Unit

• PC points to next instruction

• CPU loads instruction, decodes
it, executes it, stores result

• Process “given” CPU by OS
• Mechanism: context switch

• Policy: CPU schedulingRequired for process to
execute and make progress!

Process Resource: Main Memory

• Process must store:
• Text: code instructions

• Data: static (known at compile time) variables

• Heap: dynamically requested memory at runtime
(malloc, new, etc.)

• Stack: store local variables and compiler-generated
function call state (e.g., saved registers)

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Required for process to
store instructions (+data)!

Process Resource: I/O

• Allows processes to interact with a
variety of devices (i.e., everything that
isn’t a CPU or main memory).

• Enables files, communication,
human interaction, etc.

• Learn about or change the state of
the outside world.

Disk

Wireless Network Keyboard / Mouse

Required?

Reminder

1. Solo vote (quiet)

2. Small group discussion & group vote (loud)

3. Class discussion

Is I/O a requirement for processes?

A. Yes (why?)

B. No (why not?)

Same requirements for an Operating System?

• Previously, OS is: “System software that manages computer hardware
and software resources and provides common services for computer
programs.”

• “OS” & “Kernel” - interchangeable in this course

• How does an OS / kernel fit in with this notion of processes?

Is the kernel a process? Should it be?
Could it be?

A. Yes it is, and it should be.

B. Yes it is, but it shouldn’t be.

C. No it isn’t, but it should be.

D. No it isn’t, and it can’t be.

E. Something else

OS Kernel

• Many styles / ways to structure a kernel

• Unless we say otherwise: assume the OS is not a process!
• It’s a special management entity – also implemented in software

• It supports the user’s processes, but is a special case with different needs

• The OS might create some processes to help itself out
• e.g., Linux flushes buffered data to disks periodically

• Other OS styles: kernel processes take a larger role, but still a “core” kernel

Kernel vs. Userspace: Model

Text

Data

Stack

Text

Data

Stack

Text

Data

Stack

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

Process 1 Process 2 Process N

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

Code:

Data:

Code:

Code + Data:

How/When should the OS Kernel’s code execute?

A. The kernel code is always executing.

B. The kernel code executes when a process asks it to.

C. The kernel code executes when the hardware needs it to.

D. The kernel code should execute as little as possible.

E. The kernel code executes at some other time(s).

Same Question, Different Resource

• “How much of the system’s memory should the OS use?”

• Hopefully not much… just enough to get its work done.

• Leave the rest for the user!

OS: Taking Control of the CPU

• The terminology here is, unfortunately, muddy.

1. System call – user process requests service from the OS

2. Exception – user process has done something that requires help

3. (Hardware) interrupt – a device needs attention from the OS

System call often implemented as a special case of exception: execute intentional exception-generating instruction.

“Trap”

OS: Taking Control of the CPU

• The terminology here is, unfortunately, muddy.

1. System call – user process requests service from the OS

2. Exception – user process has done something that requires help

3. (Hardware) interrupt – a device needs attention from the OS

System call often implemented as a special case of exception: execute intentional exception-generating instruction.

“Trap”

Why make system calls?

A. Performance: Kernel code executes faster / saves time.

B. Security: Programs can’t use kernel code or devices in unintended ways.

C. Usability: Kernel code is easier / adds value for programmers to use.

D. More than one of the above. (Which?)

E. Some other reason(s).

Common Functionality

• Some functions useful to many programs, some need to be protected
• I/O device control
• Memory allocation

• Place these functions in kernel
• Called by programs (system calls)
• Or accessed implicitly as needed (exceptions)

• What should these functions be?
• How many programs should benefit?
• Might kernel get too big?

How about a function like printf()?

A. printf() is a system call
(why?)

B. printf() is not a system call
(why not, what is it?)

• Some functions useful to many
programs
• I/O device control
• Memory allocation

• Place these functions in kernel
• Called by programs (system calls)
• Or accessed implicitly as needed

(exceptions)

• What should these functions be?
• How many programs should benefit?
• Might kernel get too big?

System Calls in Practice

• Often hidden from user by libraries (e.g., libc) for convenience
• printf: performs a write() system call, but handles variable-length arguments

• “raw” syscall does as little as possible. write(): move (already formatted) data

• How can you tell if a function is a syscall or belongs to a library?
• Man page section number: 2 – syscall, 3 – library

• Follow the trail of included header files

• Small syscalls: minimize attack “surface area” in trusted kernel code.

• Hardware mode: x86 / amd64 “rings”

Syscall Protection Features

Ring 3

Ring 2
Ring 1

Ring 0

• Small syscalls: minimize attack “surface area” in trusted kernel code.

• Hardware mode: x86 / amd64 “rings”

user processes
unused

Syscall Protection Features

Guest Kernel

Ring 0
Hypervisor

Traditional (Unix, Windows)

user processes
unused
unused

Ring 0
Kernel

Virtualization

• Small syscalls: minimize attack “surface area” in trusted kernel code.

• Hardware mode: x86 / amd64 “rings”

• Lower numbered rings, more privileged instructions

• Well-defined syscall entry points
• “amplify” power, switch mode to ring 0

Syscall Protection Features

Traditional (Unix, Windows)

user processes
unused
unused

Ring 0
Kernel

Syscall Entry vs. Userspace Function Call

• syscall behavior is different from userspace code, where to execute a
new function we just specify which instruction to jump to.

pushq
Create space on the stack and place the
source there.

subq $8, %rsp

movq src, (%rsp)

popq
Remove the top item off the stack and
store it at the destination.

movq (%rsp), dst

addq $8, %rsp

callq
1. Push return address on stack
2. Jump to start of function

pushq %rip

jmp target

leaveq
Prepare the stack for return
(restoring caller’s stack frame)

movq %rbp, %rsp

popq %rbp

retq

Return to the caller, PC saved PC
(pop return address off the stack into
PC (eip))

popq %rip

Userspace
instructions
(from CS 31):

Syscall Entry vs. Userspace Function Call

• syscall behavior is different from userspace code, where to execute a
new function we just specify which instruction to jump to.

Userspace
instructions
(from CS 31):

Takeaway: the cost of making a function call and returning in
userspace isn't that big – just a few instructions.

pushq
Create space on the stack and place the
source there.

subq $8, %rsp

movq src, (%rsp)

popq
Remove the top item off the stack and
store it at the destination.

movq (%rsp), dst

addq $8, %rsp

callq
1. Push return address on stack
2. Jump to start of function

pushq %rip

jmp target

leaveq
Prepare the stack for return
(restoring caller’s stack frame)

movq %rbp, %rsp

popq %rbp

retq

Return to the caller, PC saved PC
(pop return address off the stack into
PC (eip))

popq %rip

Syscall Entry Points

• Switching into the kernel means we guarantee kernel code will start
running at a fixed point in the code – the beginning of a function.

• Guarantees we will run an entire function, not just some part of it
(your userspace process is no longer in control of the CPU).

Making a System Call

• Each system call has a unique number. OS keeps a table.

Syscall Number Syscall Name Code

0 read

1 write

2 open

…

57 fork

… int fork(){
…
}

…

int read(){
…
}

Making a System Call

• Each system call has a unique number. OS keeps a table.

Syscall Number Syscall Name Code

0 read

1 write

2 open

…

57 fork

… int fork(){
…
}

…

int read(){
…
}

To make a system call:

1. place desired syscall number in the
agreed-upon location (e.g., register).

2. initiate system call (special
instruction – often intentional
exception).

System Call Cost

• Compared to a normal userspace function call, cost is relatively high.

• Worth the cost to processes to get access to protected resources.

• Programmer should be careful not to make too many syscalls in
performance-critical sections of code.

Structure of a Kernel

• Simple (MS-DOS, early UNIX)

• Monolithic + Modules (Linux, Windows 9x)

• Microkernel (Mach)

• Hybrid (Windows NT, XNU/OS X)

Structure of a Kernel

• Simple (MS-DOS, early UNIX)

• Monolithic + Modules (Linux, Windows 9x)

• Microkernel (Mach)

• Hybrid (Windows NT, XNU/OS X)

There is no one-size-fits-all solution!

Simple (MS-DOS)

User Application

System Programs

MS-DOS Device Drivers

Hardware

What’s problematic about this simple model?

A. Insecure

B. Inefficient

C. Hard to add functionality

D. More than one of the above

E. Something else

User Application

System Programs

MS-DOS Device Drivers

Hardware

What’s problematic about this simple model?

A. Insecure

B. Inefficient

C. Hard to add functionality

D. More than one of the above

E. Something else

Solution: add the protection features we
talked about earlier (or something similar)!

Most importantly: Limit user’s entry into
important stuff.

But…where should the important stuff go?

Monolithic – without modules

OS Kernel:
Signal handling, I/O system, terminal drivers, file system, swapping,

device drivers, scheduling, page replacement, virtual memory

Hardware

Kernel

Userspace

Text

Data

Stack

OS

Heap

User process

Text

Data

Stack

OS

Heap

User process

Text

Data

Stack

OS

Heap

User process

Problem: How many devices are you
planning to support…?

Modular Monolithic (Linux)

OS Kernel (core services):
Signal handling, I/O system, swapping, scheduling,

page replacement, virtual memory

Hardware

Kernel

Userspace

Text

Data

Stack

OS

Heap

User process

Text

Data

Stack

OS

Heap

User process

Text

Data

Stack

OS

Heap

User process

file
system:

ext4

file
system:

fat32

Suppose user plugs in USB drive.

device
driver:

USB disk

Modular Monolithic (Linux)

OS Kernel (core services):
Signal handling, I/O system, swapping, scheduling,

page replacement, virtual memory

Hardware

Kernel

Userspace

Text

Data

Stack

OS

Heap

User process

Text

Data

Stack

OS

Heap

User process

Text

Data

Stack

OS

Heap

User process

file
system:

ext4

file
system:

fat32

Advantage: easily extensible. Can
have lots of modules ready, only use
the ones you need!

Drawback: still one giant kernel.

device
driver:

USB disk

What’s problematic about the modular
monolithic model?

A. Insecure

B. Inefficient

C. Hard to add functionality

D. More than one of the above

E. Something else

Microkernel

• Kernel supports as little as possible:
• message-passing (communication between processes)

• process / “task” management

• memory allocation

• All other functionality delegated to user level processes

Microkernel

Minimal OS Kernel (core services): inter-process communication, scheduling, virtual memory

Hardware

Kernel

Userspace

Text

Data

Stack

OS

Heap

User process

Text

Data

Stack

OS

Heap

User process

Text

Data

Stack

OS

Heap

User process

Text

Data

Stack

OS

Heap

OS process:
file system

Text

Data

Stack

OS

Heap

OS process:
device driver

Processes communicate
with each other to get /
provide services.

Important system functionality
implemented in userspace processes.

Microkernel

• Kernel supports as little as possible:
• message-passing (communication between processes)

• process / “task” management

• memory allocation

• All other functionality delegated to user level processes

• Benefits: Strong isolation between services, less trusted kernel code.

What’s problematic about microkernels?

A. Insecure

B. Inefficient

C. Hard to add functionality

D. More than one of the above

E. Something else

Problem: LOTS of transitioning
between userspace and the kernel.

We’ll see: not a trivial operation…

Of the choices we’ve seen so far, which do you like
best / would you choose if you built an OS? Why?

A. Simple

B. Monolithic

C. Monolithic + modules

D. Microkernel

E. Something else (?)

See:
https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate

Hybrid Kernels

• NT Kernel (Used in modern Windows)
• Divided into modules

• Modules communicate via function calls or messaging

• Almost all modules run in kernel mode

• Some application system services run in user mode

• Graphics example:
• Graphics driver moved around a couple of times

• Initially -> Userspace process for isolation

• Later -> back to kernel for performance reasons

Hybrid Kernels

• XNU (OS X)
• Combines Mach (classic microkernel) with BSD

• Runs core Mach kernel, but with BSD subsystems and APIs added

• Mach communicates with BSD via IPC, but everything is running in kernel
mode

Summary

• Important distinction: userspace vs. the OS kernel

• We don’t want the OS using resources, but it has to when it gets a
system call, exception, or hardware interrupt.

• Transition to kernel amplifies power, allows privileged instructions

• Many patterns for structuring a kernel, each has merits and drawbacks
• monolithic, microkernel, hybrid

	Slide 1: OS Structure
	Slide 2: Announcements
	Slide 3: Reminders
	Slide 4: Today’s Goals
	Slide 5: Kernel vs. Userspace: Terminology
	Slide 6: Primary Abstraction: The Process
	Slide 7: Basic Process Resources
	Slide 8: Process Resource: CPU Time
	Slide 9: Process Resource: Main Memory
	Slide 10: Process Resource: I/O
	Slide 11: Reminder
	Slide 12: Is I/O a requirement for processes?
	Slide 13: Same requirements for an Operating System?
	Slide 14: Is the kernel a process? Should it be? Could it be?
	Slide 15: OS Kernel
	Slide 16: Kernel vs. Userspace: Model
	Slide 17: Kernel vs. Userspace: Model
	Slide 18: How/When should the OS Kernel’s code execute?
	Slide 19: Same Question, Different Resource
	Slide 20: OS: Taking Control of the CPU
	Slide 21: OS: Taking Control of the CPU
	Slide 22: Why make system calls?
	Slide 23: Common Functionality
	Slide 24: How about a function like printf()?
	Slide 25: System Calls in Practice
	Slide 26: Syscall Protection Features
	Slide 27: Syscall Protection Features
	Slide 28: Syscall Protection Features
	Slide 29: Syscall Entry vs. Userspace Function Call
	Slide 30: Syscall Entry vs. Userspace Function Call
	Slide 31: Syscall Entry Points
	Slide 32: Making a System Call
	Slide 33: Making a System Call
	Slide 34: System Call Cost
	Slide 35: Structure of a Kernel
	Slide 36: Structure of a Kernel
	Slide 37: Simple (MS-DOS)
	Slide 38: What’s problematic about this simple model?
	Slide 39: What’s problematic about this simple model?
	Slide 40: Monolithic – without modules
	Slide 41: Modular Monolithic (Linux)
	Slide 42: Modular Monolithic (Linux)
	Slide 43: What’s problematic about the modular monolithic model?
	Slide 44: Microkernel
	Slide 45: Microkernel
	Slide 46: Microkernel
	Slide 47: What’s problematic about microkernels?
	Slide 48: Of the choices we’ve seen so far, which do you like best / would you choose if you built an OS? Why?
	Slide 49: Hybrid Kernels
	Slide 50: Hybrid Kernels
	Slide 54: Summary

